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Abstract

Long-range spatiotemporal dependencies capturing plays an essential role in improv-

ing video features for action recognition. The non-local block inspired by the non-local

means is designed to address this challenge and have shown excellent performance.

However, the non-local block brings significant increase in computation cost to the

original network. It also lacks the ability to model regional correlation in videos. To

address the above limitations, we propose Pyramid Non-Local (PNL) module, which

extends the non-local block by incorporating regional correlation at multiple scales

through a pyramid structured module. This extension upscales the effectiveness of

non-local operation by attending to the interaction between different regions. Empiri-

cal results prove the effectiveness and efficiency of our PNL module, which achieves

state-of-the-art performance of 83.09% on the Mini-Kinetics dataset, with decreased

computation cost compared to the non-local block.

Keywords: long-range dependencies, action recognition, pyramid, multi-scale

∗Corresponding author
Email addresses: xuyu0014@e.ntu.edu.sg (Yuecong Xu), haozhi001@e.ntu.edu.sg

(Haozhi Cao), yang0478@e.ntu.edu.sg (Jianfei Yang), ekzmao@ntu.edu.sg (Kezhi Mao),
jianxiongy@nvidia.com (Jianxiong Yin), ssee@nvidia.com (Simon See)

1School of Electrical and Electronic Engineering, Nanyang Technological University.
2NVIDIA AI Tech Centre.

Preprint submitted to Elsevier June 11, 2020

ar
X

iv
:2

00
6.

05
09

1v
1 

 [
cs

.C
V

] 
 9

 J
un

 2
02

0



1. Introduction

Action recognition has received considerable attention from the vision community

in recent years [1, 2, 3, 4] thanks to its increasing applications in various fields, such

as surveillance [5, 6, 7] and smart homes [8, 9, 10] etc. Capturing long-range spa-

tiotemporal dependencies have proven to play a key role in extracting effective video

features for action recognition. Previously, feature extraction techniques such as SIFT

[11], GLOH [12] and Dense Trajectory [13] models such dependencies through hand-

crafted features. More recently, convolutional and recurrent modules have replaced

these hand-crafted features as the predominant modules for video feature extraction.

However, each convolution or recurrent module extract spatiotemporal dependencies

within spatial or temporal local regions. Therefore, it requires a stack of convolution

or recurrent modules to model long-range spatiotemporal dependencies. Such strategy

is computationally inefficient, while also causing difficulties in network optimization.

Inspired by the non-local means for image filtering task [14, 15], the non-local

neural network [16] is proposed to address the challenge of capturing long-range de-

pendencies directly. The proposed network captures long-range dependencies through

direct modeling the correlation of each single pixel at any spatiotemporal location in

a single module: non-local block. Without bells and whistles, the insertion of non-

local block improves action recognition accuracy of existing networks, which proves

the effectiveness of non-local block in extracting long-range dependencies.

Despite the great improvement brought by the non-local block, the original non-

local block has its own limitations. The original non-local block significantly increases

the parameter size and computation cost of the network, thanks to the fact that the

long-range dependencies is captured through pixel correlation. The increase in action

recognition accuracy is at the cost of a significant decrease in computation efficiency

of the network.

On the other hand, when we recognize action, it is more intuitive to focus on not

only the correlation between each single pixel, but also on the correlation between

larger regions of each frame, as can be shown in Figure 1. To classify the action, we

relate the boy with the backboard, which suggest a high possibility of the “playing
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Figure 1: Illustration of utilizing regional correlation for action recognition. The original non-local block

captures long-range spatiotemporal dependencies through pixel correlation, shown as blue arrows. The ac-

tion “playing basketball” could alternatively be recognized through regional correlation between the boy and

the backboard, shown as red arrows.

basketball” action. This is more efficient and intuitive than extracting pixel correlation

that relates the basketball across frames, as well as pixel correlation that relates the

basketball with the hands and elbows.

To this end, to improve both the effectiveness and efficiency of the non-local block,

we propose a novel long-range spatiotemporal dependencies extraction module: the

Pyramid Non-Local (PNL) module. The proposed PNL module extends the original

non-local block, and incorporates regional feature correlation at multiple scales through

a pyramid structured module. The multi-scaled correlation are combined with a self-

attentive combination function. Our main contributions are summarized as follows:

∗ We propose a novel long-range spatiotemporal dependencies extraction module,

Pyramid Non-Local (PNL) module. The PNL module extends the original non-

local block through incorporating regional feature correlation at multiple scales.

This extension upscales the effectiveness of non-local operation by attending to

the interaction between different regions.

∗ We conduct comprehensive analysis over the computation cost required by our

proposed PNL module. We further demonstrate its efficiency through comparing

the computation cost of the PNL module against the original non-local block.

∗ We conduct extensive experiments on two action recognition benchmark datasets:

Mini-Kinetics [17] and UCF101 [18] with multiple frameworks utilizing our pro-
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posed PNL module. The results demonstrate that our proposed PNL module

brings noticeable improvements over baseline methods and methods utilizing

the original non-local block, while requiring less computation cost. Our network

achieves state-of-the-art performance for the Mini-Kinetics dataset.

The rest of this paper is organized as follows. Related works for long-range spa-

tiotemporal dependencies extraction in videos as well as pyramid structured neural

networks are discussed in Section 2. Subsequently, in Section 3, we introduce and an-

alyze the proposed Pyramid Non-Local module (PNL) in detail. After that, we present

and analyze the experimental results of our proposed PNL module, with thorough ab-

lation experiments on the design of PNL module and visualization of feature outputs.

Finally, we conclude the paper and propose some future works in Section 5.

2. Related Work

2.1. Capturing Long-range Spatiotemporal Dependencies

Capturing long-range spatiotemporal dependencies plays an important role in ex-

tracting effective video features. Previously, such dependencies are captured through

hand-crafted features, extracted through algorithms such as SIFT [11], GLOH [12] and

Dense Trajectory [13]. The extracted hand-crafted features are effective, yet the ex-

traction process is known to be computationally expensive and memory intensive. In

addition, as extracting the hand-crafted features require pre-computation, the use of

these algorithms prohibits fully end-to-end training of the network.

Convolutional and recurrent modules have become the predominant modules for

video feature extraction with its good performance in action recognition task [19,

20]. However, vanilla convolutional and recurrent modules are both unable to cap-

ture long-range dependencies. Convolutional module captures spatiotemporal depen-

dencies within spatial or temporal local regions. Whereas vanilla recurrent module,

though designed for sequential data modeling, suffers from vanishing gradient prob-

lem which prevents it from capturing long-range dependencies [21]. Subsequently,

various modules have been proposed in an attempt to better capture long-range depen-

dencies. One notable module is the LSTM module [22]. It includes a ’memory cell’
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that can maintain information in memory for long periods of time such that long-range

dependencies can be captured. LSTM have been utilized in various works for effective

action recognition [23, 24, 25]. However, LSTM module suffer from its large memory

requirement and slow training speed while also prone to overfitting. Therefore current

state-of-the-art action recognition models do not adopt LSTM module for long-range

spatiotemporal dependencies.

More recently, inspired by the non-local means for image filtering task [14, 15], the

non-local block [16] is introduced with the non-local neural network for capturing long-

range dependencies. Subsequently, multiple variants of the non-local block have also

been introduced. One of which is the compact generalized non-local operation [26],

which exploits cross-channel correlation on top of the original non-local operation.

Another is the double-attention module [27] which computes correlation of features

from a compact bag. Though both variants improves from the original non-local block,

they have not considered the use of regional correlation at multiple scaled, which differs

our proposed module with theirs.

2.2. Pyramid Structured Neural Networks

Pyramid structured networks have proven to be effective in utilizing multi-scaled

features for various tasks, including object detection [28], pose estimation [29] and im-

age segmentation [30]. In the field of action recognition, pyramid structured networks

have also been utilized to fuse spatial and temporal features [31]. There are also works

that utilize video frame inputs sampled at multiple temporal scales, such as the Slow-

Fast network [32], which could be viewed as a pyramid structured network along the

temporal dimension. In our work, the pyramid structure is utilized to extract multi-

scaled regional correlation for capturing long-range spatiotemporal dependencies.

3. Methodology

The primary goal of our work is to develop a more effective and efficient module to

extract long-range spatiotemporal dependencies. To achieve this, we propose to extend

the non-local block [16] through incorporating regional correlation. In this section, we
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Figure 2: Comparison of the original non-local block (a) with our proposed PNL module (b). We present

the case where the embedded Gaussian function is utilized for the non-local operation. The dimension of the

input and output features are also presented, with the “batch” dimension ignored.

introduce our proposed Pyramid Non-Local (PNL) module with detailed illustration of

how it is extended from the original non-local block. We then provide solid proof over

its higher computation efficiency compared to the original non-local block.

3.1. Review of Non-Local Block

As our proposed module is built by extending the original non-local block, we begin

by briefly reviewing the original non-local block as introduced in [16]. The structure

of the original non-local block is as shown in Figure 2a. Let the video input be denoted

as X ∈ RT×H×W×C . where T , H , W and C denote the temporal length, height,

width and number of channels of the video respectively. The original non-local block

captures long-range spatiotemporal dependencies through non-local operation, which
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Figure 3: Structure of the combination function fcomb. fcomb is designed by adopting a self-attention

mechanism, and combines the multi-scaled dependencies attentively.

is a weighted sum of the correlation features at all positions, formulated as:

yi =
1

C(X)

∑
∀j

f(θ(xi), φ(xj))g(xj), (1)

where yi is the output response Y at position i, while xi and xj are the input features at

positions i and j. θ(·), φ(·) and g(·) are learnable transformations of the input features

and are implemented as convolution layers with kernel size of 1 × 1 × 1. Due to the

convolutional implementation, we specify the transformations θ(·), φ(·) and g(·) to

be conv θ, conv φ and conv g respectively. The pairwise function f(·, ·) computes

the affinity between the input features at all space-time positions. The choice of the

pairwise function f(·, ·) varies. Here we show the case where the embedded Gaussian

version of f(·, ·) is adopted in Figure 2a. The final output of the non-local block Z is

computed by adding the long-range dependencies Y from the non-local operation with

the original input X.

3.2. Pyramid Non-Local Module

While the original non-local block is designed to capture long-range dependencies

between any two positions in the input feature, such dependencies are extracted at the

pixel level, where pixels at every space-time position is included in the computation.

The use of only pixel correlation may not be effective and efficient due to the existence

of trivial background pixels and the exclusion of regional correlation. On the other
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hand, multi-scale regional features have been proven effective in tasks such as object

detection [28] and salient object detection [33]. Inspired by these works, we intro-

duce the Pyramid Non-Local module (PNL) which incorporates multi-scale regional

correlation, utilizing a pyramid structured module. The structure of the PNL module

is as shown in Figure 2b. Formally, to extend the original non-local block to the re-

gional level, we first obtain n features of different scales from the original input X. We

leverage the channel grouping technique as in [34, 35], grouping the channels into n

groups, each containing C ′ = C/n channels, with n strictly larger than 1. We denote

the result of channel grouping to be X′0,X
′
1,..., X′n−1. We then obtain the features of

n scales through sub-sampling operations over the n groups of feature. Note that the

sub-sampling operation does not apply to X′0, where we preserve a group of channels

with the same resolution and scale as the original input. The sub-sampling operations

are implemented as pooling operation on the spatial dimensions. The result of the

kth sub-sampling operation Xk is of spatial size H
2k
× W

2k
. The results of the above

channel grouping and sub-sampling process are therefore scaled features denoted as

Xk ∈ RT× H

2k
×W

2k
×C′

, where k ∈ [0, (n− 1)].

Through the pooling process, each feature point in the scaled features corresponds

to a region of the original input. Therefore, the correlation of each feature point in

the scaled features can be viewed as the correlation of the corresponding regions in

the original input. To capture the long-range dependencies on both the pixel level

and regional level, we input the scaled features of X0,X1,..., Xn−1 to the non-local

operation, as reviewed in Section 3.1. For all the input scaled features, we share the

parameters of the non-local operations. The end result of this step are thus long-range

dependencies at multiple scales, denoted as Y0,Y1,..., Yn−1. To obtain the overall

long-range dependencies denoted as Y, we combine the long-range dependencies of

Y0,Y1,..., Yn−1 with a combination function fcomb. fcomb could be simply a vanilla

concatenate function, where Y = concat(Y0,Y1,..., Yn−1). However, the vanilla

concatenate function weighs all input features equally, which is not ideal. To combine

the multi-scaled long-range dependencies dynamically, our proposed fcomb adopt a

self-attention mechanism, utilizing the scaled dot-product attention introduced in [36].

The structure of fcomb is presented in Figure 3.
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Given the multi-scaled long-range dependencies Y0,Y1,..., Yn−1, the scale-attended

long-range dependencies Y is computed as:

Y = Reshape(Attend(Y′Q,Y
′
K ,Ystack)), (2)

where the Attend(·) function is implemented as the scaled dot-product attention while

Reshape(·) reshapes the output of the Attention(·) function to match that of the orig-

inal input feature X ∈ RT×H×W×C . The Attend(·) function is formulated as:

Attend(Y′Q,Y
′
K ,Ystack) = σ(

Y′QY
′
K

T

√
C ′

)Ystack. (3)

Here σ(·) is the softmax function, which ensures that the weights for all scales add

up to 1. Ystack is obtained through by first flattening long-range dependencies of all

scales spatiotemporally and stacked along a separate ”scale dimension”. Both Y′Q

and Y′K are obtained through a three step process: first, a spatiotemporal average

pooling operation is applied to the multi-scaled long-range dependencies to obtain a

representation for the dependencies of each scale; second, the pooled dependencies are

stacked along the separate ”scale dimension” to form a stacked representation feature,

denoted as Y′stack; third, separate trainable linear layers, linear Q and linear K are

applied to Y′stack obtain Y′Q and Y′K . The end product of Equation 3 and Equation 2

would be the overall long-range dependencies with dynamic weights applied to the

dependencies of each scale.

3.3. Computational Efficiency Analysis for PNL Module

In this section, we prove the efficiency for extracting the long-range dependencies

Y with our proposed PNL module against the original non-local block. In this proof,

we adopt the case where f(·, ·) is the embedded Gaussian version. For notation sim-

plicity, here we denote N = T ×H ×W . Under this notation, the dimension for input

X ∈ RT×H×W×C could be simplified as X ∈ RN×C .

We first compute the computation cost for the original non-local block, though

conv θ, conv φ and conv g operations are convolutional, they are essentially linear

multiplicative operations. Their designed to project the original input to an embedding

space with lower dimension. As designed in [16], the embedding space is of dimension

9



RN×C
2 . Similarly, the operation conv z as shown in Figure 2a is also a linear multi-

plicative which projects the computed dependencies back from the embedding space.

The total computation cost for operations conv θ, conv φ, conv g and conv g could

thus be computed as:

Costnl,embs = 4× C2 ×N × C

2
= 2C3N. (4)

The subsequent matrix multiplication of the embeddings from conv θ and conv φ

would be computed as:

Costnl,matmul =
C

2
×N ×N =

1

2
CN2. (5)

The same computation cost also applies to the matrix multiplication between the soft-

max result of the previous matrix multiplication with the embeddings from conv g.

The computation cost of softmax function is negligible compared to the multiplicative

computations as listed above. The approximate total computation cost of the original

non-local block is thus computed as:

Costnl = Costnl,embs + 2× Costnl,matmul

= 2C3N + CN2.
(6)

We now consider the computation cost for our proposed PNL module, which uti-

lizes the non-local operation while incorporating regional correlation. To compute the

overall computation cost for PNL module, we first compute the computation cost for

the process of obtaining Yk from Xk as indicated in Figure 2b, denoted as Costnl,k.

The computation of Costnl,k follows the same procedures as that of the computation

of Costnl. However they differ in two perspectives: first, the channel number of Xk

is C ′ = C/n and second, as Xk is of dimension RT× H

2k
×W

2k
×C′

, thus following the

notation above, Nk is computed as:

Nk = T × H

2k
× W

2k

=
1

22k
T ×H ×W

=
1

4k
N.

(7)
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Thus we could compute Costnl,k as:

Costnl,k = 2C ′
3
NK + C ′Nk

2

=
1

n3
2C3 1

4k
N +

1

n
C × (

1

4k
N)2

=
1

n3 × 4k
2C3N +

1

n× 16k
CN2.

(8)

Hence, the total computation cost of obtaining the multi-scaled long-range dependen-

cies in our PNL module can be computed as:

Costpnl,dep =

n−1∑
k=0

Costnl,k

= (

n−1∑
k=0

1

4k
)
1

n3
2C3N + (

n−1∑
k=0

1

16k
)
1

n
CN2.

(9)

As the scale of the feature map must be a positive integer, it could be easily computed

that n could only take the values of 2, 3 or 4, where the largest Costpnl,dep is obtained

with n = 2 with Costpnl,dep = 5
322C

3N + 17
32CN

2. Meanwhile, the computation

with regards to fcomb is negligible compared to the computation cost of obtaining the

dependencies. The above proof clearly proves that our proposed PNL is more efficient

than the original non-local block in terms of lower computation cost.

4. Experiments and Discussion

In this section, we present the evaluation results of the proposed PNL module. The

evaluation is conducted through action recognition experiments on two public bench-

mark datasets. We present state-of-the-art results on a competitive architecture. Further

visualization results are also presented to justify the effectiveness of our proposed mod-

ule.

4.1. Experimental Settings

4.1.1. Datasets and Baselines

For the action recognition task, we conduct experiments on two challenging pub-

lic benchmark datasets: Mini-Kinetics [17] and UCF101 [18]. The Mini-Kinetics is
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a subset of the Kinetics-400 [37] dataset, with 200 of its categories. It contains a to-

tal of 80K training data and 5K validation data. To obtain the state-of-the-art result

on the Mini-Kinetics dataset, we instantiate MFNet [38] as the baseline thanks to its

outstanding performance on Kinetics-400 dataset.

The UCF101 [18] dataset contains 13,320 videos with 101 categories. For the

UCF101 dataset, we follow the settings as in previous works [38, 39], and adopt the

three train/test splits for evaluation. We report the average top-1 accuracy over the

three splits. Our proposed PNL module can be used with any current CNN networks.

Due to the high performance of MFNet, the effectiveness of our proposed PNL module

may not be obvious. Instead, thanks to its the steady performance, ResNet-50 [40] is

adopted as the baseline for experiments on the UCF101 dataset, denoted here as R-50.

We adopt the exact same architecture configuration as in [16], where the temporal di-

mension is trivially addressed through pooling operation and the convolutional kernels

are of size 1× k × k.

4.1.2. Implementation Details

Our experiments are all implemented using PyTorch [41]. Following the imple-

mentation in [38], the input is a frame sequence with each frame of size 224×224. For

the MFNet baseline, we follow the implementation in [38] and sample a sequence of

16 frames. Whereas for the ResNet-50 baseline, we sample a sequence of 32 frames as

suggested in [16]. To accelerate our training, we utilize the pretrained model of MFNet

trained on Kinetics-400, and the pretrained model of ResNet-50 trained on ImageNet

[42]. The stochastic gradient descent algorithm [43] is used for optimization, with the

weight decay set to 0.0001 and the momentum set to 0.9. Our initial learning rate is

set to 0.01. Similar to [16], we ensure that the initial state of the entire PNL module

to be an identity mapping. This further ensures that the proposed PNL modules can be

inserted into any pretrained networks while maintaining its initial behavior.

4.2. Ablation Experiments

We obtain an optimal form of PNL while verifying our design through ablation

experiments. The ablation experiments are all conducted on the Mini-Kinetics dataset
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Pairwise Function Top-1 Top-5

MFNet baseline 78.35% 94.65%

Embedded Gaussian 82.16% 95.83%

Gaussian 81.68% 95.51%

Dot Product 81.45% 95.54%

Concatenation 81.79% 95.36%

Table 1: Ablation 1 - Type of pairwise function: A single PNL module with n = 4 with different types of

pairwise function f(·, ·) is inserted into the MFNet baseline. All are inserted to the last multi-fiber unit right

before the end of conv4 stage.

PNL position Top-1 Top-5

MFNet baseline 78.35% 94.65%

conv2 81.41% 95.33%

conv3 81.63% 95.48%

conv4 81.98% 95.59%

conv5 81.37% 95.31%

Table 2: Ablation 2 - Position of PNL: A single PNL module with n = 2 is inserted into the MFNet

baseline. The insertion is located at the last multi-fiber unit right before the end of each stage.

utilizing the MFNet baseline.

4.2.1. Pairwise Function

We first discuss the effect of the pairwise function f(·, ·) in the non-local block.

Following [16], we utilize four types of pairwise functions, namely embedded Gaus-

sian, Gaussian, dot product and concatenation. The result of utilizing each pairwise

function is as shown in Table 1. Consistent improvements can be observed regardless

of the pairwise function utilized. Among which, the embedded Gaussian function as

depicted in Figure 2a achieves the best performance. Therefore, the pairwise function

f(·, ·) would be the embedded Gaussian version by default for the rest of the experi-

ments.
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Combination Function Top-1 Top-5 # Params Flops

MFNet baseline 78.35% 94.65% 7.843M 11.176G

Vanilla concatenation 81.93% 95.37% 7.911M 11.208G

Self-attention mechanism 82.16% 95.83% 7.92M 11.218G

Table 3: Ablation 3 - Type of combination function: A single PNL module with n = 4 is inserted into

the MFNet baseline at the last multi-fiber unit right before the end of conv4. The multi-scaled long-range

dependencies are combined with different types of fcomb.

n scales Top-1 Top-5

MFNet baseline 78.35% 94.65%

2 81.98% 95.59%

3 82.14% 95.74%

4 82.16% 95.83%

Table 4: Ablation 4 - Number of scales: A single PNL module with different scales of dependencies is

inserted into the MFNet baseline at the same position.

4.2.2. Position of PNL Module

Table 2 compares the result where a single PNL module is inserted to the different

stages of the MFNet baseline. Note that due to the constraint imposed by the size of the

feature map, the inserted PNL module includes only n = 2 scales. The improvement

of adding the PNL module gradually increases with the PNL module inserted into

deeper stages until conv4 stage. However, the improvement by adding PNL module

decreases sharply when then PNL module is inserted at the conv5 stage. The fact that

the spatial dimension of feature map at conv5 stage is too small (7×7) such that precise

spatial dependencies could not be obtained even at the original feature map scale could

be a reason of the sudden drop in improvement. This phenomena is inline with that

observed in [16], where inserting the original non-local block at the last convolution

stage also results in the lowest improvement. Thanks to the best performance obtained

by inserting at the conv4 stage, we insert PNL module right before the last multi-fiber

unit of conv4 stage by default. The multi-fiber unit in the MFNet baseline is equivalent

to a residual block in the ResNet baseline.
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4.2.3. Combining Multi-scaled Dependencies with fcomb

As mentioned in Section 3.2, the multi-scaled dependencies obtained from the

multi-scaled features are combined with a combination function fcomb. Here we com-

pare the result utilizing two different types of combination function: a vanilla con-

catenation function, and a function utilizing self-attention mechanism as proposed in

Section 3.2. The results are presented in Table 3. In addition to the Top-1 and Top-5

accuracies, we also compare the number of parameters and required computation Flops

with respect to the different combination functions. It can be seen that our proposed

self-attended fcomb outperforms the vanilla concatenation combination by 0.26%. This

is at a cost of only 0.09M extra parameters, which is less than 0.12% increase in pa-

rameter size. This indicates that our proposed fcomb is both effective and efficient, with

a negligible computation cost.

4.2.4. Number of Scales

Table 4 shows the result of utilizing different numbers of scales in the PNL module.

Due to the limitations of the scale of feature map, the number of scales is limited to

a maximum number of n = 4. Note that when n = 1, the PNL module would be

exactly same as the original non-local block. Hence we would not discuss the case

where n = 1. The results in Table 4 shows that with the increase in number of scales,

the improvement would slightly increase. From Section 3.3, it is also clear that with

the increase in n, the computation cost of PNL module decreases. Hence when n = 4

scales are utilized, our proposed PNL module is both effective and efficient. For the

rest of the experiments, n would be set to 4 by default.

4.3. Results and Comparison

Table 5 shows the comparison of top-1 accuracy on Mini-Kinetics dataset with

other current state-of-the-art methods which includes the following methods:

1. Two-stream CNN methods: MARS [44], Residual Frame with two-stream input

(ResFrame TS) [45] and I3D with two-stream input [46].

2. 3D CNN methods: C3D [19], I3D with RGB input [46], (2+C1)D [47], MFNet

[38] and S3D [17].
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Method Mini-Kinetics Top-1 # Params FLOPs

Two-stream

CNNs

MARS [44] 73.5% - -

ResFrame TS [45] 73.9% - -

I3D (TS) [46] 78.7% 25.0M >107.9G

3D CNNs

C3D [19] 66.2% 33.3M -

I3D (RGB) [46] 74.1% 12.06M 107.9G

(2+C1)D [47] 75.74% 7.3M 31.9G

S3D [17] 78.0% 8.77M 43.47G

MFNet [38] 78.35% 7.84M 11.17G

CNN with long-range

dependencies

Res50-NL [16] 77.53% 27.66M 19.67G

Res50-CGD [48] 77.56% 25.58M 17.88G

Res50-CGNL [26] 77.76% 27.2M 19.16G

MFNet-NL [26] 79.74% 8.15M 11.66G

Ours
MFNet-PNL(×1) 82.16% 7.92M 11.22G

MFNet-PNL(×5) 83.09% 8.12M 11.38G

Table 5: Comparison of top-1 and top-5 accuracy, number of parameters and computation cost in FLOPs

with state-of-the-art methods on the Mini-Kinetics datasets.

3. CNN with long-range dependencies: Res50-NL [16], Res50-CGD [48], Res50-

CGNL [26] and MFNet with non-local block inserted (MFNet-NL).

The above methods are compared with MFNet-PNL(×1) which includes only a single

PNL module with the MFNet baseline, and MFNet-PNL(×5) which includes five PNL

modules. For the single PNL module case, the PNL module is inserted right before the

last multi-fiber unit of conv4 stage of the MFNet baseline. For the five PNL modules

case, the PNL modules are inserted to every other multi-fiber unit of conv3 and conv4

stage of the MFNet baseline. For this experiment, we set our batch size to 64 for the

Mini-Kinetics dataset and conduct the experiment using two NVIDIA GP100 GPUs.

The results in Table 5 clearly show that with the addition of our proposed PNL

module, the network achieves the best result on the Mini-Kinetics dataset with limited

increase in the number of parameters and computation cost compared to the original

MFNet baseline. By inserting a single PNL module, the network achieves a 3.81%
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Method Top-1 Top-5 # Params Flops

R-50 81.62% 94.62% 23.92M 10.29G

R-50 + NL 82.88% 95.74% 26.38M 18.72G

R-50 + CGNL 83.38% 95.42% 26.22M 18.23G

R-50 + PNL(×1) 85.22% 95.82% 24.46M 13.31G

Table 6: Comparison of top-1 and top-5 accuracy, number of parameters and computation cost in FLOPs of

ResNet-50 and its variants on the UCF101 dataset. The parameter size and computation FLOPs are lower

for the same network than that tested on Mini-Kinetics due to the fewer number of classes.

increase over the baseline model. Utilizing the PNL module also outperforms the net-

work with the same MFNet baseline but utilizing the original non-local block, denoted

as MFNet-NL. In contrast, a single PNL module has 0.22M less parameters and re-

quires 0.42G less FLOPs compared to the original non-local block. The optimal net-

work performance on Mini-Kinetics is obtained by adding five PNL modules, increas-

ing the accuracy by 3.35% compared to the baseline. It can be noted that even with

five PNL modules added, the total number of parameters and required computation

FLOPs are both lower than that with the original non-local block. This further proves

the effectiveness and efficiency of our proposed PNL module.

Besides testing on the Mini-Kinetics dataset, we also conduct experiments on the

UCF101 dataset. Here we utilize the simpler ResNet-50 baseline instead of the MFNet

baseline to showcase the effectiveness of the PNL module. The result is as presented

in Table 6. Here a single non-local block or PNL module is inserted at the exact same

location, which is right before the last residual block of res4 stage. By comparison,

inserting the proposed PNL module brings an extra 2.34% increase in top-1 accuracy.

At the same time, our PNL module has 1.92M less parameters and requires 5.41G less

FLOPs compare to the original non-local block. The above results further justifies the

effectiveness and efficiency of our PNL module compared to the original non-local

block.

We further investigate the improvement over different actions and present the com-

parison of performance between the baseline MFNet network with that of inserted a
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Figure 4: Detailed comparison of accuracy per class on the Mini-Kinetics between the original MFNet

baseline with networks resulting from insertion of a single PNL module (MFNet-PNL(×1)) or a single non-

local block (MFNet-NL). Here we present the accuracies of 12 classes where MFNet-PNL(×1) outperforms

the original MFNet baseline by a margin of at least 5%. In all classes presented, the MFNet-PNL(×1) also

outperforms MFNet-NL.

single non-local block or a single PNL module. Figure 4 shows the accuracy of 12

classes from the Mini-Kinetics dataset, where inserting our proposed PNL module out-

performs the original baseline network by a noticeable margin of over 5%. Inserting

the PNL module also outperforms that of inserting the non-local block in all of the 12

classes presented. To further illustrate the effectiveness of our PNL module, we present

several examples in Figure 5 where inserting a single PNL module to the original base-

line outperforms the baseline network with or without non-local block inserted. The

superior performance over inserting the non-local block in these examples illustrates

that modeling regional correlation in long-range dependencies could bring additional

information to the network, thus resulting in more effective video features.

4.4. Visualization

To justify the effectiveness of our proposed module in capturing regional long-

range dependencies at multiple scales, we visualize the interactions of the different
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Kitesurfing

MFNet-PNL (x1)

Kitesurfing 77.79

Windsurfing 11.01

Surfing Water 6.87

MFNet-NL

Surfing Water 44.19

Kitesurfing 40.68

Windsurfing 7.86

MFNet

Surfing Water 44.19

Kitesurfing 30.18

Windsurfing 17.33

Breakdancing

MFNet-PNL (x1)

Breakdancing 31.17

Somersaulting 29.06

High Kick 17.53

MFNet-NL

Somersaulting 85.58

Breakdancing 11.48

Capoeira 0.91

MFNet

Capoeira 95.58

Somersaulting 1.48

Breakdancing 0.66

Surfing Water

MFNet-PNL (x1)

Surfing Water 81.26

Water Skiing 7.70

Crossing River 5.91

MFNet-NL

Water Skiing 74.91

Slacklining 6.06

Surfing Water 4.25

MFNet

Water Skiing 65.78

Crossing River 6.24

Slacklining 3.48

Tai Chi

MFNet-PNL (x1)

Tai Chi 66.04

Lunge 11.47

Dancing Ballet 6.94

MFNet-NL

Lunge 44.28

Tai Chi 21.91

Dancing Ballet 15.68

MFNet

Dancing Ballet 41.11

Lunge 21.91

Tai Chi 15.26

Pushing Car

MFNet-PNL (x1)

Pushing Car 54.92

Driving Car 12.18

Crossing River 10.81

MFNet-NL

Driving Car 66.18

Pushing Car 15.37

Crossing River 9.28

MFNet

Crossing River 60.87

Driving Car 11.57

Pushing Car 9.28

Ski Jumping

MFNet-PNL (x1)

Ski Jumping 72.78

Abseiling 22.59

Water Skiing 1.39

MFNet-NL

Abseiling 88.01

Ski Jumping 11.78

Ice Climbing 0.02

MFNet

Water Skiing 83.24

Abseiling 12.59

Ski Jumping 1.53

Hammer Throw

MFNet-PNL (x1)

Hammer Throw 41.18

Golf Driving 14.34

Chopping Wood 10.45

MFNet-NL

Golf Driving 19.54

Chopping Wood 16.92

Hitting Baseball 14.52

MFNet

Chopping Wood 29.45

Hitting Baseball 11.35

Shot Put 9.23

Driving Car

MFNet-PNL (x1)

Driving Car 69.10

Air Drumming 28.59

Headbanging 1.91

MFNet-NL

Air Drumming 67.18

Headbanging 14.29

Driving Car 11.82

MFNet

Air Drumming 92.18

Headbanging 4.20

Finger Snapping 1.82

Figure 5: Eight examples taken from the 12 classes presented in Figure 4. The numbers on the right of

each class shows the probability of the class from the classifier in percentages. We show three classes with

highest probability. The class with the highest probability is the result of the top-1 classification, highlighted

in green.

regions in sample videos. Here for simplicity, we utilize the MFNet-PNL(×1) network.

The visualization of the behaviour of our PNL module is as shown in Figure 6. It could

be observed that the multi-scaled long-range dependencies complements each other,
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providing effective information towards the final classification. For example, for the

action “Kitesurfing” in Figure 6b, the smallest scale long-range dependencies, obtained

through the original feature map, captures the correlation between the person, the board

underneath and the rope above. Whereas the largest scale long-range dependencies,

obtained through the sub-sampled feature map, captures the correlation between the

person and the kite above. Without this correlation, the action may be mis-classified

with similar actions such as “windsurfing”, which is presented in a similar video in

Figure 5.

5. Conclusion and Future Works

In this work, we propose a novel module for effective capturing of long-range spa-

tiotemporal dependencies. The proposed PNL module extends the original non-local

block by incorporating regional correlation at multiple scales through a pyramid struc-

tural design. Our method obtains state-of-the-art result on the Mini-Kinetics dataset

when instantiating MFNet, while bringing significantly less computation cost than the

original non-local block. We further justify the design of our PNL module through

detailed ablation study. We further demonstrate the effectiveness of the PNL module

by visualizing the captured dependencies in sampled videos.

In the future, the application of the PNL module to other video-based tasks, such as

object tracking or video description could be explored. Capturing long-range feature

dependencies plays an essential role in these tasks. Given the effectiveness of our PNL

module in addressing such a challenge, we believe that applying PNL module could

improve the performance of networks in various video-based tasks.
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(a) Visualizing Action “Jetskiing”

(b) Visualizing Action “Kitesurfing”

(c) Visualizing Action “Passing Football”

(d) Visualizing Action “Rock Climbing”

Figure 6: Visualization of the behaviour of our PNL module. From a reference region, we visualize the

five of the most correlated regions computed from PNL module at three different scales, shown in different

colors. We observe that these correlations complements each other, thus capturing more effective long-range

spatiotemporal dependencies. Figure best viewed in color and zoomed in.

21



References

[1] S. Herath, M. Harandi, F. Porikli, Going deeper into action recognition: A survey,

Image and vision computing 60 (2017) 4–21.

[2] H. Yang, C. Yuan, B. Li, Y. Du, J. Xing, W. Hu, S. J. Maybank, Asymmetric

3d convolutional neural networks for action recognition, Pattern Recognition 85

(2019) 1–12.

[3] J. M. Carmona, J. Climent, Human action recognition by means of subtensor

projections and dense trajectories, Pattern Recognition 81 (2018) 443–455.

[4] H. Wang, L. Wang, Learning content and style: Joint action recognition and per-

son identification from human skeletons, Pattern Recognition 81 (2018) 23–35.

[5] S. Danafar, N. Gheissari, Action recognition for surveillance applications using

optic flow and svm, in: Asian Conference on Computer Vision, Springer, 2007,

pp. 457–466.

[6] T. Xiang, S. Gong, Activity based surveillance video content modelling, Pattern

Recognition 41 (7) (2008) 2309–2326.

[7] X. Li, M. Ye, Y. Liu, F. Zhang, D. Liu, S. Tang, Accurate object detection using

memory-based models in surveillance scenes, Pattern Recognition 67 (2017) 73–

84.

[8] C. Wu, A. H. Khalili, H. Aghajan, Multiview activity recognition in smart homes

with spatio-temporal features, in: Proceedings of the fourth ACM/IEEE interna-

tional conference on distributed smart cameras, ACM, 2010, pp. 142–149.

[9] A. Ortis, G. M. Farinella, V. DAmico, L. Addesso, G. Torrisi, S. Battiato, Orga-

nizing egocentric videos of daily living activities, Pattern Recognition 72 (2017)

207–218.

[10] J. Yang, H. Zou, H. Jiang, L. Xie, Device-free occupant activity sensing using

wifi-enabled iot devices for smart homes, IEEE Internet of Things Journal 5 (5)

(2018) 3991–4002.

22



[11] D. G. Lowe, Object recognition from local scale-invariant features, in: Proceed-

ings of the seventh IEEE international conference on computer vision, Vol. 2,

Ieee, 1999, pp. 1150–1157.

[12] K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors, IEEE

transactions on pattern analysis and machine intelligence 27 (10) (2005) 1615–

1630.
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