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Abstract

Many AI-related tasks involve the interactions of data in multiple modal-
ities. It has been a new trend to merge multi-modal information into knowl-
edge graph(KG), resulting in multi-modal knowledge graphs (MMKG). How-
ever, MMKGs usually suffer from low coverage and incompleteness. To mit-
igate this problem, a viable approach is to integrate complementary knowl-
edge from other MMKGs. To this end, although existing entity alignment
approaches could be adopted, they operate in the Euclidean space, and the
resulting Euclidean entity representations can lead to large distortion of KG’s
hierarchical structure. Besides, the visual information has yet not been well
exploited.

In response to these issues, in this work, we propose a novel multi-
modal entity alignment approach, Hyperbolic multi-modal entity alignment
(HMEA), which extends the Euclidean representation to hyperboloid mani-
fold. We first adopt the Hyperbolic Graph Convolutional Networks (HGCNs)
to learn structural representations of entities. Regarding the visual infor-
mation, we generate image embeddings using the densenet model, which are
also projected into the hyperbolic space using HGCNs. Finally, we combine
the structure and visual representations in the hyperbolic space and use the
aggregated embeddings to predict potential alignment results. Extensive ex-
periments and ablation studies demonstrate the effectiveness of our proposed
model and its components.

Keywords: Multi-modal knowledge graphs, Entity alignment, Hyperbolic
Graph Convolutional Networks, Hyperboloid manifold

1. Introduction

Over recent years, knowledge graph (KG) has become a popular data
structure for representing factual knowledge in the form of RDF triples, which
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Figure 1: An example of MMKG.

can facilitate a pile of downstream applications such as question answer-
ing [9], information extraction [46], etc. Currently, we have a large number of
general KGs (e.g., DBpedia [1], YAGO [35], Google’s Knowledge Vault [12]),
and domain-specific KGs (e.g., Medical and Molecule KGs).

Meanwhile, there is a growing trend to incorporate multi-media infor-
mation into KGs, so as to support cross-modal tasks that involve the inter-
actions of data in multiple modalities, e.g., image and video retrieval [40],
video summaries [30], visual entity disambiguation [28], and visual question
answering [47], etc. To this end, several multi-modal KGs (MMKGs) [26, 41]
have been constructed very recently. An example of MMKG can be found in
Figure 1. In this work, without losing generality, we consider MMKG with
two modalities, i.e., the KG structure information and visual information.

Example 1. Figure 1 shows a partial MMKG, which consists of entities,
image sets and the links between them. Specifically, the KG structure infor-
mation includes the relations among entities, while the visual information
comes from the image sets. For the entity ThePrestige, its image set may
contain scenes, actors, posters, etc.

Nevertheless, existing MMKGs usually come from limited data sources,
and hence might suffer from low coverage of the domain [33]. To improve the
coverage of these MMKGs, a possible approach is to integrate useful knowl-
edge from other MMKGs. Particularly, identifying equivalent entities in dif-
ferent KGs is a pivotal step to consolidate the knowledge among MMKGs,

2



since entities are the anchors that connect these heterogeneous KGs. This
process is also termed as multi-modal entity alignment (MMEA).

MMEA is a non-trivial task, as it requires the modeling and integration of
multi-modal information. For the KG structure information, existing entity
alignment (EA) approaches [17, 7, 37, 48] can be directly adopted to gener-
ate entity structural embeddings for MMEA. These methods usually utilize
TransE-based or graph convolutional network(GCN)-based models [2, 21] to
learn entity representations of individual KGs, which are then unified using
the seed entity pairs. Nevertheless, all of these methods learn entity rep-
resentations in the Euclidean space, which leads to a large distortion when
embedding real-world graphs with scale-free or hierarchical structure [8, 34].
Regarding the visual information, the VGG16 model has been harnessed to
learn the embeddings of images associated with entities and then used for
alignment. However, the VGG16 model cannot sufficiently extract useful fea-
tures from images, which in turn constrains the effectiveness of alignment.
Last but not least, the information from these two modalities should be care-
fully integrated so as to improve the overall effectiveness.

To address the aforementioned issues, in this work, we propose a multi-
modal entity alignment approach that operates in Hyperbolic Space (HMEA).
Specifically, we extend the Euclidean representation to hyperboloid manifold
and adopt the Hyperbolic Graph Convolutional Networks (HGCNs) to learn
structural representations of entities. Regarding the visual information, we
generate image embeddings using the densenet model, which are also pro-
jected into the Hyperbolic space using HGCNs. Finally, we merge the struc-
ture embeddings and image embeddings in the hyperbolic space to predict
potential alignments.

In summary, the major contributions of our approach can be summarized
as follows:

• We propose a novel MMEA approach, HMEA, which models and inte-
grates multi-modal information in the hyperbolic space.

• We adopt the Hyperbolic Graph Convolutional Networks (HGCNs) to
learn structural representations of entities and demonstrate the advan-
tage of Hyperbolic space for knowledge graph representations.

• We utilize a more advanced image embedding model to learn better
visual representations for alignment.
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• We validate the effectiveness of our proposed model via comprehensive
experimental evaluations.

Organization. Section 2 overviews related work, and the preliminaries are
introduced in Section 3. Section 4 describes our proposed approach. Section
5 presents experimental results, followed by conclusion in Section 6.

2. Related Work

In this section, we introduce some efforts that are relevant to this work.

2.1. Multi-modal Knowledge Graph

Most of the knowledge graph construction works focus on organizing and
discovering textual knowledge in a structured representation, while paying
little attention to other types of resources on the Web [41]. Nevertheless, real-
life applications involve cross-modal data, such as image and video retrieval,
video summaries, visual question answering, visual commonsense reasoning,
etc. To this end, Multi-modal Knowledge Graphs(MMKGs) are put forward,
which contain various information (i.e. image, text, KG) and cross-modal
relations. However, there are several challenges in building MMKGs. Ex-
tracting massive data of multiple modalities from search engines to build
them is a time-consuming and labor-intensive project. In addition, MMKGs
usually suffer from low coverage of the domain and are incomplete. Inte-
grating multi-modal knowledge from other MMKGs is an efficient approach
to improve its completeness. Currently, there are few studies about merging
different MMKGs. Liu et al. [26] built two pairs of MMKGs, and extracted
relational, latent, numerical and visual features for predicting the SameAs
link between entities. And some approaches of multi-modal knowledge repre-
sentation involve visual features from entity images for knowledge repesenta-
tion learning, IKRL [45] integrates image representations into an aggregated
image-based representation via an attention-based method.

2.2. Entity Alignment

Over recent years, there are many works dedicated to the task of entity
alignment [20], which could be used to model the structual information of
MMKGs. Entity alignment is the task of finding equivalent entities in two
KGs that refer to the same real-world object, which plays a pivotal step in
automatically consolidating knowledge among KGs [7, 17, 49]. In general,
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current EA approaches mainly tackle the problem by assuming that equiv-
alent entities in different KGs possess similar neighboring structure, and
employing representation learning methods to embed entities as data points
in a low-dimensional feature space. The distance between data points is used
to evaluate the similarity of corresponding entities.

There are mainly two types of embedding learning models. TransE-based
models [3] suggest that the embedding of the tail entity t should be close to
the embedding of the head entity h plus the embedding of the relationship r .
Meanwhile, Graph neural networks (GNN) have received increased attention
due to their attractive properties for learning from graph-structured data [4].
Originally proposed in [15], as a method for learning node representations on
graphs using neural networks, this idea was extended to convolutional neural
networks using spectral methods [10]. Graph convolutional network(GCN)
can directly operate on graph-structured data and generate node-level em-
beddings by encoding the information about node neighborhoods. GCN-
align [42] uses GCN to learn the structure and attribute information, then
combines them with a balanced weight. Noticing that GCN neglects the rela-
tions in KGs, RDGCN [43] adopts the dual-primal graph convolutional neural
network (DPGCNN) [27] as a remedy. MuGNN [5], on the other hand, utilizes
an attention-based GNN model to assign different weights to different neigh-
boring nodes. KECG [25] combines the graph attention network (GAT) [39]
and TransE to capture both the inner-graph structure and the inter-graph
alignment information.

2.3. Representation Learning in Hyperbolic Space

Essentially, most of the existing GCNs models are designed for the graphs
in Euclidean spaces. [6] However, some works have discovered that graph
data exhibits a non-Euclidean latent anatomy [29], and embedding real-
world graphs with scale-free or hierarchical structure leads to a large dis-
tortion [8, 34]. Additionally, several recent researches in network science
also show that hyperbolic geometry in particular is well-suited for model-
ing complex networks, as the hyperbolic space may reflect some properties
of graph naturally [23]. One key property of hyperbolic spaces is that they
expand faster than Euclidean spaces, because Euclidean spaces expand poly-
nomially while hyperbolic spaces expand exponentially. Due to the natural
advantage of hyperbolic space for graph structure data representation, rep-
resentation learning in hyperbolic spaces has received increasing attention,
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Figure 2: An example of MMEA. Seed entity pairs are connected by dashed lines. For
clarity, we only choose an image to represent the set of images of an entity.

especially on learning the hierarchical representation of a graph [31]. Fur-
thermore, Nickel et al. [32] showed that the Lorentz model of hyperbolic
geometry has attractive properties for stochastic optimization and leads to
substantially improved embeddings, especially in low dimensions. Besides,
some researches began to extend deep learning methods to hyperbolic space
and showed state-of-the-art performance on link prediction and node classi-
fication tasks [14, 16, 38].

3. Preliminaries

In this section, we first formally define the task of MMEA, and then we
briefly review the GCN model. Finally, we introduce the basic concepts of
hyperbolic geometry, which serve as building blocks for our proposed model.

3.1. Task Formulation

MMEA aims to align entities in two MMKGs. A MMKG usually contains
information in multiple modalities. In this work, without loss of generality,
we focus on the KG structure information and visual information. Formally,
we represent a MMKGs as MG = (E,R, T, I), where E, R, T , and I denote
the sets of entities, relations, triples and images, respectively. A relational
triple t ∈ T can be represented as (e1, r, e2), where e1, e2 ∈ E and r ∈ R. An
entity e is associated with multiple images Ie = {i0e, i1e, ..., ine}.

Given two MMKGs, MG1 = (E1, R1, T1, I1), MG2 = (E2, R2, T2, I2), and
seed entity pairs (pre-aligned entity pairs for training) S = {(e1s, e2s)|e1s ↔
e2s, e

1
s ∈ E1, e

2
s ∈ E2}, where↔ represents equivalence, the task of MMEA can
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be defined as discovering more aligned entity pairs {(e1, e2)|e1 ∈ E1, e
2 ∈ E2}.

We use Example 2 to further illustrate this task.

Example 2. Figure 2 shows two partial MMKGs. The equivalence between
The Dark Knight in MG1 and The Dark Knight in MG2 is known in ad-
vance. EA aims to detect potential equivalent entity pairs, e.g., Nolan in
MG1 and Nolan in MG2, using the known alignments.

3.2. Graph Convolutional Neural Networks

GCNs [18, 22] are a type of neural network that directly operates on graph
data. A GCN model consists of multiple stacked GCN layers. The inputs to
the l-th layer of the GCN model are feature vectors of nodes and the structure
of the graph. H(l) ∈ Rn×dl is a vertex feature representation, where n is the
number of vertices and dl is the dimensionality of feature matrix. Â =
D−

1
2 (A + I)D−

1
2 represents the symmetric normalized adjacency matrix.

The identity matrix I is added to the adjacency matrix A to obtain self-
loops for each node, and the degree matrix D =

∑
j(Aij + Iij). The output

of the l-th layer is a new feature matrix H(l+1) by the following convolutional
computation:

H(l+1) = σ(ÂH(l)W (l)). (1)

3.3. Hyperboloid Manifold

We briefly review the key notions from the hyperbolic geometry; a more
in-depth description is available in [13]. Hyperbolic geometry is a non-
Euclidean geometry with constant negative curvature that measures how
a geometric object deviates from a flat plane. In this work, we use the d-
dimensional Poincare ball model with negative curvature -c (c > 0): P (d,c) =
{x ∈ Rd : ‖x‖2 < 1

c
}, where ‖·‖ is the L2 norm. For each point x ∈ P (d,c), the

tangent space T c
x is a d-dimensional vector space at point x, which contains

all possible directions of paths in P (d,c) leaving from x. Then, we introduce
some basic operations in the hyperbolic space, which are essential in our
proposed model.

Exponential and logarithmic maps. Specifically, let v be the feature
vector in the tangent space T c

o; o is a point in the hyperbolic space P (d,c),
which is also used as a reference point. Let o be the origin, o = 0. The
tangent space T c

o can be mapped to P (d,c) via the exponential map:

expco(v) = tanh(
√
c‖v‖) v√

c‖v‖
. (2)
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Figure 3: The framework of our proposed method.

And conversely, the logarithmic map which maps P (d,c) to T c
o is defined

as:
logco(y) = arctanh(

√
c‖y‖) y√

c‖y‖
. (3)

Möbius addition. Vector addition is not well-defined in the hyperbolic
space and adding the vectors of two points straightly like Euclidean in the
Poincare ball might result in a point outside the ball. In this case, the
Möbius addition [14] provides an analogue to the Euclidean addition in the
hyperbolic space. Here, ⊕c represents the Möbius addition as:

hi ⊕c hj =

(
1 + 2c 〈hi,hj〉+ c ‖hj‖2

)
hi +

(
1− c ‖hi‖2

)
hj

1 + 2c 〈hi,hj〉+ c2 ‖hi‖2 ‖hj‖2
. (4)

4. Methodology

In this section, we present our proposed approach HMEA, which oper-
ates in the hyperbolic space. The framework is shown in Figure 3. We first
adopt HGCNs to learn the structural embeddings of entities. Then, we con-
vert the images associated with entities into visual embeddings using the
densenet model, which are also projected into the hyperbolic space. Finally,
we combine these embeddings in the hyperbolic space and predict the align-
ment results using a pre-defined hyperbolic distance. We use Example 3 to
illustrate our proposed model.
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Example 3. Further to Example 2, by using structural information, it is
easy to detect that Nolan in MG1 is equivalent to Nolan in MG2. Neverthe-
less, merely using structural information is not enough, which might wrongly
align Michael Caine in MG1 to Christan Bale in MG2. In this case, the
visual information would be very useful, since the images of Michael Caine

in MG1 and Christan Bale in MG2 are very different. Therefore, we take
into account both structural and visual information for alignment.

In the following, we introduce the components of our proposal in detail.

4.1. Structural Representation Learning

We learn the structure representation of MMKGs by Hyperbolic Graph
Convolutional Neural Networks, extending convolutional computation to man-
ifold space, which benefits from the expressiveness of both graph neural
networks and hyperbolic embeddings. More specifically, we first map in-
put Euclidean features into hyperboloid manifold. Then, through feature
transformation, message passing and non-linear activation in the hyperbolic
space, we can get the hyperbolic structural representations.

Mapping input features to hyperboloid manifold. In general, the
input node features are produced by pre-trained Euclidean neural networks,
and hence, they exist in the Euclidean space. To make the features available
in the hyperbolic space, we first derive a mapping from Euclidean features
to hyperbolic space.

Here, we assume that the input Euclidean features xE ∈ ToHc, where
ToHc represent the tangent space referring to o, and o ∈ Hc denotes the
north pole (origin) in hyperbolic space. We obtain the hyperbolic feature
matrix xH via: xH = expc

o(x
E), where expc

o(·) is defined in Equation 2.

Feature transformation and propagation. Similar to GCN, feature
transformation and message passing are also the core operations in hyperbolic
structural learning. The operations are well-understood in the Euclidean
space, however, their counterparts in hyperboloid manifold are non-trivial.
In this connection, we could execute the functions with trainable parameters
in the tangent space of a point in the hyperboloid manifold, since the tangent
space is Euclidean. To this end, we leverage the exp(·) map and log(·) map
to transform between hyperboloid manifold and the tangent space, so that
we can use the tangent space ToH

d
c to perform Euclidean operations.
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We first use the logarithmic map to project hyperbolic representation
xH
v ∈ R1×d of node v to the tangent space ToH

d
c . And in ToH

d
c , feature

transformation and propagation rule for v is calculated as:

xT
v = Â logc

o

(
xH
v

)
W , (5)

where xT
v ∈ R1×d′ denotes the feature representation in the tangent space

and Â represents the symmetric normalized adjacency matrix; W is a d′× d
trainable weight matrix.

Non-linear activation with different curvatures. After getting the
representation in the tangent space, we use a non-linear activation function
σ⊗

cl,cl+1
to learn non-linear transformations. More concretely, in l layer’s

tangent space ToH
d
cl

, we conduct Euclidean non-linear activation. Then we
map it to the manifold of the next layer:

σ⊗
cl,cl+1

(
xT
v

)
= expcl+1

o

(
σ
(
logcl

o

(
xT
v

)))
, (6)

where −1/cl, −1/cl+1 are hyperbolic curvatures at layer l and l + 1, respec-
tively; the activation function σ is chosen as ReLU(·). This step is significant
as it allows us to smoothly vary the curvature at each layer, which is crucial
to the overall performance due to the limited machine precision and normal-
ization.

Based on the hyperboloid feature transformation and non-linear activa-
tion, the convolutional computation in the hyperbolic space is redefined as:

H l+1 = expcl+1
o (σ(Â logcl

o

(
H l
)
W )), (7)

where H l+1 ∈ Rn×dl+1
, H l ∈ Rn×dl are the learned node embeddings in the

hyperbolic space at l + 1 layer and l layer; and H0 = xH ; Â represents the
symmetric normalized adjacency matrix; W is a dl × dl+1 trainable weight
matrix.

4.2. Visual Representation Learning

We adopt the densenet model [19] to learn image embeddings, which is
pre-trained on the ImageNet dataset [11]. We remove the softmax layer in
densenet and obtain the 1920-dimensional embeddings for all images in the
MMKGs. Then, we project the embeddings into the hyperbolic space using
HGCNs to improve their expressiveness.
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4.3. Multi-modal Information Fusion

Both of the visual and structural information can contribute to the align-
ment results, as shown in Example 3. Therefore, we design a novel method
to combine structure information and visual information of MMKGs. More
specifically, we obtain the merged representation of entity ei in hyperbolic
space via:

hi = (β ·H i
s)⊕c ((1− β) ·H i

v), (8)

where Hs and Hv are structure and visual embeddings learned from HGCNs
model, respectively; β is a hyper-parameter to balance the significance of
these two features; the operator ⊕c is the Möbius addition. The combination
requires the dimensions of structural and visual representations to be the
same.

4.4. Alignment Prediction

We predict the alignment results based on the distance between entity
representations from two MMKGs. The Euclidean distance and Manhattan
distance are commonly used distance measures in the Euclidean space [44,
24]. Nevertheless, in the hyperbolic space, we have to utilize the hyperbolic
distance between nodes as the distance measure. For entities ei in MG1 and
ej in MG2, the distance is defined as:

dc (hi,hj) = ||(−hi)⊕c hj||, (9)

where hi and hj denote the merged embeddings of ei and ej in the hyperbolic
space, respectively; ‖ · ‖ is the L1 norm; the operator ⊕c is the Möbius
addition.

The distance is expected to be small for equivalent entities and large for
non-equivalent ones. For a specific entity ei in MG1, our approach computes
the distances between ei and all the entities in MG2, and returns a list of
ranked entities as candidate alignments.

4.5. Model Training

In order to embed equivalent entities as close as possible in the vector
space, we use a set of known entity alignments (seed entities) S as training
data to train the model. Concretely, the model training is performed by
minimizing the following margin-based ranking loss function:

L =
∑

(e,v)∈S

∑
(e′,v′)∈S′

(e,v)

[dc (he,hv) + γ − dc (he′ ,hv′)]+ , (10)
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where [x]+ = max{0, x}; (e, v) represents a seed entity pair and S is the
set of entity pairs; S ′(e,v) denotes the set of negative instances constructed

by corrupting (e, v), i.e., replacing e or v with a randomly chosen entity
in MG1 or MG2; γ > 0 denotes the margin hyper-parameter separating
positive and negative instances. The margin-based loss function requires
that the distance between the entities in positive pairs should be small, and
the distance between the entities in negative pairs should be large.

5. Experiment

5.1. Dataset and Evaluation Metric

In the experiment, we use the datasets built in [26], which are extracted
from FreeBase, DBpedia, and YAGO respectively. These datasets use FB15K

as a starting point to create the multi-modal knowledge graphs. Then they
align the entities in FB15K with entities in others knowledge graphs using the
reference links, resulting in DB15K and YAGO15K. We conducted experiments
on two pairs of MMKGs, namely, FB15K-DB15K and FB15K-YAGO15K.

Table 1: Statistic of the MMKGs Datasets.

Datasets Entities Relations Rel.Triples Images SameAs
FB15K 14,951 1,345 592,213 13,444
DB15K 14,777 279 99,028 12,841 12,846

YAGO15K 15,404 32 122,886 11,194 11,199

Since the datasets do not provide the original pictures, to obtain the
relevant images for each entity, we use the URIs built in [28] and implement
a web crawler that is able to parse query results from the image search
engines, i.e., Google Images 1, Bing Images 2, and Yahoo Image Search 3.
Then, we assign the pictures obtained by different search engines to different
MMKGs, so as to reflect the heterogeneity of different MMKGs.

Table 1 outlines the detailed information of the datasets. Each dataset
contains nearly 15 thousand entities and more than 11 thousand image sets
of entity. The Images column represents the number of entities that possess

1https://www.google.com/imghp?hl=EN
2https://www.bing.com/image
3https://images.search.yahoo.com/
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the image sets. These alignments are given by the SameAs predicates that
have been previously found. In the experiments, the known equivalent entity
pairs are used for model training and testing.

Evaluation metric. We use Hits@k as the evaluation measure to assess
the performance of all the approaches. Hits@k measures the proportion of
correct aligned entities ranked in the top-k candidates.

5.2. Experiment Setting and Competing Approaches

Experiment Setting. In order to assess the performance under different
percentages of the given alignments P (%), we evaluate the methods with low
(20%), medium (50%) and high percentage (80%) of the given seed entity
pairs. The remaining sameAs triples are used for test. For fairness, we
keep the number of dimensions to be the same (i.e., 400) for GCN-align and
HMEA. The other parameters of GCN-align follow [42]. For the parameters
of our approach HMEA, we generate 6 negative samples for each positive
one; the margin hyper-parameters in the loss function are γHMEA−s = 0.5 and
γHMEA−v = 1.5, respectively. We optimize HMEA with Adam.

Competing approaches. To demonstrate the superiority of our proposed
model, we chose three state-of-the-art approaches as competitors:

• GCN-align [42] adopts GCN to encode the structural information of en-
tities, and then combines relation and image embeddings for the entity
alignment task.

• PoE [26] is the product of experts model. It computes the scores of
facts under each modality, and learns the entity embeddings for en-
tity alignment. PoE combines information from two modalities. We
also compare with the variant PoE-s, which merely uses the structure
information.

• IKRL [45] integrates image representations into an aggregated image-
based representation via an attention-based method. It is originally
proposed in the field of knowledge representation and we adopt it to
tackle MMEA.

To further demonstrate the benefit from hyperbolic geometry, especially
in learning structural features, we conduct exploratory experiments by solely
using structure information for EA, resulting in HMEA-s, GCN-align-s and
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PoE-s. In addition, to evaluate the contribution of visual information, we
compare PoE, GCN-align and HMEA with just visual information, namely
PoE-v, GCN-align-v and HMEA-v.

5.3. Results

The results are shown in Table 2. It is obvious that HMEA achieves the
best performance in all cases. Especially in FB15K-YAGO15K, with 80% seed
entity pairs, HMEA outperforms PoE and GCN-align by nearly 15% in terms
of Hits@1. With 20% seed entity pairs, our approach also shows better
results and the improvement of Hits@1 is around 2% and Hits@10 is up
to 20%. According to the results of PoE, we can find that there is little
enhancement from Hits@1 to Hits@10, ranging from 4% to 9%. In contrast,
the enhancements from Hits@1 to Hits@10 of HMEA are at least 20% in all
situations. By the way, HMEA outperforms IKRL by a large margin.

Table 2: Alignment prediction on both datasets for different percentages of P.

FB15K-DB15K
20% 50% 80%

Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10
PoE 11.1 17.8 23.5 33.0 34.4 40.6

GCN-align 5.35 17.11 13.85 34.31 22.18 48.95
IKRL 1.01 2.40 2.77 5.79 5.41 11.09
HMEA 12.65 36.86 26.23 58.08 41.68 78.55

FB15K-YAGO15K
20% 50% 80%

Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10
PoE 8.7 13.3 18.5 24.7 28.9 34.3

GCN-align 6.76 17.99 16.47 35.85 28.75 53.05
IKRL 0.86 1.75 1.95 3.73 3.57 7.14
HMEA 10.51 31.27 26.50 58.08 43.30 80.11

As shown in Table 3, if solely using structural information, HMEA-s still
leads to better results than other two methods. More concretely, our pro-
posed approach outperforms GCN-align-s by nearly 5% on FB15K-DB15K and
3% on FB15K-YAGO15K in terms of Hits@1 with 20% seed alignments. With
50% and 80% seed entity pairs, HMEA-s brings significantly better results.
The improvements range from 10% to 18% regarding Hits@1 and from 20%
to 30% in terms of Hits@10. According to the results, it can be concluded
that our approach does have advantage in capturing accurate hierarchical
structure representation.
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Table 3: Results of three methods with structure information.

FB15K-DB15K
20% 50% 80%

Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10
PoE-s 10.7 16.5 22.9 31.7 33.6 38.6

GCN-align-s 5.35 17.11 13.85 34.31 22.18 48.95
HMEA-s 11.73 33.56 24.84 56.69 40.87 76.77

FB15K-YAGO15K
20% 50% 80%

Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10
PoE-s 8.4 12.3 18.0 23.1 28.1 31.9

GCN-align-s 6.76 17.99 16.47 35.85 28.75 53.05
HMEA-s 9.66 28.96 25.37 56.60 42.63 78.42

With visual information (Table 4), we compare three variants: PoE-v,
GCN-align-v and HMEA-v. It is obvious that GCN-align does not obtain use-
ful visual representation for MMEA. If solely using structural information,
HMEA-v still shows better results than PoE-v. More concretely, our proposed
approach outperforms PoE-v slightly with 20% seed alignments, less than
1% on both datasets regarding Hits@1. With 80% seeds on FB15K-DB15K,
HMEA-v brings significantly better results. The improvements are around 7%
regarding Hits@1 and 18% in terms of Hits@10. The results demonstrate
the effectiveness of our proposed mode for learning visual features.

Table 4: Comparison of three methods with visual information.

FB15K-DB15K
20% 50% 80%

Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10
PoE-v 0.8 2.7 1.3 3.8 1.7 5.9

GCN-align-v 0.0 0.0 0.0 0.0 0.0 0.0
HMEA-v 1.77 8.08 3.33 12.65 9.05 24.20

FB15K-YAGO15K
20% 50% 80%

Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10
PoE-v 0.7 2.4 1.1 3.2 1.7 5.5

GCN-align-v 0.0 0.0 0.0 0.0 0.0 0.0
HMEA-v 1.35 5.43 2.71 11.15 5.79 18.07

5.4. Ablation Experiment

MMKGs consist of information in multiple modalities. We take the struc-
tural and visual information into account in this work. In order to further
validate the effectiveness of multi-modal knowledge for MMEA, we conduct
the ablation experiment. By comparing HMEA and HMEA-s in Table 2 and
Table 3, it can be seen that adding visual information in our approach does
lead to slightly better results and the improvements are around 1% in terms
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of Hits@1. Moreover, by comparing HMEA and HMEA-v in Table 2 and Ta-
ble 4, we can also see that the structural information is of great significance.
The ablation study shows that MMEA mainly relies on the structural infor-
mation, but the visual information is still useful. In addition, it demonstrates
that the combination of these information works much better.

5.5. Case Study

One key property of hyperbolic spaces is that they expand faster than
Euclidean spaces, because Euclidean spaces expand polynomially while hy-
perbolic spaces expand exponentially. In other words, for the neighbor nodes
of the central node, they are distributed in bigger space and the distances
between them are farther, which can help distinguish similar entities.

To further demonstrate the effectiveness of the embeddings in hyperbolic
space, we conduct the following case study. We choose Michael Caine as
the root node. We visualize the embeddings of its 1-hop film-related entities
learned from GCN-align and HMEA separately in the PCA-projected spaces
in Figure 4. It can be observed that, for the entities of the same type or with
similar structure information, especially for entity Alfie and B-o-B, their
Euclidean embeddings (generated via GCN-align) are placed closely. While
in Hyperbolic space, the distances between such entities are relatively far-
ther away (with only a few exceptions). This validates that the hyperbolic
structure representation can help distinguish similar entities. Moreover, by
placing similar entities (in the same KG) distantly, the hyperbolic represen-
tation can help the alignment process (alignment across KG).

For instance, as shown in Figure 4(a), for entity Alfie in FB15K, the
closest entity to it is entity B-o-B (which is incorrect). However, in Figure
4(b), for entity Alfie, the entity B-o-B is placed far away from it, and
the closest entity to it is Alfie in DB15K. Hence, by using the hyperbolic
projection, similar entities in the same KG are well distinguished and placed
far away, such that alignment mistakes could be avoided.
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Figure 4: The embeddings of 1-hop film-related neighbor entities of Michael Caine gener-
ated from GCN-align and HMEA separately in the PCA-projected space. The green points
represent entities in FB15K; red points represent entities in DB15K. For simplicity, we
annotate part of entities. B-o-B is the abbreviation of Battle of Britain.
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5.6. Additional Experiment

Table 5: Details of the cross-lingual datasets
Datasets Entities Relations Attributes Rel.triples Attr.triples

DBP15KZH-EN
Chinese 66,469 2,830 8,113 153,929 379,684
English 98,125 2,137 7,173 237,674 567,755

DBP15KJA-EN
Japanese 65,744 2,043 5,882 164,373 354,619
English 95,680 2,096 6,066 233,319 497,230

DBP15KFR-EN
French 66,858 1,379 4,547 192,191 528,665
English 105,889 2,209 6,422 278,590 576,543

The cross-lingual EA datasets are the most widely-used datasets to as-
sess EA approaches. We added the experiments on them to show that our
proposed approach can work on such popular datasets (and the cross-lingual
EA task). Note that diverse languages are not taken as multiple modalities,
and the cross-lingual EA is in essence single-modal EA. We use the DBP15K

datasets in the experiments, which were built by [36]. The datasets were
generated from DBpedia, containing rich inter-language links between differ-
ent language versions. Each dataset contains data in different languages and
15 thousand known inter-language links connecting equivalent entities in two
KGs, which are used for model training and testing. Following the setting
in [42], we use 30% of inter-language links for training, and 70% of them for
testing. Hits@k is used as the evaluation measure.

Both the dimensions of structure and attribute are set to 300-dimension
for GCN-align. GCN-align-s and HMEA-s represent adopting structure infor-
mation; GCN-align-a and HMEA-a represent adopting attribute information;
and GCN-align and HMEA combine both the structure information and at-
tribute information.

As shown in Table 6, in all datasets, HMEA-s outperforms GCN-align-s
and the improvements are around 7% in terms of Hits@1 and more than
10% in terms of Hits@10. It demonstrates that HMEA benefits from hyper-
bolic geometry and is able to capture better structural features. In addition,
with the combination of structure information and attribute information, our
proposed approach outperforms GCN-align by around 10% regarding Hits@1.
As for the attribute information, HMEA-a also gets significantly better results
than GCN-align-a, which increases by around 15% on Hits@1 in all datasets.
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Table 6: Result in Cross-lingual datasets.

DBP15KZH-EN
ZH-EN EN-ZH

Hits@1 Hits@10 Hits@1 Hits@10
GCN-align-s 39.42 71.34 33.60 65.23
HMEA-s 46.23 82.36 44.53 81.95

GCN-align-a 13.44 40.94 12.54 38.78
HMEA-a 33.99 71.15 32.80 69.79
GCN-align 43.08 75.92 36.25 69.17
HMEA 54.04 87.88 51.88 86.57

DBP15KJA-EN
JA-EN EN-JA

Hits@1 Hits@10 Hits@1 Hits@10
GCN-align-s 39.95 72.72 36.09 67.43
HMEA-s 47.63 83.96 47.24 83.96

GCN-align-a 9.27 31.85 8.78 31.89
HMEA-a 28.36 63.99 27.73 63.97
GCN-align 42.51 75.74 38.31 70.49
HMEA 53.06 87.47 52.65 87.41

DBP15KFR-EN
FR-EN EN-FR

Hits@1 Hits@10 Hits@1 Hits@10
GCN-align-s 38.38 74.45 37.37 71.65
HMEA-s 44.27 83.15 43.81 83.14

GCN-align-a 2.65 13.50 3.02 14.51
HMEA-a 12.40 48.70 15.44 52.12
GCN-align 39.48 76.05 38.44 73.33
HMEA 48.40 86.49 48.15 86.18

6. Conclusion

In this paper, we propose HMEA, a novel multi-modal EA approach which
effectively integrates multi-modal information for EA in MMKGs. It extends
the Euclidean representation to hyperboloid manifold and adopts HGCNs to
learn structural representations of entities. A more advanced model densenet
is leveraged to learn better visual representations. The structural and visual
embeddings are further aggregated in the hyperbolic space to predict po-
tential alignments. We validate the effectiveness of our proposed model via
comprehensive experimental evaluations. Additional experiments also con-
firm that HGCNs obtains better structural features of knowledge graphs in
the hyperbolic space.
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[31] M. Nickel and D. Kiela. Poincaré embeddings for learning hierarchical rep-
resentations. In Advances in neural information processing systems, pages
6338–6347, 2017.

[32] M. Nickel and D. Kiela. Learning continuous hierarchies in the lorentz model
of hyperbolic geometry. arXiv: Artificial Intelligence, 2018.

[33] H. Paulheim. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic web, 8(3):489–508, 2017.

[34] E. Ravasz and A.-L. Barabási. Hierarchical organization in complex networks.
Physical review E, 67(2):026112, 2003.

22



[35] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In Proceedings of the 16th international conference on World
Wide Web, pages 697–706, 2007.

[36] Z. Sun, W. Hu, and C. Li. Cross-lingual entity alignment via joint attribute-
preserving embedding. In International Semantic Web Conference, pages
628–644. Springer, 2017.

[37] Z. Sun, W. Hu, Q. Zhang, and Y. Qu. Bootstrapping entity alignment with
knowledge graph embedding. In IJCAI, pages 4396–4402, 2018.

[38] H.-N. Tran and E. Cambria. A survey of graph processing on graphics pro-
cessing units. The Journal of Supercomputing, 74(5):2086–2115, 2018.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[40] R. C. Veltkamp, H. Burkhardt, and H.-P. Kriegel. State-of-the-art in content-
based image and video retrieval, volume 22. Springer Science & Business
Media, 2013.

[41] M. Wang, G. Qi, H. Wang, and Q. Zheng. Richpedia: A comprehensive
multi-modal knowledge graph. In Joint International Semantic Technology
Conference, pages 130–145. Springer, 2019.

[42] Z. Wang, Q. Lv, X. Lan, and Y. Zhang. Cross-lingual knowledge graph align-
ment via graph convolutional networks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 349–357, 2018.

[43] Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao. Relation-
aware entity alignment for heterogeneous knowledge graphs. arXiv preprint
arXiv:1908.08210, 2019.

[44] Y. Wu, X. Liu, Y. Feng, Z. Wang, and D. Zhao. Neighborhood matching
network for entity alignment. In ACL, pages 6477–6487. Association for Com-
putational Linguistics, 2020.

[45] R. Xie, Z. Liu, H. Luan, and M. Sun. Image-embodied knowledge represen-
tation learning. pages 3140–3146, 2017.

[46] X. Yao and B. Van Durme. Information extraction over structured data:
Question answering with freebase. In Proceedings of the 52nd Annual Meeting

23



of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 956–966, 2014.

[47] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum. Neural-
symbolic vqa: Disentangling reasoning from vision and language understand-
ing. In Advances in neural information processing systems, pages 1031–1042,
2018.

[48] W. Zeng, X. Zhao, J. Tang, and X. Lin. Collective entity alignment via
adaptive features. In ICDE, pages 1870–1873. IEEE, 2020.

[49] W. Zeng, X. Zhao, W. Wang, J. Tang, and Z. Tan. Degree-aware alignment
for entities in tail. In SIGIR, pages 811–820. ACM, 2020.

24


	1 Introduction
	2 Related Work
	2.1 Multi-modal Knowledge Graph
	2.2 Entity Alignment
	2.3 Representation Learning in Hyperbolic Space

	3 Preliminaries
	3.1 Task Formulation
	3.2 Graph Convolutional Neural Networks
	3.3 Hyperboloid Manifold

	4 Methodology
	4.1 Structural Representation Learning
	4.2 Visual Representation Learning
	4.3 Multi-modal Information Fusion
	4.4 Alignment Prediction
	4.5 Model Training

	5 Experiment
	5.1 Dataset and Evaluation Metric
	5.2 Experiment Setting and Competing Approaches
	5.3 Results
	5.4 Ablation Experiment
	5.5 Case Study
	5.6 Additional Experiment

	6 Conclusion

