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Abstract

Depth cues with affluent spatial information have been proven beneficial in

boosting salient object detection (SOD), while the depth quality directly affects

the subsequent SOD performance. However, it is inevitable to obtain some low-

quality depth cues due to limitations of its acquisition devices, which can inhibit

the SOD performance. Besides, existing methods tend to combine RGB images

and depth cues in a direct fusion or a simple fusion module, which makes they

can not effectively exploit the complex correlations between the two sources.

Moreover, few methods design an appropriate module to fully fuse multi-level

features, resulting in cross-level feature interaction insufficient. To address these

issues, we propose a novel Multi-level Cross-modal Interaction Network (MCI-

Net) for RGB-D based SOD. Our MCI-Net includes two key components: 1) a

cross-modal feature learning network, which is used to learn the high-level fea-

tures for the RGB images and depth cues, effectively enabling the correlations

between the two sources to be exploited; and 2) a multi-level interactive inte-

gration network, which integrates multi-level cross-modal features to boost the

SOD performance. Extensive experiments on six benchmark datasets demon-

strate the superiority of our MCI-Net over 14 state-of-the-art methods, and

validate the effectiveness of different components in our MCI-Net . More im-
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portant, our MCI-Net significantly improves the SOD performance as well as

has a higher FPS.

Keywords: Salient object detection, RGB-D, Cross-modal feature learning,

Multi-level interactive integration

1. Introduction

Salient object detection (SOD) aims at automatically identifying salient re-

gions in a scene from their surroundings [1, 2, 3], which has drawn increasing

interest in computer vision. As a pre-processing tool, SOD benefits several real-

world applications, including object segmentation [4], object tracking [5], image

enhancement [6], person re-identification [7], and so on. Although many SOD

methods have been developed and obtained good results over the past several

years, they still face several limitations, especially when subject to varying il-

luminations and complex backgrounds. Recently, with the surge in popularity

of depth sensors in smart devices, depth cues have been used to provide com-

plementary shape and spatial layout information to overcome these challenges.

Consequently, determining how to effectively fuse RGB images and depth cues

to improve the SOD performance is a critical problem in dealing with RGB-D

data.

Given paired RGB and depth images, several methods have been developed

for RGB-D based SOD. Early works [17, 18] mainly focused on hand-crafted

low-level features. Further, the early fusion strategy involved either directly

cascading RGB-D channels, or combining the decision maps obtained from each

modality-independent output. In these simple fusion methods, the correlations

between cross-modal data are ignored. Recently, due to the success of CNN in

learning powerful feature representations, various works have employed these

to achieve SOD from RGB-D data. For example, Wang et al. [14] proposed

an adaptive fusion network, in which an adaptive learning switch map is de-

signed to integrate effective information from RGB and depth predictions, and

an edge-preserving loss is used for correcting blurry boundaries. Zhu et al. [19]
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Figure 1: F-measure vs. Inference Speed (i.e., FPS) on the STERE dataset [16]. Our model
achieves comparable accuracy compared to the state-of-the-art methods, including D3Net [8],
CPFP [9], TANet [10], PCF [11], DF [15], MMCI [12], CTMF [13], and AFNet [14], at a
significantly higher FPS.

proposed a prior-model guided master network to process RGB information,

which was pre-trained on a conventional RGB dataset to overcome the shortage

of training data. In order to enhance the RGB-D representational ability and

achieve selective cross-modal fusion, Chen et al. [10] proposed a three-stream

architecture with an attention-aware cross-modal fusion network. Overall, these

RGB-D SOD methods based on deep models have achieved significant improve-

ments over hand-crafted features based approaches. In addition, in some works

[13, 11, 20], the original depth map is directly encoded by HHA (i.e. horizontal

disparity, height above ground, and the angle of the local surface normal with

the inferred direction of gravity.), and such a processing method can improve

the quality of the input source to a certain extent [21, 10, 22].

Although great progress has been made in this field, existing RGB-D based

SOD methods still face several issues. First, the quality of the captured depth

cues varies tremendously across different conditions, which can inhibit the SOD

performance. Second, most existing methods combine RGB images and depth
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cues using either an early fusion or late fusion strategy, however, this direct

combination operation or a designed simple fusion module can not effectively

exploit the complex correlations between the two sources. While some works

have introduced a middle-fusion or multi-scale fusion [9, 11, 13, 23], it is still

challenging to design an appropriate and effective module for exploring the

multi-level interactive information.

To this end, we propose a novel Multi-level Cross-modal Interaction Network

(MCI-Net) for RGB-D salient object detection, which consists of two key com-

ponents, i.e., a cross-modal feature learning network and multi-level interactive

integration network. Specifically, in the cross-modal feature learning network,

the depth cues encoded as enhanced HHA are first used for cross-modal fea-

ture learning in a two-stream structure module, while a cross-modal refinement

module (CMRM) is proposed to integrate cross-modal features. In the multi-

level interactive integration network, a multi-level fusion module (MLFM) is

developed to fuse the features of each level in a bottom-up manner. In addition,

a feedback integration module (FIM) is proposed to propagate the features

of the last convolutional layer back to the previous layers. Finally, we fully

integrate the cross-modal features from different levels in a pyramid style. Ex-

tensive experiments on six benchmark datasets demonstrate the effectiveness of

the proposed MCI-Net against 14 state-of-the-art (SOTA) methods in terms of

evaluation metrics, and the extended experiments further demonstrate the com-

patibility and robustness of the model. Moreover, when comparing with several

current SOTA methods (including D3Net [8], CPFP [9], TANet [10], PCF [11],

DF [15], MMCI [12], CTMF [13], and AFNet [14]), our MCI-Net significantly

improves the SOD performance and also has a higher FPS, as shown in Fig. 1.

The main contributions of this work are as follows:

(1) We propose a novel MCI-Net for RGB-D salient object detection, which

can effectively exploit the correlation between RGB images and depth

cues, while also exploring multi-level information to boost the SOD per-

formance.
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(2) To exploit the correlations across RGB images and depth cues, a CMRM

is proposed to integrate cross-modal features. The CMRM is carried out

in various of levels of feature spaces for further multi-level feature fusion.

(3) A multi-level interactive integration network is proposed to fully integrate

the cross-modal features from different levels, enabling multi-level inter-

active information to be explored. An MLFM is proposed to fuse the

features of each level in a bottom-up manner, and an FIM is proposed to

propagate the features of the last convolutional layer back to the previous

layers to reduce the information lost during downsampling as well as the

effect of noise.

(4) Extensive experimental results on six RGB-D SOD benchmark datasets

demonstrate the effectiveness of our MCI-Net over other SOTA meth-

ods. Besides, we conduct a comprehensive ablation study to validate the

effectiveness of different components in our MCI-Net.

2. Related Work

2.1. RGB-D Saliency Detection

Traditional Methods. According to the stage of fusion, traditional meth-

ods can be summarized into three categories: 1) input fusion, 2) feature fusion,

3) result fusion. For input fusion, Peng et al. [24] serialized RGB and corre-

sponding depth cues into four channels simultaneously as a multi-stage saliency

detection model. For the second category, Ju et al. [25] considered both fine-

grained global structures and coarse-grained local details, and proposed to use

anisotropic center differences to measure the significance of depth cues. Based

on the observation that objects surrounding the background in an angular direc-

tion present a unique structure and have high saliency, Feng et al. [26] proposed

an RGB-D saliency feature captured by the local background enclosure (LBE).

For the last category, multiple prediction results are integrated into separate

post-processing steps. For example, Desingh et al. [17] used nonlinear support
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vector regression to fuse multiple saliency prediction maps. In [27], a RGBD

saliency model was proposed by combining depth confidence analysis and mul-

tiple cues fusion.

Deep Learning based Methods. Recently, convolutional neural net-

works (CNN) have been widely used in RGB-D saliency detection. As a pi-

oneering work, Qu et al. [15] developed a method to fuse different low-level

saliency cues into hierarchical features using the CNN framework, in order to

effectively locate salient regions from RGB-D images. In a more recent work,

Zhao et al. [9] integrated enhanced depth cues with RGB features through a fluid

pyramid for SOD. In order to fill the gaps of SOD in real human activity scenes,

Fan et al. [8] proposed a simple baseline architecture through depth depurator

units and a feature learning module, and obtained satisfactory results. In order

to treat information from different sources discriminatively and capture the con-

tinuity of cross-modal features, Li et al. [22] proposed an information conversion

network using the Siamese structure with an encoder-decoder architecture. In

addition, some authors have also adopted a joint learning strategy [28], bilateral

attention [29], and conditional variational autoencoders (CVAE) [30] to address

this task.

2.2. Multi-level Feature Integration

For input image pairs, some works have been devoted to studying the in-

tegration of multi-level features [13, 23, 11, 9]. For example, Han et al. [13]

proposed a multi-view CNN fusion model through a combination layer connect-

ing the representation layers of the RGB and depth data to effectively integrate

the two domains. In [23], the depth features were combined by concatenating

manually designed depth features and low-level and high-level RGB saliency

features. Chen et al. [11] designed an architecture based on complementarity-

aware fusion (CA-Fuse) module by cascading the CA-Fuse module and adding

level-wise supervision from deep to shallow layers. Chen et al. [12] proposed

a multi-scale multi-path network with cross-module interaction to enable suffi-
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cient and efficient fusion. Most of these methods utilize a direct combination

operation or a simple fusion module, however, the complex correlations between

the RGB images and depth cues can be not effectively exploited. Further, no

appropriate module has been designed for exploring the multi-level interactive

information. Recently, in [31], residual connections were used to design a depth

refinement block for fusing multi-level paired complementary cues from RGB

and depth streams. Li et al. [32] proposed an attention-steered interweave fu-

sion network (ASIF-Net), which gradually integrates the features of the RGB

image and corresponding depth map under the control of an attention mecha-

nism. Liu et al. [33] proposed a cross-modal adaptive gated fusion generative

adversarial network, which progressively combines the deep semantic features

processed by the depth-wise separable residual convolution module with the

side-output features of the encoder network.

3. Proposed Method

In this section, we first introduce the overall architecture of the proposed

MCI-Net in Sec. 3.1. Then we describe the cross-modal feature learning

network and multi-level interactive integration network in Sec. 3.2 and Sec.

3.3, respectively. Finally, the loss function is given in Sec. 3.4.

3.1. Overall Architecture

Fig. 3 shows the overall architecture of the proposed MCI-Net, consisting

of two key components: the cross-modal feature learning network and multi-

level interactive integration network. Specifically, in the cross-modal feature

learning network, each stream of the two-stream structure is built using the

same construction as the public backbone network (e.g. VGGNet [34], ResNet

[35], Res2Net [36]. For an input image with a size of M×N, we use backbone

network to extract its features at five different levels, denoted as {fi|i = 1, . . . , 5}

with resolutions
[
M/2i−1, N/2i−1

]
. Due to the high computational overhead

and low performance [37] when using low-level features, here we only use high-

level features from the last four layers with low resolutions (i.e., f2, f3, f4, and
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Figure 2: Visual comparison between depth images and their enhanced maps.

f5). In the multi-level interactive integration network, we adopt the proposed

CMRM to achieve feature integration for the paired side-output features. In

order to fully integrate and make use of the features of each level, we utilize

the proposed MLFM to fuse them in a bottom-up manner, while fusing multi-

level cross-modal features in a pyramid style. Moreover, we propose a feedback

prediction module to propagate the features of the last convolutional layer back

to the previous layers. These details will be given in the following sections.

3.2. Cross-modal Feature Learning

The cross-modal feature learning network (as shown in Fig. 3) is used to

learn high-level features for the RGB images and depth cues, and exploits the

correlations between the two sources. We provide details of the proposed depth

map enhancement method and cross-modal refinement module below.

Depth Map Enhancement. In practice, depth maps often suffer from

noise, blurred edges, and low contrast, reducing the final SOD performance

when directly used for feature fusion. To overcome this, we propose a novel

depth map enhancement method. A visual comparison between depth images

and their enhanced maps is shown in Fig. 2. Specifically, considering the uneven

distribution of gray values in the depth maps, we use the Otsu algorithm [38] to

obtain the threshold T ∗ of the depth map for enhancing its contrast. Besides,

due to the lack of a pre-trained model suitable for single-channel input when
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Figure 3: The overall architecture of the proposed MCI-Net. Our MCI-Net consists of two
key components: 1) a cross-modal feature learning network, in which each stream of the two-
stream structure is used to learn high-level features for each modality of data (RGB or depth
images), while a CMRM is proposed to fuse cross-modal features; 2) a multi-level interactive
integration network, in which we use an MLFM to fuse the features of each level in a bottom-up
manner, and formulate multi-level cross-modal feature integration in a pyramid style. Besides,
a feedback prediction module is used to propagate the features of the last convolutional layer
back to the previous layers.

using depth maps, we encode the enhanced depth maps as a three-channel HHA

with more geometric information [21]. Consequently, the enhanced depth maps

(i.e., HHA-E) can be directly fed into the pretrained CNN models to learn

more effective feature representations for further fusion. The proposed depth

map enhancement method can be defined as follows:

HHA−E ← HHA


λ1 (Id < T ∗)

λ2 (Id ≥ T ∗)
, (1)

where Id is the grayscale intensity, T ∗ = arg max
t

(δ2Id<t − δ2Id≥t) with t ∈

{0, 1, . . . , 255}, and λ1 and λ2 are scaling parameters.

Cross-modal Refinement Module. Considering that the depth and RGB

cues collected from different sources are strongly complementary, we design

an effective cross-modal refinement module (CMRM) to fully extract and fuse

paired cross-modal features. Because multiple input sources have the same

number of channels and rich features, and also have the same processing in

the backbone network. In order to learn the input feature residuals, unlike the
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DRB module proposed by Piao et al. [31], we process SRGBi and SHHA−Ei

through a combined set of weight layers and then modulate the features by el-

ement multiplication. As shown in Fig. 3 (A), in the input of CMRM, SRGBi

and SHHA−Ei (i ∈ [2, 5]) represent the side-out features of the i-th level from

the RGB and enhanced depth streams, respectively. First, we feed SRGBi and

SHHA−Ei into a series of weight layers W containing a convolutional layer with

3×3 kernels, a batch normalization (BN) layer and a ReLu activation layer to

learn a depth residual. Then, cross-modal features are modulated by element-

wise multiplication to refine the required feature parts. Next bilinear interpo-

lation or maximum pooling is used to reshape each level of the fusion feature

to be the same resolution. To further enhance the fused features, we integrate

the features processed by W to the previously fused features through a residual

connection (i.e., element-wise summation), and then reshape the channel size

to obtain the final enhanced fusion feature. The process of CMRM can be given

as:

F
i
fuse = R

(
W
(
SRGBi

)
�W

(
SHHA−Ei

))
F i∗ = R

(
F ifuse ⊕W

(
F ifuse

))
,

(2)

where � and ⊕ denote element-wise multiplication and addition, respectively,

and R denotes a reshaping operation. By applying CMRM at each level, the

module effectively fuses and learns discriminative depth and RGB features, gen-

erating four cross-modal refinement features from different levels. It is worth

noting that the refined fusion strategy combines local spatial detail information

and global semantic information to improve model performance.

3.3. Multi-level Interactive Integration

The multi-level interactive integration network (as shown in Fig. 3) is pro-

posed to explores and fuse multi-level interactive information to boost the SOD

performance. In this integration network, we propose a multi-level fusion mod-

ule (MLFM) to effectively integrate multiple cross-level features, and a feedback
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integration module (FIM) to propagate the features of the last layer back to pre-

vious layers. The details of the two modules are provided below.

Multi-level Fusion Module. The multi-level features obtained from the

previous stage are statistically different. Although high-level features may lose

a lot of detailed information after a series of downsampling processes, they still

have highly consistent semantic information and clear background. On the other

hand, due to the limitations of the receiving field, the low-level features retain

rich detailed information and noise, which is critical for generating a saliency

map with a clear outline. To take advantage of the benefits and alleviate the

issues of high- and low-level features, we propose a multi-level fusion module

(MLFM) to effectively integrate multiple cross-level features, as shown in Fig. 3

(B) (Note that the medium features represented by dotted lines in the figure may

not be available in some input features.). Unlike the fusion module proposed by

Wei et al. [39], our CLFM integrates multiple levels of features and passes the

features back through interactive strategies. Specifically, the proposed MLFM

includes two stages. Firstly, a convolutional layer with a 3×3 kernel size is

applied to multiple cross-level features (low-level features Fl, medium-level fea-

tures Fm, and high-level features Fh) to adapt to subsequent processing, and

cross-level features are integrated by element-wise multiplication to retain their

common parts. Second, the fused features Ffused are combined with the original

low-level features and high-level features by element-wise summation and used

as the output F ∗ of the module. The above process can be formulated as:

Ffused =W2 (Fl)�W2(Fnm)�W2 (Fh) , n ∈ {0, 2, 3}

F ∗x =W1
(
W1 (Fx)⊕ Ffused

)
, x ∈ {l, h}

(3)

where W1 represents a single operation including a combination of convolu-

tional, BN and Relu layers, and W2 means twice. By processing a series of

MLFM units, multi-level features gradually complement each other with effec-

tive information; that is, the contours of high-level features are sharpened, and

the backgrounds of low-level features become more consistent.
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Algorithm 1: Multi-level interactive integration

Input: Cross-level features:
{
FPi |i ∈ [5, 2]

}
,

Number of pyramid layers: P = 4.
for m = P : 2 do

for n = m : 2 do
if FmnL = null then{

FmnL, F
m−1
nD

}
←MLFM ({Fmi |i = [m+ 1, n]});

else{
FmnL, F

m−1
nD

}
←MLFM ({Fmi |i = [m+ 1, n]} , FmnL);

end

end{
Fm−1
iF |i ∈ [m, 2]

}
← FIM (Fm2L);

if m ≥ 3 then{
Fm−1
i |i ∈ [m, 2]

}
←
{
Fm−1
iF ⊕ Fm−1

iD |i ∈ [m, 2]
}
.

end

end
Output: Sal← Conv

(
F 2
2L

)
.

Note: L & D are the flow of data left and down, F is feedback.

Feedback Integration Module. When dealing with cross-modal and

multi-level features, the key is to maintain the stability and compatibility of

the features. Inspired by the recent multi-scale feature fusion [20, 22, 9], we

develop a feedback pyramid feature fusion structure with MLFM as the pro-

cessing unit, as shown in Fig. 3 (C). This structure introduces the high-level

(low-resolution) features of each layer into the low-level (high-resolution) fea-

tures through a pyramid connection to make full use of the features at multiple

levels, which helps maintain the stability and compatibility of the learned fea-

tures. Specifically, the designed pyramid structure includes two main processes:

from right to left and top-down. For the process from right to left, we guide and

fuse high-level features to low-level features through MLFM, and then supervise

the integrated features FL in the feedback integration module (FIM) and feed

back the corresponding features FF to the next layer of the pyramid. For the

top-down process, the feature flows are cross-modal refinement features (e.g.,

in the first layer,
{
F 4
i |i ∈ [5, 2]

}
) of different levels in the previous layer. We

combine the features FD obtained by the MLFM with the feedback features

after downsampling, and then input them to the next layer for the same pro-

cessing. Finally, for the output of the last layer in the pyramid structure, we
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use an appropriate convolution operation Conv (·) to obtain the saliency map.

The cross-modal and multi-level features can be fused in a pyramid style by

continuous flow and integration. The multi-level interactive integration process

is summarized in Alg. 1.

3.4. Loss Function

Considering that the adopted binary cross entropy (BCE) loss function ig-

nores the perception of the overall structure of the image and the loss of fore-

ground with small salient objects, we introduce the center-surround weighting

item (wi) to alleviate this situation. The weighted loss can be expressed as:

LcsBCE (G,P ) = − 1∑N
i=1 wi

N∑
i=1

((1 + wi) (gi log (pi)

+ (1− gi) log (1− pi))) ,

(4)

where G ∈ {0, 1} and P ∈ [0, 1] respectively represent the ground truth and the

predicted saliency map, gi ∈ G, pi ∈ P . N represents the total number of image

pixels. In LcsBCE (G,P ) , we assign an attention (importance) weight value to

each pixel by wi ∈ [0, 1], which is calculated by the following equation:

wi =

∣∣∣∣ 〈wAi
GAi
〉1

〈GAi
〉0

−Gi
∣∣∣∣ , wA =

1

2nd

(
sin

(
πd

〈A〉0
− π

2

)
+ 1

)
, (5)

where nd represents the number of pixels whose Euclidean distance from the

center of the image area A is d. Ai represents the surrounding area centered

on the pixel i. Following standard norms, we define 〈·〉0 and 〈·〉1 to represent

the sum of the number of area pixels and the sum of the area pixel values,

respectively.

In order to use local and global information to generate more accurate salient

object boundaries and reduce the impact of the uneven distribution, we utilize

an enhanced position-aware loss (LEPA) by introducing the weighted IoU loss
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Table 1: Summary of the RGB-D datasets used.

Datasets Year Num. Size Outlines

STERE [16] 2012 1000 512×384 Outdoor scenes.
NJU2K [25] 2014 1985 421∼884 × 355∼600 3D movies, the web, and photos.
NLPR [24] 2014 1000 480× 640 or 640× 480 Indoor and outdoor scenes.
DES [18] 2014 135 640× 480 Indoor scenes.
SSD [40] 2017 80 960× 1080 Complex scenes in 3D movies
SIP [8] 2019 929 744× 992 or 992× 744 Outdoor scene with people.

(LWIoU ) [39]. The LEPA is defined as:

LEPA (G,P ) = LWIoU (G,P ) + LcsBCE (G,P ) . (6)

Further, we assign a smaller weight to the upper pyramid loss with a larger

error. Finally, the overall loss function of our model is defined as:

Ltotal =

3∑
i=1

1

2i−1
LEPA (G,P ) . (7)

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets. Experiments are conducted on six public RGB-D benchmark

datasets: STERE [16], NJU2K [25], NLPR [24], DES [18], SSD [40] and SIP

[8]. Of these, STERE (contains 1000 images taken outdoors), NJU2K (contains

1985 images collected from 3D movies and the Internet,), NLPR (contains 1000

images captured from indoor and outdoor,), DES (contains images of indoor

scenes,) SSD (contains 80 images with complex backgrounds captured from 3D

movies) and SIP (contains 929 images with people captured outdoors), see Tab.

1 for details. For another DUTLF [31] dataset, because some methods use

different training sets, we retrain the network for extended comparison experi-

ments. In addition, we extend the RGB-Thermal (RGB-T) dataset VT1000 [41]

to further evaluate the compatibility and robustness of the proposed model.

Evaluation Metrics. To comprehensively evaluate various methods, we
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adopt five popular evaluation metrics, including mean absolute error (MAE, M)

[42], S-measure (Sα) [43], F-measure (Fβ) [44, 45], E-measure (Eξ) [46], and

Precision-Recall (PR) curve. Following Fan et al. [8], we use a series of fixed

(0-255) thresholds to calculate the mean Fβ and mean Eξ. The details of these

evaluation metrics are as follows:

• MAE (M). We evaluate the Mean Absolute Error (MAE) value between

the saliency map S and the binary ground-truth mapG. The calculation formula

is:

M =
1

W ∗H

W∑
i=1

H∑
i=1

|S (i, j)−G (i, j)| , (8)

where W & H are the width and height of the map. MAE estimates the sim-

ilarity between the saliency map and the ground-truth map, and normalizes it

to [0,1].

• S-measure (Sα). Considering the importance of image structural infor-

mation, Sα [43] takes the structural similarity of regional perception (Sr) and

object perception (So) as the evaluation of structural information. Sα is calcu-

lated as:

Sα = α ∗ So + (1− α) ∗ Sr, α = 0.5, (9)

where α ∈ [0, 1] is the balance parameter.

• F-measure (Fβ). Fβ is widely used to evaluate the performance of SOD.

Following the work of Borji [45] and Fan [8] et al. , We use different fixed [0,255]

thresholds to comprehensively evaluate the Fβ metric. This metric is calculated

as follows:

Fβ =
(
1 + β2

) P ∗R
β2P +R

, β2 = 0.3. (10)

• E-measure (Eφ). Eφ [46] is a recently proposed enhanced alignment metric.

This metric is based on cognitive vision and integrates local values of images
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with image-level averages to capture global statistical information and local

pixel matching information. Eφ is calculated as:

Eφ =
1

W ∗H

W∑
i=1

H∑
i=1

φFM (i, j) , (11)

where φFM denotes the enhanced-alignment matrix [46].

• PR curve. The saliency map is binarized by a series of thresholds from 0

to 255 to generate a series of precise-recall pairs.

P :
|S ∩G|
|S|

, R :
|S ∩G|
|G|

, (12)

4.2. Implementation Details

Following [11, 10, 9, 8], we randomly select 1400 and 650 image pairs from

the NJU2K [25] and NLPR [24] datasets, respectively, as the training set. In

supplementary experiments, following the same setting in [31], we use 800 image

pairs for training and the remaining 400 for testing in DUTLF dataset. For

VT1000 [41], we randomly sample 600 image pairs for training, and the rest are

used for testing. The parameters λ1 and λ2 in Eq. (1) are set to 0.8 and 1.2,

respectively. For data augmentation, we use horizontal flips, random cropping,

and multi-scale operations to process input image pairs. A pre-trained ResNet-

50 is used as the backbone network of our model. The maximum learning rate is

set to 0.005, and the other modules are 0.05. The entire network uses stochastic

gradient descent (SGD) for end-to-end training. We use the PyTorch toolbox

to implement the proposed model. On a desktop with an Intel Xeon E5-2620

CPU, NVIDIA RTX 2070 GPU and 32GB RAM, the training takes 9.5 hours

when batch size and maximum epoch both set to 32. For image pairs with an

input size of 352×352, the average inference time is 0.07s.

4.3. Comparison With State-of-the-Arts

We compare our model with 14 state-of-the-art RGB-D based SOD methods,

including five classical non-deep methods: ACSD [25], LBE [26], DCMC [27],
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Figure 4: Quantitative comparisons of our MCI-Net with 14 SOTA methods on six challenging
benchmark datasets.

MDSF [47], SE [48], and nine CNN-based methods: DF [15], AFNet [14], CTMF

[13], MMCI [12], PCF [11], TANet [10], CPFP [9], DMRA [31] and D3Net [8].

Note that all the saliency maps of the above methods are provided by the authors

and we evaluate them with the same settings.

Quantitative Evaluation. As shown in Tab. 2, our method achieves the

best scores on five datasets with respect to four metrics, compared with its coun-

terparts. According to the average ranking (AR) in Tab. 2, the overall ranking

of the proposed MCI-Net is the highest. In addition, Fig. 4 shows the overall

evaluation results of the PR curves of our method and comparative methods

on six challenging benchmark datasets. Note that the seven best methods are

shown in color, while the other methods are in light gray.

Qualitative Comparisons. We visually compare MCI-Net with other

SOTA methods, as shown in Fig. 5. From these results, it can be seen that

the saliency map of our method is closer to the ground truth. Further, it can

be also observed that the proposed method completely highlights the salient

object regions, and excels in dealing with various challenging scenarios, including

complex backgrounds (the A and F rows), transparent objects (C row), low-

quality depth maps (the B and H rows), and multiple and small objects (the
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Table 2: Benchmarking results of five traditional methods and nine deep learning-based meth-
ods on six RGB-D saliency datasets. Here, we adopt mean Fβ and mean Eφ [46]. The best
three results are highlighted in red, blue and green. ↑ & ↓ denote larger and smaller is better,
respectively. † denotes the CNN-based RGB-D methods. AR denotes the average ranking of
each method.

Metric
ACSD LBE DCMC MDSF SE DF† AFNet† CTMF† MMCI†

[25] [26] [27] [47] [48] [15] [14] [13] [12]

S
T
E
R
E

[1
6
]

M ↓ 0.200 0.250 0.148 0.176 0.143 0.141 0.075 0.086 0.068
Sα ↑ 0.692 0.660 0.731 0.728 0.708 0.757 0.825 0.848 0.873
Fβ ↑ 0.478 0.501 0.590 0.527 0.610 0.617 0.806 0.758 0.813
Eφ ↑ 0.592 0.601 0.655 0.614 0.665 0.691 0.872 0.841 0.873

N
J
U
2
K
-T

[2
5
]

M ↓ 0.202 0.153 0.172 0.157 0.169 0.141 0.100 0.085 0.079
Sα ↑ 0.699 0.695 0.686 0.748 0.664 0.763 0.772 0.849 0.858
Fβ ↑ 0.512 0.606 0.556 0.628 0.583 0.650 0.764 0.779 0.793
Eφ ↑ 0.593 0.655 0.619 0.677 0.624 0.696 0.826 0.846 0.851

N
L
P
R
-T

[2
4
]

M ↓ 0.179 0.081 0.117 0.095 0.091 0.085 0.058 0.056 0.059
Sα ↑ 0.673 0.762 0.724 0.805 0.756 0.802 0.799 0.860 0.856
Fβ ↑ 0.429 0.736 0.543 0.649 0.624 0.664 0.755 0.740 0.737
Eφ ↑ 0.578 0.719 0.684 0.745 0.742 0.755 0.851 0.840 0.841

D
E
S

[1
8
]

M ↓ 0.169 0.208 0.111 0.122 0.090 0.093 0.068 0.055 0.065
Sα ↑ 0.728 0.703 0.707 0.741 0.741 0.752 0.770 0.863 0.848
Fβ ↑ 0.513 0.576 0.542 0.523 0.617 0.604 0.713 0.756 0.735
Eφ ↑ 0.612 0.649 0.632 0.621 0.707 0.684 0.810 0.826 0.825

S
S
D

[4
0
]

M ↓ 0.203 0.278 0.169 0.192 0.165 0.142 0.118 0.099 0.082
Sα ↑ 0.675 0.621 0.704 0.673 0.675 0.747 0.714 0.776 0.813
Fβ ↑ 0.469 0.489 0.572 0.470 0.564 0.624 0.672 0.689 0.721
Eφ ↑ 0.566 0.574 0.646 0.576 0.631 0.690 0.762 0.796 0.796

S
IP [8
]

M ↓ 0.172 0.200 0.186 0.167 0.164 0.185 0.118 0.139 0.086
Sα ↑ 0.732 0.727 0.683 0.717 0.628 0.653 0.720 0.716 0.833
Fβ ↑ 0.542 0.571 0.499 0.568 0.515 0.464 0.702 0.608 0.771
Eφ ↑ 0.614 0.651 0.598 0.645 0.592 0.565 0.793 0.705 0.845

AR 13.83 12.75 12.92 12.13 12.08 10.88 8.71 8.08 7.17
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Table 3: Continuation of Tab. 2.

Metric
PCF† TANet† CPFP† DMRA† D3Net† MCI-Net
[11] [10] [9] [31] [8] Ours

S
T
E
R
E

[1
6
]

M ↓ 0.064 0.060 0.051 0.047 0.054 0.042
Sα ↑ 0.875 0.871 0.879 0.886 0.891 0.901
Fβ ↑ 0.818 0.828 0.841 0.868 0.844 0.872
Eφ ↑ 0.887 0.893 0.912 0.920 0.908 0.929

N
J
U
2
K
-T

[2
5
]

M ↓ 0.059 0.060 0.053 0.051 0.051 0.050
Sα ↑ 0.877 0.878 0.878 0.886 0.895 0.900
Fβ ↑ 0.840 0.841 0.850 0.873 0.860 0.873
Eφ ↑ 0.895 0.895 0.910 0.920 0.912 0.920

N
L
P
R
-T

[2
4
]

M ↓ 0.044 0.041 0.036 0.031 0.034 0.027
Sα ↑ 0.874 0.886 0.888 0.899 0.906 0.917
Fβ ↑ 0.802 0.819 0.840 0.865 0.853 0.890
Eφ ↑ 0.887 0.902 0.918 0.940 0.923 0.947

D
E
S

[1
8
]

M ↓ 0.049 0.046 0.038 0.030 0.030 0.024
Sα ↑ 0.842 0.858 0.872 0.900 0.904 0.927
Fβ ↑ 0.765 0.790 0.824 0.873 0.859 0.897
Eφ ↑ 0.838 0.863 0.889 0.933 0.909 0.957

S
S
D

[4
0
]

M ↓ 0.062 0.063 0.082 0.058 0.058 0.052
Sα ↑ 0.841 0.839 0.807 0.857 0.866 0.860
Fβ ↑ 0.777 0.773 0.747 0.828 0.818 0.820
Eφ ↑ 0.856 0.861 0.839 0.897 0.887 0.901

S
IP [8
]

M ↓ 0.071 0.075 0.064 0.085 0.063 0.056
Sα ↑ 0.842 0.835 0.850 0.806 0.864 0.867
Fβ ↑ 0.814 0.803 0.821 0.811 0.832 0.840
Eφ ↑ 0.878 0.870 0.893 0.844 0.894 0.909

AR 5.33 5.13 4.13 2.79 2.54 1.08
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Figure 5: Visual comparisons to top nine SOTA methods under different challenging situa-
tions.

E and G rows). The visual comparison further validates the effectiveness and

robustness of our MCI-Net.

In the supplementary experiments, for DUTLF [31], Tab. 4 and Fig. 6

show the quantitative comparison results between our model and several SOTA

methods including DMRA [31], CTMF [13], CPFP [9], TANet [10], PCF [11],

DF [15], DCMC [27], and ACSD [25]. For VT1000 [41], we compare the proposed

model with the SOTA models including SDGL [41], DF [15], CDCP [49] DCMC

[27], SE [48], and ACSD [25]. The quantitative experimental results are shown

in Tab. 5 and Fig. 7. The visual comparison of some challenging scenes is

shown in Fig. 8, which mainly includes typical scenes with small-size, large-size

objects and cluttered backgrounds. From these results, these can be observed

that our model still performs better than all comparison methods and also has

great potential in multi-modal SOD.

4.4. Ablation Study

In order to verify the relative importance and specific contribution of each

component of our proposed model, we use the same network settings as above

for the ablation study.
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Table 4: Quantitative evaluation on the DUTLF [31] dataset. The best results are highlighted
in bold. Here, we adopt mean Fβ and mean Eφ [46]. ↑ & ↓ denote larger and smaller is better,
respectively. † denotes the CNN-based RGB-D methods.

Metric
ACSD DCMC DF† PCF† TANet† CPFP† CTMF† DMRA† MCI-Net

[25] [27] [15] [11] [10] [9] [13] [31] Ours

M ↓ 0.332 0.243 0.145 0.100 0.093 0.099 0.097 0.048 0.039

Sα ↑ 0.361 0.499 0.730 0.801 0.808 0.749 0.831 0.889 0.906

Fβ ↑ 0.106 0.318 0.585 0.741 0.761 0.696 0.747 0.885 0.902

Eφ ↑ 0.432 0.540 0.665 0.821 0.831 0.760 0.810 0.927 0.939
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Figure 6: PR curves and Threshold-F-measure curves (from left to right) of different models
on DUTLF [31].

Table 5: Quantitative evaluation on the VT1000 [41] dataset, in which the mean Fβ and mean
Eφ are used. † denotes the CNN-based method.

Metric
ACSD SE DCMC CDCP DF† SDGL MCI-Net

[25] [48] [27] [49] [15] [41] Ours

M ↓ 0.223 0.121 0.116 0.137 0.116 0.099 0.040

Sα ↑ 0.537 0.684 0.717 0.655 0.703 0.083 0.872

Fβ ↑ 0.279 0.569 0.600 0.534 0.717 0.788 0.837

Eφ ↑ 0.513 0.668 0.692 0.687 0.670 0.795 0.899
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Figure 7: PR curves and Threshold-F-measure curves (from left to right) of our and other
models on VT1000 [41].
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Figure 8: Visual comparison of typical scenes in VT1000 datasets.
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A. HHA-E. To explore the contribution of coding to HHA-E through the

contrast enhancement method, we use RGB images and original depth images

(A1) or RGB images and depth maps directly encoded with HHA (A2) as dif-

ferent input image pairs for testing. Columns A1 and A2 in Tab. 6 show that

HHA-E promotes performance improvement.

B. CMRM vs. MLFM. The effective fusion of cross-modal and multi-level

features is the key to integrating multi-source features. In order to illustrate the

effectiveness of the two proposed modules, we use a general fusion method (i.e.,

directly superimpose two features) to replace the CMRM unit (B1) and MLFM

unit (B2), respectively. From Tab. 6, we observe that CMRM and MLFM

increase the performance of the network in four metrics. This suggests that the

two proposed modules can help our network more accurately distinguish the

salient regions.

C. Multi-level Interactive Integration Strategy. To verify the effec-

tiveness of the proposed multi-level integration strategy, we first conduct a com-

parison experiment by removing the FIM structure (C1). Then, in the top-down

process, we reshape the multi-level features to the same size, and use a simple

fusion strategy to directly connect the corresponding features (C2). Finally, in

the process from right to left, we fuse two adjacent features of different levels

and input them to the next layer of the pyramid (C3). The performance im-

provements are shown Tab. 6, demonstrating the importance of the multi-level

integration strategy for MCI-Net.

D. EPA Loss. We utilize the EPA loss to make the network pay more

attention to the overall structure of the image and mitigate the impact caused

by the uneven distribution of features. Further, we also experimentally tested

the effects of different loss functions, including BCE (D1), wIoU (D2), and

combining the BCE and wIoU loss (D3). From the comparison results in Tab.

6, it can be observed that the EAP loss improves the performance of our MCI-

Net.
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Table 6: Ablation study on RGB-D saliency datasets. The best result in each row is highlighted
in bold.

Metric Ours A1 A2 B1 B2 C1 C2 C3 D1 D2 D3

S
T

E
R

E
[1

6
] M ↓ 0.042 0.050 0.048 0.061 0.068 0.056 0.059 0.059 0.056 0.048 0.045

Sα ↑ 0.901 0.892 0.896 0.867 0.860 0.871 0.868 0.871 0.872 0.885 0.894

Fβ ↑ 0.872 0.862 0.866 0.829 0.822 0.838 0.832 0.833 0.838 0.856 0.868

Eφ ↑ 0.929 0.918 0.923 0.901 0.894 0.906 0.904 0.903 0.909 0.918 0.924

S
S

D
[4

0
] M ↓ 0.052 0.061 0.057 0.082 0.088 0.070 0.075 0.077 0.062 0.056 0.054

Sα ↑ 0.860 0.850 0.854 0.816 0.812 0.827 0.829 0.823 0.850 0.854 0.857

Fβ ↑ 0.820 0.811 0.815 0.783 0.773 0.791 0.797 0.787 0.787 0.790 0.895

Eφ ↑ 0.901 0.899 0.895 0.855 0.848 0.864 0.866 0.861 0.886 0.894 0.897

S
IP

[8
] M ↓ 0.056 0.063 0.059 0.076 0.072 0.072 0.072 0.075 0.066 0.061 0.059

Sα ↑ 0.867 0.856 0.860 0.844 0.834 0.841 0.849 0.848 0.854 0.859 0.863

Fβ ↑ 0.840 0.838 0.839 0.813 0.806 0.825 0.823 0.817 0.821 0.829 0.835

Eφ ↑ 0.909 0.902 0.905 0.867 0.861 0.877 0.872 0.871 0.889 0.893 0.897

5. Conclusion

In this paper, we propose a new SOD framework for RGB-D, termed MCI-

Net. Our MCI-Net includes two key components: a cross-modal feature learn-

ing network and a multi-level interactive integration network. The cross-modal

feature learning network is used to learn high-level features for RGB images and

depth cues, effectively fusing the two sources and exploiting their correlations.

The multi-level interactive integration network can fuse the features of each

level through a bottom-up strategy in a pyramid style, which also propagates

the features of the last convolutional layer back to the previous layers to reduce

the effect of noise and information loss. Experimental results on six challeng-

ing datasets demonstrate that our MCI-Net outperforms 14 SOTA methods,

and the comprehensive ablation study also validates the effectiveness of all key

components.

In future work, the importance and effectiveness of cross-modal features fea-

tures might be worth exploring. In addition, with the development of monocular

depth estimation technology over the past few years [50, 51, 52], we will extend
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our model to other saliency related tasks, such as V-SOD [53], Co-SOD [1], and

camouflaged object detection [54].
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