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Abstract

The correct identification of burst events is crucial in many scenarios,
ranging from basic neuroscience to biomedical applications. However, none
of the burst detection methods that can be found in the literature have been
widely adopted for this task. As an alternative to conventional techniques, a
novel neuromorphic approach for real-time burst detection is proposed and
tested on acquisitions from in vitro cultures. The system consists of a Neu-
romorphic Auditory Sensor, which converts the input signal obtained from
electrophysiological recordings into spikes and decomposes them into differ-
ent frequency bands. The output of the sensor is sent to a trained spiking
neural network implemented on a SpiNNaker board that discerns between
bursting and non-bursting activity. This data-driven approach was com-
pared with 8 different conventional spike-based methods, addressing some of
their drawbacks, such as being able to detect both high and low frequency
events and working in an online manner. Similar results in terms of number
of detected events, mean burst duration and correlation as current state-of-
the-art approaches were obtained with the proposed system, also benefiting
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from its lower power consumption and computational latency. Therefore,
our neuromorphic-based burst detection paves the road to future implemen-
tations for neuroprosthetic applications.

Keywords: SpiNNaker, Spiking Neural Networks, Neuromorphic
Hardware, Brain Signals Processing, Burst detection

1. Introduction

The analysis of neural signals in real-time is a hot topic in both neu-
roscience and neuroengineering fields. Current applied research is focusing
on the development of closed-loop devices [1, 2] for treating a wide variety
of pathologies such as epilepsy, Parkinson’s disease, chronic pain, stroke and
mood disorders [3, 4, 5, 6, 7, 8]. Those systems typically rely on the real-time
recognition of specific patterns of activity, which can be used to trigger an
electrical therapy [9]. In order to develop and test appropriate algorithms for
real-time pattern detection, simple experimental models could be used, capa-
ble to exhibit peculiar events of activity typical of higher and more complex
organisms [10].

In this regard, neuronal cultures plated over Micro Electrode Arrays
(MEAs) have been proposed as an excellent test bed for studying relevant
electrophysiological events [11, 12]. One peculiar feature of neural network
activity resembled by mature neural cultures in vitro is the presence of syn-
chronized and packed spiking activity known as bursts [13, 14, 15], distributed
throughout the network. Given the wide spectrum of spontaneous bursting
activity patterns, several techniques for detecting those events have been de-
veloped. However, none of them are commonly recognized as the best for all
criteria [16]. Typically, burst detection algorithms are based on an initial pro-
cessing of spike detection, which lacks on a definitive method for all neurons
and noise conditions [17]. For burst-like epileptic discharges, other raw-based
methods have been used in the literature and in the clinical practice [18, 19].
In this paper, a different approach to the problem of burst detection is con-
sidered. Instead of using spike detection as a first step of the process, we used
wide band signals and exploited a neuromorphic signal processing system to
detect bursts. It is worth highlighting that neuromorphic-based algorithms
have become an alternative to traditional classification systems due to the
interest on bio-inspired processing techniques and the increased demand for
low-power and low-latency platforms [20, 21].
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The first step of the proposed processing system involves the use of a
Neuromorphic Auditory Sensor (NAS) [22] implemented on a Field Pro-
grammable Gate Array (FPGA). NAS was designed to work with spikes to
mimic the information coding of a biological cochlea by means of a frequency
decomposition. Such decomposition carries information both from high fre-
quency (i.e., the frequency range in which biological spikes can be recorded)
and low frequency components (i.e. local field potential, LFP). After this
innovative processing stage, the resulting spikes constitute the input for a
Spiking Neural Network (SNN) implemented by means of the SpiNNaker
platform, which is a massively-parallel multicore computing system designed
for modeling very large SNNs in real time [23].

For the purpose of this study, a 2-layer SNN was designed to perform a
classification based on the decomposition obtained from the NAS. The SNN
was trained on a subset of the recorded dataset by means of the Spike-Timing-
Dependent Plasticity (STDP) learning algorithm [24, 25]. Then, the trained
setup was used to infer a decision over the non-trained dataset, and the
results were compared with state-of-the-art algorithms for burst detection.

The paper is structured as follows: section 2 presents the materials and
methods used, describing both biological experiments (2.1), neuromorphic-
based processing (2.2), spike-based processing (2.3), raw-based processing
(2.4) and statistical analysis (2.5). Finally, the results of this work are pre-
sented in section 3, along with a discussion and future perspectives (section
4).

2. Materials and Methods

The electrophysiological signals recorded from the MEA setup (see Fig. 1
and section 2.1) were processed in different ways. Specifically, we performed
neuromorphic processing, a conventional spike-based processing and a raw-
based processing as depicted in Fig. 1. The neuromorphic process includes a
software cubic spline interpolation of the signal (section 2.2.1), resulting in
48kHz raw data (i.e., the audio signal). This signal is analyzed by the Neu-
romorphic Auditory Sensor (NAS), which decomposes it in 128 spike-trains
(events) (section 2.2.2). The output of the NAS (i.e., the spike events ob-
tained upon the frequency decomposition) serves as input for the SNN model
implemented on the SpiNNaker board (section 2.2.3), which implements the
neuromorphic burst detection. The first step of the conventional process is
a software high-pass filter at 300Hz, followed by a spike detection module
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(see section 2.3.2) and finally the resulting burst train is compared with the
other approaches. The raw-based process (see section 2.4) includes binning
the signal a in 50ms-long time window and performing a raw-based burst
detection.

2.1. Biological experiments

2.1.1. Cell cultures

Dissociated neuronal cultures were prepared from neocortex of embryonic
rats at gestational day 18 (pregnant Sprague-Dawley female rats delivered by
Charles River Laboratories). The procedures for preparing neuronal cultures
are described in detail in previous studies [26, 12].

After enzymatic digestion in trypsin solution 0.125% (30 min at 37◦C)
and mechanical dissociation, the resulting tissue was re-suspended in Neu-
robasal medium supplemented with 2% B27, 1% Glutamax-1, 1% Pen-Strep
solution, and 10% FBS (Invitrogen, Carlsbad, CA, USA), at the final concen-
tration of 1500 cells/µl. Cells were afterward plated onto standard 60-channel
Micro Electrode Arrays (MEAs) (Multichannel Systems, MCS, Reutlingen,
Germany) previously coated with poly-D-lysine and laminin (final density
around 1200 cells/mm2) and maintained with 1 ml of nutrient medium in a
humidified incubator (5% CO2 and 95% air at 37◦C). Half of the medium
was replaced weekly.

2.1.2. Micro-electrode array recordings

Planar microelectrodes were arranged in an 8×8 layout, excluding cor-
ners and one reference electrode, for a total of 59 TiN/SiN planar round
recording electrodes (30µm diameter; 200µm center-to-center inter electrode
distance), which can be seen in Fig. 1. One recording electrode was replaced
with a bigger ground electrode. The activity was recorded by means of the
MEA60 System (Multichannel Systems, MCS, Reutlingen, Germany). The
signal from each electrode was sampled at 10 kHz and amplified with a band-
width of 1 Hz–3 kHz. Each recorded electrode was acquired through the data
acquisition card and on-line monitored through MC Rack software (Multi-
channel Systems, MCS, Reutlingen, Germany). To reduce thermal stress of
the cells during the experiment, MEAs were kept at 37◦C by means of a
controlled thermostat and covered by polydimethylsiloxane (PDMS) caps to
avoid evaporation and prevent changes in osmolarity.
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2.1.3. Experimental protocols and dataset

We recorded the electrophysiological activity from eight cortical cultures
plated over MEA, with an average age of 31± 2.1 DIV (Days In Vitro) to have
a stable bursting activity [27]. The spontaneous activity was monitored and
recorded for 5 minutes, after a period of 30 minutes rest outside the incubator
into the experimental set-up, to let the culture adapt to the new environment
and reach a stable level of activity [28]. We split the dataset as follows: one
electrode from the first culture was used as training set and 14 electrodes
belonging to the other seven cultures (2 for each of them) were used as test
set. The choice of the two channels was made to obtain the largest variability
in terms of signal-to-noise ratio among the bursting channels. Regarding the
training set, we performed a visual inspection to split it in ”bursting” and
”non-bursting”.

Figure 1: Overview of the methodological approach. 60-channel-MEA (Multi-
channel System, MCS, Reutlingen, Germany) with the standard electrode layout (8×8)
plated with cortical cultures. Schematic description of the different burst detection ap-
proaches. The signal acquired from the MEA setup (at 10kHz) is processed with different
approaches. The spike-based process includes a software high-pass filter at 300Hz, fol-
lowed by a spike detection and a spike-based burst detection. The raw-based process
includes binning the signal in a 50ms-long time window and performing a raw-based burst
detection. The neuromorphic process includes a software cubic spline interpolation of the
signal, resulting in 48kHz raw data. This signal is analyzed by the Neuromorphic Audi-
tory Sensor (NAS), which decomposes the signal in 128 spike-trains (addresses). The 128
addresses are analyzed by the neuromorphic SpiNNaker burst detection module in 50ms
time windows.

2.2. Neuromorphic-based processing

2.2.1. Preprocessing

In order to be used by the NAS [22], the electrophysiological signals were
converted to audio signals. A cubic spline interpolation was used to reach a
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Figure 2: The neuromorphic system. A) Picture depicting the entire neuromorphic
setup: 1) NAS implemented on the AER-Node board, 2) audio input, 3) 3.3V-to-1.8V
adapter PCB, 4) SpiNNaker board, 5) SpiNNaker-to-PC ethernet interface. B) Block di-
agram of the setup used for the neuromorphic system, where I2S stands for Integrated
Interchip Sound; FSM, for Finite State Machine; REQ, for Request; and ACK, for Ac-
knowledge.

sampling frequency of 48 kHz in order to match the sampling frequency of
the mixer that was used to play the audio signal back to the NAS.

2.2.2. Neuromorphic Auditory Sensor (NAS)

A NAS [22] is a neuromorphic digital audio sensor implemented on FPGA
inspired by Lyon’s model of the biological cochlea [29]. This neuromorphic
sensor is able to process excitatory audio signals using Spike Signal Pro-
cessing (SSP) techniques [30], decomposing incoming audio in its frequency
components, and providing this information as a stream of events using the
Address-Event Representation (AER) [31].

This decomposition is carried out by a series of cascade-connected stages,
modeling the basilar membrane of the biological cochlea, which decomposes
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the input audio signal into different frequency bands (also called channels).
The entire system has been described in a previous publication [22]. For the
sake of clarity, we here report the main components and their functions (see
Fig. 2). Panel A of Fig. 2 shows a picture of the hardware setup used, which
included a 64-channel monaural NAS implemented on an AER-Node board
(1), an I2S A/D converter audio input interface for the board (2), a 3.3V-
to-1.8V adapter PCB (3), a 4-chip SpiNNaker board (4), and the ethernet
interface to communicate the SpiNNaker board with the PC (5).

To digitize audio signals, a CS5344 Analog-to-Digital Converter (A/D)
with a resolution of 24 bits and a sample rate of 96 KSamples/s is used
(Fig. 2 panel B: A/D converter and Integrated Interchip Sound (I2S) Finite
State Machine (FSM)). The digital audio signal is then converted to spikes
using the spike generator presented in [32] (Fig. 2 panel B: Synthetic Spikes
Generator), and used as input to the NAS filters (Fig. 2 panel B: Cochlea
Filter Bank (CFB)).

Output spikes from the CFB are connected to an AER monitor [33],
giving a unique address (which corresponds to the NAS channel) to the gen-
erated spikes following the AER protocol, and propagating them using an
asynchronous AER bus.

A 64-channel monaural NAS implemented on an AER-Node board (shown
in Fig. 2 panel A with number 1), which is based on a Spartan-6 FPGA
(shown in Fig 2 panel B as NAS), was used in this work to process the audio
signals. The NAS, which has 64 channels, generates spikes with addresses
that range from 0 to 127, since each channel has two different spike trains
that correspond to the positive and negative part of the signal, respectively.
The output spikes from the sensor are first converted to the 2-of-7 proto-
col that SpiNNaker needs using an AER to SpiNN driver and then sent to
a 4-chip SpiNNaker machine (called SpiNN-3) using a NAS-to-SpiNNaker
PCB interface (Fig. 2 panel B: 3.3V-1.8V Voltage Adapter Circuit) in order
to classify the activity within the signal between non-bursting and bursting
activity. Thus, the NAS was used as input to the SNN.

2.2.3. Spiking Neural Network Architecture (SpiNNaker)

As mentioned in the previous section, in this work a 4-chip SpiNNaker
board (SpiNN-3) [34] was used, which can be seen in Panel A Fig. 2). Each
chip consists of eighteen 200 MHz general-purpose low-power ARM968 cores,
for a total of 72 ARM processor cores. A 100 Mbps Ethernet connection is
used as control and I/O interface between the computer and the SpiNNaker
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board. This platform has been used in previous works by the authors for
many different tasks, such as audio classification [35, 36], speech recognition
[37], pattern recognition [38] and for building Central Pattern Generators
(CPGs) [39, 40], proving its robustness and versatility.

SpiNN-3 also has two SpiNNaker links to connect other devices such as
FPGAs or neuromorphic sensors like retinas and cochleas [41, 42]. In this
work, we used one of these links to connect the NAS in order to feed the
SNN implemented on SpiNNaker directly with the output information from
the NAS, thus allowing real-time classification.

2.2.4. Training the network with STDP

STDP [43, 44, 24, 45] is a biological process that is able to adjust the
strength (weights) of the connections between neurons based on the relative
timing of the output of a particular neuron and the input spiking activity.
STDP has been implemented in SNN simulators like Brian [46] or NEST
[47], and even in SPyNNaker [48]1, which is the software layer running in
SpiNNaker machines. It is the most common training mechanism for spike-
based networks, and it allows an easy and relatively fast online training phase
of the network [25].

In this work, the network architecture shown in Panel A of Fig. 3 was
used to train the SNN. A teaching neuron was used to perform a super-
vised training step, forcing the output neuron to spike when a specific input
pattern was injected, and thus, increasing and adjusting the weights of the
projections between the input and the output neuron that corresponds to
that input pattern. After training, the teaching neuron was removed and
STDP connections with the trained weights were kept in order to test the
system. These weights can be seen in Panel B of Fig. 3.

For the training, the activity recorded from the selected bursting electrode
(belonging to the first culture) was visually inspected and classified in burst-
ing and non-bursting activity. We then concatenated the non-consecutive
parts of the signal sharing the same class, obtaining 4 minutes and 41 sec-
onds of non-bursting and 19 seconds of bursting activity (Fig. 8), which were
used to train the SNN. For the testing, we used the trained SNN on 14
different recordings, two channels belonging to the remaining seven cultures.

1http://neuralensemble.org/docs/PyNN/reference/plasticitymodels.html
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A

B

Figure 3: SNN learning process. A) Spiking Neural Network architecture. B) Weights
obtained in the STDP training process. Blue values correspond to the weights (in nanoam-
peres) of the projections between the second layer and non-bursting activity class neuron
from the output layer, while the orange values correspond to the weights from the neurons
in the second layer to the burst activity neuron in the output layer. Higher IDs correspond
to the information from lower frequencies.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.105593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.105593
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2.5. SNN-based burst detection

Once trained, the SNN was tested on different recordings. The output of
the burst classification can be seen in real time; however, in order to compare
this approach with others and measure its performance, the results were saved
in a text file for further processing. The SpiNNaker script generated a text
file containing the classification performed by the SNN according to a time
window set at 50 ms. The output classes can be: “no signal” (when no audio
is played), “bursting” and “non-bursting”.

A custom Matlab script counted the number of bursts that occurred in
an audio recording based on the output results obtained from SpiNNaker.
Moreover, the starting and ending time of each burst were stored for further
analysis.

2.3. Spike-based processing

As anticipated at the beginning of the Materials and Methods section,
we compared the NAS burst detection with other state-of-the-art methods
as described in the following paragraphs.

2.3.1. Preprocessing and spike detection

A conventional data analysis was performed offline by using a custom
software developed in Matlab called SPYCODE [49], which collects a series
of tools for processing multi-channel neural recordings.

An offline data filtering by means of a high-pass Butterworth filter with
cut-off frequency at 300 Hz was performed in order to select only the Multi-
Unit Activity (MUA) components of the signal, as reported in the literature
[50, 51].

The Precise Timing Spike Detection (PTSD) algorithm [52] was used to
discriminate spike events and to isolate them from noise by means of three
parameters: (1) a differential threshold (DT), which was set independently
for each channel and computed as 8 times the standard deviation (SD) of
the noise of the signal; (2) a peak lifetime period (PLP) set to 2 ms; and (3)
a refractory period set to 1 ms.

2.3.2. Spike-based burst detection methods

Based on the work and open-source R code provided in [16], we performed
a comparative analysis between 8 conventional, spike-based, burst detection
methods and ours. We chose the following methods:

• CMA (cumulative moving average) [53]
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• ISIrank threshold [54]

• PS (Poisson Surprise) [54]

• RS (Rank Surprise) [55]

• LogISI (Logarithmic Inter Spike Interval) [56]

• MI (Max Interval) [16]

• HSMM (Hidden Semi-Markov Model) [57]

• CH (Chiappalone, similar to max interval) [58]

Once the spike and burst detection procedures were performed, we ex-
tracted other parameters describing the electrophysiological patterns, such
as the number of bursts and the average burst duration (ms). It is worth
highlighting that all these methods are spike-based, meaning that they need
a spike detection procedure to work. To further investigate this activity, a
visual inspection (VI) on the high-pass filtered data was performed by an
expert electrophysiologist. The VI trace was then used as our ground truth.
All the parameters used for this study can be found in Table 1.

2.4. Raw-based processing

Besides the spike-based algorithms for burst detection, we compared NAS
with other burst detectors designed to work on the raw data. We first split
the raw data on 50ms time windows. Then, in order to discriminate between
bursting and non bursting activity, we computed the following three different
features for each time window:

• max : the maximum value in the time window;

• peak peak : the peak to peak difference in the time window;

• len: the signal length (defined as the sum of the absolute values of the
first derivative of the signal).

A simple threshold was then used to separate bursting from non-bursting time
windows. The best threshold, for each method was the one that maximized
sensibility and specificity, and it was obtained as the point that minimized
the distance from the top-left corner of the Receiver Operating Characteris-
tic (ROC) curve [59]. We used the code provided by Vı́ctor Mart́ınez-Cagigal,
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ROC Curve (https://www.mathworks.com/matlabcentral/fileexchange/52442-
roc-curve), from MATLAB Central File Exchange, retrieved April 01, 2020).
This threshold was the one which better discriminated the histograms of the
two classes (i.e., bursting vs non-busting) with respect to the ground truth
(see Fig. 9). Once we found the thresholds for the training set, we applied
them to the test set recordings.

2.5. Statistical analysis

Given the non-normality of the distributions, we employed the Kruskal-
Wallis test to compare the results obtained from different burst detection
methods. Then, we employed the Bonferroni post-hoc analysis to investigate
specific differences between methods. The statistical analyses were carried
out using Matlab 19b (MathWorks, Natick, MA, USA).

3. Results

From this point on, we will refer to the entire system as Neuromorphic
Processing System (NPS), which includes both NAS and SpiNNaker.

3.1. Comparison of NPS with spike-based algorithms

In order to evaluate the performance of NPS in detecting bursts of elec-
trophysiological activity, we selected a set of spike-based burst detection al-
gorithms (see section 2.3.2). We then compared the results of VI (i.e., our
ground truth) with those of NPS and of the selected spike-based methods.
We first computed the number of detected bursts, for which NPS and VI
showed no differences, while ISIrank exhibited statistical difference with re-
spect to LogISI, MI and HSMM (Fig. 4, panel A). Given the fact that all
the methods produced comparable results, we further investigated the dura-
tion of the identified events. Again, no statistical differences were observed
between NPS and any of the other detection methods, including VI (Fig. 4,
panel B). The only statistical difference was observed between VI and RS,
which exhibited the smallest burst duration. In terms of correlation, the
burst signals coming from VI and all the other methods showed neither qual-
itative (Fig. 4, panel C1) nor quantitative (Fig. 4, panel C2, C3) changes in
terms of max correlation peak or lag at maximum peak. As expected, NPS
showed a larger jitter with respect to the other methods because of the 50ms
(non-overlapping) bins. Overall, the NPS results appeared coherent with all

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.105593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.105593
http://creativecommons.org/licenses/by-nc-nd/4.0/


the best spike-based burst detectors with an acceptable higher jitter due to
the online and 50ms binned procedure.

As was already mentioned, most of the current burst detection algorithms
rely on spike detection, a process which is prone to errors. Indeed, whenever
the high frequency components of the bursts (i.e., the spikes) are not present
or are not correctly captured by the detection algorithm, the subsequent
burst identification is not reliable. This problem is well-depicted in Fig. 5:
three bursting events are clearly visible in the raw and filtered trace; while the
first and second bursts are correctly identified by all the spike-based methods
(except for RS), the third one is not. Only the NPS is able to capture the
burst, which is also correctly identified by the VI. Then, to correctly evaluate
the performance of the NPS, we decided to compare it with other raw-based
burst detection methods.
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Figure 4: Comparison between NPS, VI and all the spike-based methods. A)
Number of burst events detected in 5 minutes for all the 14 recordings belonging to the
test set. B) Average burst duration for all the 14 recordings. C1) Qualitative comparison
of the cross correlation functions for all methods vs VI (for all the 14 recordings). The top
left panel represents the auto-correlation functions of VI. C2) Max Peak values of all the
correlation functions reported in panel C1. C3) Lags (expressed in seconds) at the peak
of the cross correlation functions. For each box plot, the central line indicates the median
and the box limits indicate the 25th and 75th percentiles. Whiskers represent the 5th and
the 95th percentiles. Y-axis breaks were done to allow for the visualization of all data
points in panel C3. The statistical analyses were carried out using the Kruskal-Wallis test
with the Bonferroni post-hoc correction. See Table 2 for the exact p values.
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Figure 5: Qualitative comparison between all burst detection methods. Spikes
are depicted in grey (all methods, excluding VI and NPS, used spikes to detect bursts).
The two signals on the bottom of the figure represent the raw (on which the NPS approach
was tested) and the high-pass filtered data (on which we performed the spike detection -
using PTSD as described in section 2.3.1).

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.105593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.105593
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.2. Comparison of NPS with raw-based algorithms

We tested three burst detection methods based on computing three simple
features of the raw signal (i.e., one for each method, namely max, peak peak,
len) within time windows of 50 ms, as the one used for NPS. Once the
training set thresholds were found (see section 2.4), we applied them to the
test set recordings. The results in Fig. 6 (panel A) show that only the
NPS was able to identify a number of bursts comparable to those of VI.
For the three raw-based methods, instead, the number of detected bursts
was orders of magnitude higher than the true one. Indeed, the number of
false positive bursts was extremely large and, thus, unacceptable. Moreover,
the len method erroneously counted zero bursts in 8 out of 14 recordings,
meaning that such a parameter was not reliable and, therefore, useless for
this comparison. We then investigated other parameters, specifically burst
duration (Fig. 6, Panel B) and cross correlation peaks and lags (Fig. 6,
Panels C1, C2 and C3), Quantitatively, the burst duration (Fig. 6, panel B)
of peak peak was lower than VI and NPS (p<0.05) and max showed lower
values than NPS (p<0.05) while len was higher than peak peak (p<0.05). No
statistical differences were found between VI and NPS.

Regarding cross correlation, we could observe that the cross-correlation
between VI and NPS, max, peak peak was qualitatively good and similar to
VI’s autocorrelation. Instead, len gave again the worst results. Focusing
on panels C2 and C3 of Fig. 6, we found that, also in this case, VI and
NPS showed no difference. Regarding the Max Peak, the only statistical
differences were found between: NPS and max, NPS and len, and peak peak
and len (p<0.05). Regarding the lag, max was statistically lower than all
the other methods (p<0.05), again indicating that it could not be considered
as a good alternative to NPS. It is worth highlighting that in 5 out of 14
recordings, the Max Peak of the correlation was higher for peak peak than
NPS. This does not necessarily suggests that the burst detection in those
cases was better for peak peak than for NPS. It actually means that, for
those cases, VI bursts had a higher overlap with peak peak compared to
NPS. Indeed, as also suggested by the results on the number of detected
bursts (Fig. 6, panel A), the amount of false positives is huge, as qualitatively
reported in Fig. 7. Therefore, the overall performance is much higher for NPS
when compared to max, peak peak and len.
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Figure 6: Comparison between NPS, VI and all the raw-based methods. A)
Number of burst events detected in 5 minutes for all the 14 recordings belonging to the
test set. B) Average burst duration for all the 14 recordings. C1) Qualitative comparison
of the cross correlation functions for all methods vs VI (for all the 14 recordings). The
top left panel represents the auto-correlation functions of VI. C2) Max Peak of all the
correlation functions reported in panel C1. C3) Lags (expressed in seconds) at the peak
of the cross correlation functions. For each box plot, the central line indicates the median
and the box limits indicate the 25th and 75th percentiles. Whiskers represent the 5th and
the 95th percentiles. Y-axis breaks were done to allow for the visualization of all data
points in panel C3. The statistical analyses were carried out using the Kruskal-Wallis test
with the Bonferroni post-hoc correction. See Table 3 for the exact p values.
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Figure 7: Qualitative comparison between all raw-based burst detection meth-
ods. On the left, 300s recording from one of the test set electrodes. The two signals on
the bottom of the figure represent the raw (on which the NPS approach was tested) and
the high-pass filtered data. The dotted rectangle shows the 10s detail reported on the
right. In this case, the len method was not able to identify any burst event.
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4. Discussion and conclusion

In biological neural network recordings, the correct identification of burst
events is crucial in many scenarios, ranging from basic neuroscience to biomed-
ical applications [51, 16]. Burst events are characterized by both a high-pass
filtered component (highly packed spikes) and a low frequency component
(local field potentials LFP) due to the synaptic currents.

Although several burst detection methods have been proposed in the lit-
erature, none of them have been widely adopted to date [16].

Here we introduce an innovative burst detection technique based on a
neuromorphic, data-driven, online approach. We used the Neuromorphic
Auditory Sensor (NAS), which was originally designed to work with audio
signals and convert them into spiking events with a frequency decomposition
approach. For this work we used the raw data (containing the full spectrum)
coming from electrophysiological recordings of neuronal cultures plated over
Micro Electrode Arrays. The NAS converted the raw activity of neurons
in an event-based signal which was then fed into the neuromorphic SpiN-
Naker board, previously trained to detect bursting events. For the sake of
simplicity, the complete burst detection process was named NPS. In order
to evaluate its performances, we initially compared it with 8 conventional
(i.e., spike-based) methods widely used in the literature [16] and a visual
inspection (VI). Conventional burst detection methods rely on a previous
spike detection step. Unfortunately, spike detection can be biased by the
background noise [52, 60]. In case of chronic recordings, the high-frequency
(>300Hz) component of the signal can be degraded by the micro-motion of
the electrodes and inflammatory tissue response [61], thus severely affecting
the detection performances. Conversely, low frequency components, which
are usually overlooked, can be phase-locked to the bursting activity [62, 63]
and more stable in time [64, 65]. Considering the multi-frequency content of
a neural signal, NAS is able to analyze both the low and the high frequency
components and, therefore, can easily generalize across different recordings.
Specifically, for long-term in vitro [66, 13, 67] and in vivo [64] studies, where
the signal-to-noise ratio can change significantly, our approach can highlight
meaningful events regardless of the environmental conditions. Moreover, the
ability of our approach to detect low frequency events can be used to extract
network-wide events (such as Network Burst [68]) from a single recording site,
thus providing a larger overview of the background activity of the neuronal
network without the need of multiple recording sites.
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Another drawback of spike-based burst detection methods is the fact that
they are generally implemented offline. Among the conventional algorithms
considered for this study, only few can be redesigned to work online, such as
CH [58], while others need to know the entire distribution of spike intervals
in advance, such as LogISI [56], and therefore are hardly convertible to work
online. On the contrary, NPS has been designed as a native online method,
thus making it a perfect candidate for neuroengineering applications and
devices based on closed-loop approaches [69, 70, 71].

In terms of quantitative results, it is worth mentioning that our NPS
approach was similar in terms of the number of detected events, mean burst
duration and correlation to VI and most of the tested spike-based burst
detectors. The main difference with spike-based methods was related to
the higher lags with respect to the ground truth due to the 50ms-long time
windows used, which reduced the precision of the detection time. To reduce
this lag we could decrease the time window used by NPS. At the same time,
reducing the time window would result in a possible fragmentation of the
burst events due to smaller silent periods or with less activity within the
same event. Therefore, an accurate choice should be made to obtain the best
from this trade-off.

Besides spike-based approaches, as a second step, we compared our method
with a set of raw-based methods trained and tested on the same dataset. The
results show that a simple feature extracted from 50ms-long time windows
is not enough to set a threshold which can correctly discriminate between
bursting and non-bursting activities on the test set. In general, other meth-
ods, including machine-learning and deep-learning techniques, could be im-
plemented to perform the same task. However, an event-based approach as
the one implemented here has a competitive advantage over traditional meth-
ods, which is the reduced power consumption and computational latency [72].
An additional point to mention is that in traditional audio/video processing
systems, the information is processed periodically following a sampling rate.
However, in these systems, not all samples contain relevant information (e.g.,
when no audio is obtained in the input, or when two consecutive frames from
a camera are the same), but the system still has to process them. On the other
hand, Neuromorphic systems and sensors only process the input when there
is relevant information. In this case, when no audio signal is received by the
NPS, the system does not perform any computation, staying idle and, thus,
reducing power consumption. Moreover, the hardware implementation of
this system is a natural improvement when compared to the software, offline
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methods used as comparison. Having a hardware system already available
and the possibility to use electrophysiological recordings as input, constitutes
an advantage with respect to software-based methods. Recently published
neuromorphic-based studies, exploited the potential application of SNNs in
combination with their biological counterparts [73, 74]. Others have started
using SNNs for pattern recognition in biomedical applications on humans.
A recent work ([75]) exploited a SNN approach to discriminate electromyo-
graphy (EMG) signals. These were also used in a previous study by Peng et
al. [76] for a 6-class recognition problem of hands motion with a 1k neurons
SNN. Others have used SNNs for classifying Electroencephalography (EEG)
signals [77, 78].

Our work is along the same line and all the mentioned peculiar features of
our neuromorphic approach suggest that a neuroprosthetic application can
be the natural, future evolution of this work.
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24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.105593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.105593
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spikes monitors for FPGAs, an experimental comparative study, in:
International Work-Conference on Artificial Neural Networks, Springer,
pp. 179–188.

[34] S. B. Furber, F. Galluppi, S. Temple, L. A. Plana, The SpiNNaker
Project, Proceedings of the IEEE (2014).

[35] J. P. Dominguez-Morales, A. Jimenez-Fernandez, A. Rios-Navarro,
E. Cerezuela-Escudero, D. Gutierrez-Galan, M. J. Dominguez-Morales,
G. Jimenez-Moreno, Multilayer spiking neural network for audio sam-
ples classification using SpiNNaker, in: International Conference on
Artificial Neural Networks, Springer, pp. 45–53.

[36] J. P. Domı́nguez Morales, Neuromorphic audio processing through real-
time embedded spiking neural networks. (2018).

[37] J. P. Dominguez-Morales, Q. Liu, R. James, D. Gutierrez-Galan,
A. Jimenez-Fernandez, S. Davidson, S. Furber, Deep spiking neural
network model for time-variant signals classification: a real-time speech
recognition approach, in: 2018 International Joint Conference on Neural
Networks (IJCNN), IEEE, pp. 1–8.

[38] A. Rios-Navarro, J. P. Dominguez-Morales, R. Tapiador-Morales,
M. Dominguez-Morales, A. Jimenez-Fernandez, A. Linares-Barranco, A
sensor fusion horse gait classification by a spiking neural network on
SpiNNaker, in: International Conference on Artificial Neural Networks,
Springer, pp. 36–44.

[39] B. Cuevas-Arteaga, J. P. Dominguez-Morales, H. Rostro-Gonzalez,
A. Espinal, A. F. Jimenez-Fernandez, F. Gomez-Rodriguez, A. Linares-
Barranco, A SpiNNaker application: design, implementation and valida-
tion of SCPGs, in: International Work-Conference on Artificial Neural
Networks, Springer, pp. 548–559.

[40] D. Gutierrez-Galan, J. P. Dominguez-Morales, F. Perez-Peña,
A. Jimenez-Fernandez, A. Linares-Barranco, NeuroPod: a real-time
neuromorphic spiking CPG applied to robotics, Neurocomputing 381
(2020) 10–19.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.105593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.105593
http://creativecommons.org/licenses/by-nc-nd/4.0/


[41] L. Plana, J. Heathcote, J. Pepper, S. Davidson, J. Garside, S. Temple,
S. Furber, spI/O: A library of FPGA designs and reusable modules for
I/O in SpiNNaker systems (2014).

[42] L. A. Plana, J. Garside, J. Heathcote, J. Pepper, S. Temple, S. David-
son, M. Lujn, S. Furber, spiNNlink: FPGA-Based Interconnect for the
Million-Core SpiNNaker System, IEEE Access (2020) 1–1.

[43] G.-q. Bi, M.-m. Poo, Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsy-
naptic cell type, Journal of neuroscience 18 (1998) 10464–10472.

[44] R. P. Rao, T. J. Sejnowski, Spike-timing-dependent hebbian plasticity as
temporal difference learning, Neural computation 13 (2001) 2221–2237.

[45] P. U. Diehl, M. Cook, Unsupervised learning of digit recognition us-
ing spike-timing-dependent plasticity, Frontiers in computational neu-
roscience 9 (2015) 99.

[46] D. F. Goodman, R. Brette, Brian: a simulator for spiking neural net-
works in python, Frontiers in neuroinformatics 2 (2008) 5.

[47] M.-O. Gewaltig, M. Diesmann, Nest (neural simulation tool), Scholar-
pedia 2 (2007) 1430.

[48] O. Rhodes, P. A. Bogdan, C. Brenninkmeijer, S. Davidson, D. Fellows,
A. Gait, D. R. Lester, M. Mikaitis, L. A. Plana, A. G. Rowley, et al.,
sPyNNaker: a software package for running PyNN simulations on SpiN-
Naker, Frontiers in neuroscience 12 (2018) 816.

[49] L. L. Bologna, V. Pasquale, M. Garofalo, M. Gandolfo, P. L. Baljon,
A. Maccione, S. Martinoia, M. Chiappalone, Investigating neuronal
activity by SPYCODE multi-channel data analyzer, Neural Networks
23 (2010) 685–697.

[50] R. Q. Quiroga, S. Panzeri, Extracting information from neuronal pop-
ulations: information theory and decoding approaches, Nature Reviews
Neuroscience 10 (2009) 173–185.
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Figure 8: Comparison of training classes. A) First 2 seconds of raw signal from the
training set. B) First two seconds of ”non-bursting” training set. C) First two seconds of
”bursting” activity.
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Figure 9: Training set thresholds. A) ROC curves with superimposed red cross and
circle representing the best threshold (i.e. the one that minimizes the distance from the
top-left corner) B) histograms of bursting (red) and non-bursting (blue) windows for each
method (max, peak peak and len). The yellow vertical line represents the best threshold.
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Table 2: Statistical differences, p<0.05, using Kruskal-Wallis test with the Bonferroni
post hoc correction. Data referred to Fig. 4

Num Burst
HSMM ISIrank 0.002101

MI ISIrank 0.031593
LogISI ISIrank 0.027323

Burst duration
VI LogISI 0.020621
VI RS 1.29E-06
CH RS 0.033389

HSMM RS 0.023296
MI RS 0.00604
RS ISIrank 0.032829
RS CMA 0.047037
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Table 3: Statistical differences, p<0.05, using Kruskal-Wallis test with the Bonferroni
post hoc correction. Data referred to Fig. 6

Num Bursts
VI max 1.52E-05
VI len 0.0002977893

NPS max 4.24E-05
NPS len 0.0005998977542

Burst duration
VI peak peak 0.01123345496

NPS max 0.003838358311
NPS peak peak 7.85E-08

peak peak len 9.32E-03

Max Peak
NPS max 0.005132954712
NPS len 0.0003261603306

peak peak len 0.03145223724

Lag
NPS max 0.0005797489213
max peak peak 1.06E-06
max len 3.61E-05
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