
Multi-objective Search of Robust Neural Architectures against Multiple
Types of Adversarial Attacks
Jia Liua, Yaochu Jina,∗

aDepartment of Computer Science, University of Surrey, Guildford, GU2 7XH, United Kingdom

A R T I C L E I N F O

Keywords:
multi-objective evolutionary algorithm
adversarial attacks
neural architecture search

A B S T R A C T

Many existing deep learning models are vulnerable to adversarial examples that are imperceptible to
humans. To address this issue, various methods have been proposed to design network architectures
that are robust to one particular type of adversarial attacks. It is practically impossible, however,
to predict beforehand which type of attacks a machine learn model may suffer from. To address
this challenge, we propose to search for deep neural architectures that are robust to five types of
well-known adversarial attacks using a multi-objective evolutionary algorithm. To reduce the com-
putational cost, a normalized error rate of a randomly chosen attack is calculated as the robustness
for each newly generated neural architecture at each generation. All non-dominated network archi-
tectures obtained by the proposed method are then fully trained against randomly chosen adversarial
attacks and tested on two widely used datasets. Our experimental results demonstrate the superiority
of optimized neural architectures found by the proposed approach over state-of-the-art networks that
are widely used in the literature in terms of the classification accuracy under different adversarial
attacks.

1. Introduction
Deep neural networks (DNNs) have been successfully

used to deal with various computer vision tasks, such as im-
age recognition, object detection and segmentation. How-
ever, it is recognized that neural networks are vulnerable
to adversarial attacks. For example, some visually imper-
ceptible perturbations to the images generated by the fast
gradient sign method (FGSM) [1] can completely mislead
the classifiers. Such vulnerability must be fixed before deep
learning models can be adopted in safety-critical applica-
tions. Adversarial training [1] is one main counter-measure,
during which adversarial examples are generated in every
step of training and then are injected into the training dataset.
Nevertheless, adversarial training with FGSM has found to
be ineffective when the adversarial attacks are iterative, such
as the basic iterative method (BIM) [2]. Papernot et al. [3]
adapted defensive distillation to address the DNN’s vulner-
ability to adversarial perturbations. Their method can make
DNNs robust to some adversarial attacks but was shown
later on to be ineffective against optimization-based attacks
such as C&W attacks [4]. Several methods focus on us-
ing an auxiliary tool before feeding images to the classi-
fier, including JPEG compression [5], feature squeezing [6],
defense-GAN [7], and autoencoder-based denoising [8]. How-
ever, these defense techniques lead to shattered gradients or
obfuscated gradients [9], which can be evaded by adaptive
attacks. The research on adversarial robustness has been
facing with an “arms race” between defenders and attack-
ers, i.e., a defense method against a certain attack was soon
evaded by new attacks and vice versa.

Little research has been reported on tackling with ad-
versarial robustness of neural networks from an architec-
tural design perspective. In [10], robust architecture search

∗Corresponding author
ORCID(s):

(RAS) was proposed to search the architectures that are ro-
bust to transferable black-box attacks. The fitness of the
models discovered by RAS is evaluated as the validation ac-
curacy on clean images plus the attack resilience on 2812
adversarial examples. The evolved architecture was shown
to have achieved robust performance without any defense
techniques. However, only black-box attacks are used to
evaluate the robustness of architectures. Based on the one-
shot NAS [11], Guo et al. [12] focused on improving the
network robustness during NAS by employing the projected
gradient descent (PGD) method with seven steps of adver-
sarial training. A family of robust architectures (RobNets)
that are discovered by this approach are more resistant to
white-box and black-box attacks than some handcrafted mod-
els. However, only three operations are used in RobNets
to lift the burden of one-shot NAS-based adversarial train-
ing. In [13], Devaguptapu et al. analyzed the adversarial ro-
bustness of both hand-crafted and NAS-based architectures.
However, their models are trained without any defense tech-
niques and consequently none of the models can perform
well under strong adversarial attacks.

To address the above limitations, this work aims to im-
prove the robustness of DNNs by designing new architec-
tures. A multi-objective evolutionary algorithm taking both
prediction accuracy and robustness into account is employed
to search for neural network architectures that are less sen-
sitive to multiple types of adversarial attacks. The core con-
tributions of this research can be summarized as follows:

• We design a new measure to evaluate the robustness
of neural architectures, which can evaluate the per-
formance under various adversarial attacks including
four white-box attacks and a transferable black-box
attack. The proposed measure uses the overall robust-
ness of the 18 popular hand-crafted networks on five
adversarial attacks as the baseline to quantify the ro-

Jia Liu et al.: Preprint submitted to Elsevier Page 1 of 12

ar
X

iv
:2

10
1.

06
50

7v
1

 [
cs

.L
G

]
 1

6
Ja

n
20

21

DRAFT

(a) original (b) FGSM. (c) BIM (d) PGD (e) FFGSM

Figure 1: Examples of adversarial images generated by different adversarial attacks
for Inception V3 [14]. (a) The original clean image in ImageNet: classified as “giant
panda”; (b) FGSM: classified as “giant panda”; (c) BIM: classified as “standard poodle”;
(d) PGD: classified as “toy poodle”; (e) FFGSM: classified as “giant panda”

bustness against multiple types of adversarial attacks.

• The proposed robustness measure against multiple ad-
versarial attacks is adopted as an objective function in
addition to classification performance on clean data
to guide the multi-objective evolutionary algorithm to
search for robust architectures.

• Extensive empirical studies are performed on CIFAR-
10 and CIFAR-100 datasets to demonstrate the effec-
tiveness of the proposed method.

The rest of this paper is organized as follows. The next
section will briefly introduce the related techniques used in
this work. In Section 3, we detail the proposed approach
to multi-objective robust neural architecture search, includ-
ing a performance measure for assessment of robustness un-
der multiple attacks. Experimental settings are presented in
Section 4, followed by a description of the experimental re-
sults in Section 5. Finally, we draw conclusions and outline
future work in Section 6.

2. Background
This section reviews the background of the present work,

including adversarial attacks, adversarial training and multi-
objective neural architecture search. We begin with an intro-
duction to adversarial example crafting techniques related to
both white-box and black-box attacks, which will be used in
this work.

2.1. Adversarial Attacks
Adversarial attacks refer to methods in which adversaries

deliberately craft imperceptible adversarial examples to mis-
lead the classifier. Adversarial attacks can be grouped into
two categories white-box attacks and black-box attacks, de-
pending on whether information about the classifier is used.
In the following, we focus our discussion on adversarial at-
tacks for image classification.

2.1.1. White-box Attacks
White-box attacks assume that the adversary knows de-

tailed information of the targeted models, including model

architecture, hyper-parameters, gradients, and training data.
In the following, we use X∗ and X denote the adversarial
and clean examples, respectively. Then, ∇X measures the
gradient of the loss function l with respect to X.

Fast Gradient Sign Method (FGSM). It is a one-step
and non-target attack, which generates adversarial examples
by adding perturbations along the direction of the sign of
gradient at each pixel [1]. The generated adversarial exam-
ples can be calculated by

X∗ = X + � ⋅ sign(∇Xl(X, ytrue)) (1)

where � is a hyper-parameter that controls the magnitude of
the disturbance.

Basic Iterative Method (BIM). This is an iterative ver-
sion of FGSM (also called I-FGSM), in each step of which
the pixel values are clipped to a certain range [2]:

X∗
0 = X, (2)

X∗
n+1 = ClipX,�{X∗

n + � ⋅ sign(∇Xl(X∗
n , ytrue))}(3)

where ClipX,�(A) denotes element-wise clipping A, with
Ai,j clipped to the range [Xi,j − �,Xi,j + �], � denotes the
step size, and X∗

n+1 denotes the adversarial example after
n-steps.

Projected Gradient Descent (PGD). The PGD attack
[15], which combines randomized initialization with multi-
step attacks, is one of the strongest adversarial attack against
adversarial training. The adversarial examples generated by
the PGD attack can be expressed as:

X∗
0 = X + (−�, �), (4)

X∗
n+1 = ΠX,�{X∗

n + � ⋅ sign(∇X∗n l(X
∗
n , ytrue))} (5)

where  is a uniform distribution and ΠX,�(B) refers the
projection to B(X, �).

FFGSM. The FFGSM attack [16] is FGSM starting from
a random noise and its step size � is usually larger than �.

X∗
0 = X + (−�, �), (6)

X∗ = ΠX,�{X∗
0 + � ⋅ sign(∇X∗0 l(X

∗
0 , ytrue))} (7)

Fig. 1 illustrates the adversarial examples generated us-
ing the above mentioned methods. After adding the per-
turbations, the images are visually similar and human can

Jia Liu et al.: Preprint submitted to Elsevier Page 2 of 12

DRAFT

recognize that it is a giant panda. But attacks, especially
the strong iterative adversarial attacks like PGD, can mis-
lead the model to make a wrong classification. We employ
the above-mentioned attacks since most of them are fast and
effective. In this work, we do not use C&W attack [4] be-
cause it is so strong that the accuracy of nearly all neural
architectures will become 0. In addition, the C&W attack
is computationally very intensive, making it less suited for
guiding neural architecture search.

2.1.2. Black-box Attacks
In this case, it is assumed that the adversary only knows

the outputs of the model to perform a black-box attack. The
adversaries keep feeding samples into the model and ob-
serve the output to find the relationship between the input
and the output. Compared to white-box attacks, black-box
attacks are more practical in real scenarios because adver-
saries usually do not know the exact model information.
White-box attacks have been found to be transferable to at-
tack black-box models [17]. Such transfer-based attacks do
not rely on model information but need information about
the training data. This data is used to train a fully observable
substitute model, from which adversarial perturbations can
be synthesized. For example, VGG-16 and VGG-19 models
achieve significantly better transferability than other mod-
els for all attacking methods [18]. VGG models are thus a
good starting point for mounting transfer-based black-box
attacks.

2.2. Adversarial Training
Adversarial training (AT) [1] is a widely used technique

to improve the adversarial robustness of deep learning mod-
els. The basic idea of AT is to create and incorporate ad-
versarial samples during the training phase. It was first used
with a gradient-based single-step adversarial attack (FGSM)
[1]. Later, the models trained with FGSM-based adversar-
ial training (FGSM-AT) was found to tend to overfit and
remain vulnerable to stronger attacks such as iterative ad-
versarial attacks (like BIM and PGD). More recently, PGD-
based adversarial training (PGD-AT) [15] has shown to be
able to provide strong adversarial robustness and become
popular for defending strong adversarial attacks. Despite
the effectiveness of PGD-AT, a critical downside of PGD-
AT is that it is time-consuming [19]. In addition to the gra-
dient computation needed to update the network parameters,
each stochastic gradient descent (SGD) iteration requires
multiple gradients computations to produce adversarial im-
ages. For example, the PGD-AT on CIFAR-10 dataset takes
about 80 hours. Furthermore, a recent study [20] conducted
extensive experiments on adversarially trained models and
demonstrated that the performance gain from almost all re-
cently proposed algorithmic modifications to PGD adver-
sarial training is not better than a simple piecewise learning
rate schedule and early stopping to prevent overfitting.

To speed up adversarial training and prevent catastrophic
overfitting, Wong et al. [16] proposed fast adversarial train-
ing (FastAdv) that combines FGSM-AT with random ini-
tialization and its effectiveness is similar to a PGD-based

training. They also employ cyclic learning rates [21] to re-
duce the total number of epochs needed for convergence and
further speed up computations. Although the modification
is simple, the underlying reason for its success remains un-
clear. To further understand FastAdv, Li et al. [22] conduct
experiments to show that the key to the success of FastAdv
does not lie in the avoidance of catastrophic overfitting, but
the retaining of the robustness when catastrophic overfitting
occurs. Then a simple remedy of FastAdv was proposed,
named FastAdv+, making it possible to train it for a large
number of epochs without sacrificing efficiency. They also
proposed FastAdvW, which revisits a previously developed
technique, FGSM-AT as a warmup [23], and combines it
with their training strategy to further improve performance
with a small additional computational overhead. The re-
sulting method obtains better performance compared to the
state-of-the-art approach, PGD-AT [15], while consuming
much less training time.

2.3. Multi-objective Neural Architecture Search
Neural architecture search (NAS) aims to automatically

discover high-performing network architectures within given
search spaces by using an effective search strategy such as
reinforcement learning, evolutionary algorithms (EAs), and
Bayesian optimization. Compared with designing DNNs
manually, NAS methods can search architectures without
using much domain knowledge. Actually, the research on
automated neural network design can be traced back to 1990s,
when EAs were used to evolve the structure of neural net-
works [24], which is known as neuro-evolution. For in-
stance, the NEAT [25] and its variants [26] evolve network
topology along with weights to improve efficiency. More re-
cently, reinforcement learning (RL) was employed to search
network architectures [27, 28], which, however, is often com-
putationally expensive. To improve the search efficiency,
Bayesian optimization frameworks were used for neural ar-
chitecture search, including NASBOT [29], BANANAS [30]
and GP-NAS [31], which use a Gaussian process or an en-
semble meta neural network as a surrogate model to pro-
vide predictive uncertainty estimates for architecture per-
formance. Besides, gradient-based methods like DAS [32],
GNAS [33] and DARTS [34] were developed to accelerate
the search process. However, most of these techniques con-
sider NAS as a single-objective optimization problem, i.e.,
maximizing the classification accuracy, which do not take
other performances into account.

Most recently, several NAS algorithms have been pro-
posed to investigate the multi-objective network architec-
ture search, which typically employed an EA or RL. NEMO
[35] adopts the NSGA-II framework to handle the trade-off
between accuracy and runtime. LEMONADE [36] jointly
maximizes the predictive performance and minimizes the
number of parameters. MONAS [37] considers classifica-
tion accuracy and power consumption as the rewards in RL.
MNasNet [38] also uses the RL approach to search for mo-
bile models with the best trade-offs between accuracy and
latency. They use a customized weighted product method

Jia Liu et al.: Preprint submitted to Elsevier Page 3 of 12

DRAFT

to approximate the Pareto optimal solutions so that the bi-
objective problem is converted into a single objective one.
To optimize FLOPs and accuracy simultaneously, NSGA-II
and multi-objective particle swarm optimization have been
employed in NAS [39, 40, 41]. CARS [42] proposes pNSGA-
III that simultaneously optimizes the number of parameters,
the classification accuracy, and the speed of the accuracy.

Despite the exciting progress, previous work on multi-
objective NAS mainly consider model size, latency, com-
plexity and energy consumption. Not much work on multi-
objective NAS for robustness and resistance of the architec-
tures against the adversarial attacks has been reported.

3. Proposed Method
DNNs are found vulnerable to adversarial attacks, and a

model may have better performance on an attack but worse
performance on another. To discover architectures that are
less sensitive to multiple types of adversarial attacks, one
intuitive approach is to consider the success rate of differ-
ent attacks as multiple objectives. However, if the robust-
ness to each type of attacks is considered as one objective,
the optimization task may become unnecessarily complex.
Another more practical approach is to integrate the perfor-
mance measures for different attacks into one single objec-
tive that can represent the overall robustness. Unfortunately,
it is already very time-consuming to train a neural architec-
ture to evaluate its performance in the presence of one type
of attacks only. Training architectures in the presence of a
large number of adversarial attacks will make performance
evaluations in NAS computationally prohibitive.

To address the above challenges, we propose an algo-
rithm for multi-objective search for robust architectures, termed
MORAS in short. MORAS is designed to search for neu-
ral architectures that are less sensitive to different white-
box and black-box adversarial attacks. We randomly select
one attack among four white-box adversarial attacks and
one transferable black-box adversarial attack that generates
adversarial examples by attacking VGG-19 using FGSM.
Then we propose a measure for the robustness performance
of a neural architecture in the presence of different types of
attacks. Details of the proposed robustness measure will be
presented in Section 3.2.

In the following, we will elaborate on the main com-
ponents of the proposed algorithm. We start with the en-
coding strategy, followed by a description of the objective
functions, in particular of a robustness measure we propose.
Lastly, we will describe the overall framework of the pro-
posed algorithm.

3.1. Encoding
An efficient encoding strategy and a proper search space

are of great importance for the performance of NAS. There
are three commonly used search spaces in NAS research
[43], i.e., global search space, micro or cell-based search
space, and hierarchical search spaces. In the global search
space, the number of layers, the type of operation, and hyper-
parameters can be explored [44, 45, 46]. Arbitrary net-

works can be generated in such spaces, and consequently the
search space may be very large. To alleviate this problem,
numerous recent algorithms [47, 34] make use of good cells
already discovered in the literature instead of using wild
basic operators. Similar to the repeated patterns in hand-
crafted structures, in a micro or cell-based search space, a
NAS algorithm only needs to search for the internal struc-
ture of the cell, since the cells connect in a predefined way.
Such reduced spaces can simplify the search process and
improve the search efficiency. For example, RobNets [12]
adopt a cell-based search space, in which the candidate op-
erations consist of only 3×3 separable convolution, identity,
and zero without restricting the maximal number of opera-
tions between two intermediate nodes to be one. The hier-
archical search space proposed in [48, 38] aims to keep a
balance between the macro search and micro search, while
RAS [10] uses multiple populations (thus hierarchical search
spaces) composed of layer population, block population and
model population.

In this work, we employ the cell-based search space con-
sisting of normal and reduction cells as proposed by Zoph et
al. [47], which has been commonly used in recent years. In
this cell-based search space, each cell consists of np nodes.
The first two nodes are the inputs from the previous cells in
the hyper-architecture. Each of the rest nodes contains two
edges as inputs, such that each cell forms a connected DAG.
Each edge can take one of predefined operations, including
3×3max pooling, 3×3 average pooling, identity, 3×3, 5×5
and 7×7 separable convolutions, and 3×3 and 5×5 dilated
separable convolutions. Then the normal and reduction cells
are stacked together to build the overall architecture.

The encoding method adopted in this work is the same
as the one in [40] and a diagram of the encoding strategy is
presented in Fig. 2. Each node receives information from
two other nodes. Take the node B = 4 as an example, each
individual is composed of 4 × 2 × 2 × 2 = 32 decision vari-
ables. As shown in Fig. 2, Xi represents an individual, the
first 16 bits represent the genes in a normal cell, and the rest
16 bits represent the genes in a reduction cell. The chromo-
some for each cell is divided into four segments, each con-
sisting of four bits. The first and third bits in blue indicate
which operations are to be performed, and second and fourth
bits in red denote which nodes this node are connected to.
Taking a normal cell as an example, which is coded by the
first segment ‘[(0, 0), (5, 1)]’, which means that the two in-
puts of node 2 are nodes 0 and 1, and operations ‘max_3x3’
and ‘dil_3x3’ are applied to nodes 0 and 1, respectively. The
resulting features then added to be the output of the node.
The nodes that are not connected to other nodes in the same
cell, here nodes 2, 4, and 5, are then concatenated as the
output of the entire cell.

3.2. Objective Functions
The objective functions are presented as following.

min ∶ F (X) = {f1, f2} (8)

Jia Liu et al.: Preprint submitted to Elsevier Page 4 of 12

DRAFT

4

2

5

30

1

h[i+1] concat
max_3x3

0

1

3

2

5

4

concat h[i+1]

[(0, 0), (5, 1)]

[(7, 0), (4, 0)]

[(0, 3), (5, 1)]

[(0, 0), (0, 0)]

[(8, 0), (1, 0)]

[(7, 1), (2, 0)]

[(8, 2), (0, 2)]

[(6, 3), (7, 0)]

[('max_3x3', 0), ('dil_3x3', 1)]

[('sep_7x7', 0), ('sep_5x5', 0)]

[('max_3x3', 3), ('dil_3x3', 1)]

[('max_3x3', 0), ('max_3x3', 0)]

[(‘7x1_1x7', 0), ('avg_3x3', 0)]

[('sep_7x7’, 1), (identity', 0)]

[('7x1_1x7', 2), ('max_3x3', 2)]

[('dil_5x5', 3), ('sep_7x7', 0)]

avg_3x3

Operations

0: max_3x3

1: avg_3x3

2: identity

3: sep_3x3

4: sep_5x5

5: dil_3x3

6: dil_5x5

7: sep_7x7

8: 7x1_1x7

X
i 0 0 5 1 7 0 4 0 0 3 5 1 0 0 0 0 8 0 1 0 7 1 2 0 8 2 0 2 6 3 7 0

Normal cell Reduction cell

2

3

4

5

2

3

4

5

Figure 2: An example of the encoding strategy

3.2.1. Performance evaluation on Clean Examples
In MORAS, we use the error rate as the measure to eval-

uate the performance of the architectures on a clean data
without any attacks, which is f1 of the multi-objective evo-
lutionary algorithm:

f1 = Errclean = 1 − (
1
N

∑

I(ŷ == y)) × 100% (9)

where Errclean is the error rate on the original clean exam-
ples, N is the number of examples, y is the true label, and
ŷ is the predicted output. I is an indicator function, which
outputs 1 if its input is true; otherwise, 0.

3.2.2. Robustness against Adversarial Attacks
Most existing work on search for robust neural archi-

tectures considers the robustness against one particular type
of attacks. One reason is that it will be extremely time-
consuming if we evaluate the performance of neural archi-
tectures under multiple types of adversarial attacks during
the NAS. Neither is it very practical to the treat the perfor-
mance of a model under one particular type of attacks as one
separate objective. To computationally efficiently assess the
robustness of neural architectures against multiple types of
attacks during evolutionary NAS, one type of attacks will be
randomly selected for each neural architecture so that over
the generations, an evolving neural architecture will be as-
sessed under various types of attacks.

Note, however, that the ranges of the robustness values
under various types of attacks may be very different. To reli-
ably assess the overall robustness performance and to fairly
compare the performance of different architectures that are
trained using different types of adversarial samples within
one generation, we normalize the robustness values using
the mean and variance of the robustness values obtained
on 18 hand-crafted neural networks before the evolutionary
NAS starts. Thus, the robustness of a neural architecture un-
der one type of adversarial attacks is calculated as follows,
which is used as the second objective function in the evolu-
tionary NAS:

f2 =
Errad − �i

�i
(10)

Errad = 1 − (1
N

∑

I(ŷa == y)) × 100 (11)

where Errad the error rate on adversarial examples gener-
ated from a randomly selected type of adversarial attack,
ŷa is the predicted output, �i and �i are the mean and the
standard deviation of the error rate of different baseline ar-
chitectures on the i-th adversarial attack.

3.3. Overall Framework
The two objectives previous defined are conflicting with

each other and cannot be optimization simultaneously. There-
fore, In this work, we employ a popular multi-objective evo-
lutionary algorithm, namely the elitist non-dominated sort-
ing genetic algorithm (NSGA-II) [49], to search for archi-
tectures that trade off between accuracy and robustness.

Algorithm 1 The Framework of the proposed MORAS
Input: The population size N , the maximal generation number G
Output: The non-dominated solutions in  after final adversarial training
1: Initialization: Set  = Φ, generate N parent individuals P0 randomly

with the gene encoding strategy, and evaluate each individual by using
the proposed evaluation approach

2: for t = 0 to G do
3: Crossover and mutation: Generate N offspring Qt through SBX

and PM
4: Evaluation: Calculate the fitness value f1 and f2 by using the

proposed evaluation approach
5: Merge: Rt = Pt ∪Qt
6: for each individual in Rt do
7: Do non-dominated sorting and calculate crowding distance
8: Select N high-ranking solutions from Rt
9: end for

10: Update Pt
11: Update  with the individual in the global first non-dominated

rank
12: end for
13: Final training: Decode the non-dominated solutions from ℙ for the

final deep adversarial training;
14: return The trained architectures

As presented in Algorithm 1, MORAS starts with ran-
domly generating an initial population P0 of size N with
the given genetic encoding strategy (line 1) as described in
Section 3.1. An archive  , which is used to keep the global
non-dominated solutions, is set to an empty set Φ initially.

Jia Liu et al.: Preprint submitted to Elsevier Page 5 of 12

DRAFT

Algorithm 2 Performance Evaluation in MORAS
Input: The individual list Pt of size N , training epoch T , batch
size M , training set 1, validation set 2, the averaged error rate
�=(�1, �2,… , �5), the standard deviation �=(�1, �2,… , �5)
Output: The population Pt with fitness f1 and f2
1: for n = 1 to N do
2: Decoding: Decode the individual P nt with decoding strategy to

obtain a network model Mn
3: for j = 1 to T do
4: //Fast Adversarial training: Train Mn on 1 using FastAdv
5: for i = 1 to M do
6: � = Uiform(-�,�)
7: � = � + � ⋅ sign(∇�l(f�(xi + �), yi))
8: � = max(min(�, �),−�)
9: � = � - ∇�l(f�(xi + �), yi)

10: end for
11: end for
12: //Validation:
13: f n1 ← Test Mn on 2 to get the f n1 according to Eq. (9)
14: f n2 ← Randomly generate an integer i from 0 to 5. Select the ith

adversarial attack in {FGSM, BIM, PGD, FFGSM, FGSM-B}
Generate adversarial examples  by using the selected attack
Test Mn on  to get the error rate according to Eq. (11)
Use the corresponding �i and �i to calculate f n2 as Eq. (10)

15: end for
16: return Pt with f1 and f2

All individuals in population P0 are evaluated using the two
objective functions, as detailed in Algorithm 2. The evolu-
tionary process contains five steps (lines 3-9). Specifically,
an offspring population is created by applying the simulated
binary crossover (SBX) and polynomial mutation (PM) [50]
to the parents. This procedure repeats until N offspring are
generated. The offspring population (Qt) is then combined
with the parent population (Pt) to form a combined popula-
tion Rt. The fast non-dominated sorting is then applied on
Rt to sort the individuals into a number of non-dominated
fronts, in which the non-dominated solutions are ranked on
the first front. A crowding distance is then calculated for
solutions on the same front and then they are ranked in a de-
scending order according to the crowding distance. Finally,
the better half Rt will be selected as the parent of the next
generation Pt+1.

Once the evolutionary search is completed, all non-dominated
solutions in  are decoded to network architectures for com-
plete deep training (line 13). This is because the training of
individuals during the evolutionary process is often not suf-
ficient due to a small number of epochs and a part of dataset
for acceleration [51].

To further help understand the proposed algorithm, a di-
agram of MORAS is provided in Fig. 3.

4. Experiments
To evaluate the performance of MORAS, we carry out

experiments on two image classification tasks. In the fol-
lowing, we give a brief description of the used datasets, fol-
lowed by an introduction of the manually designed CNNs as
baselines for comparisons. Finally, the parameter settings of
the proposed algorithm and the algorithms under compari-
son are presented.

Table 1
Basic parameter configuration for various adversarial attacks

Attacks � � Iteration
FGSM 8/255 - -
BIM 8/255 2/255 7
PGD 8/255 2/255 7

FFGSM 8/255 12/255 -
Blk-FGSM 0.007 - -

4.1. Datasets
We consider CIFAR-10 [52] and CIFAR-100 [53] datasets

as the classification tasks. CIFAR-10 and CIFAR-100 are
labelled datasets which contain 10 and 100 classes, respec-
tively. Both of them consist of a total number of 60,000
32 × 32 pixel images. Therein, 50,000 images form the
training set and the rest form the test set. Since it is time-
consuming to train all the architectures on the full training
set, we use only 24% of the full training images during the
architecture search process to improve the efficiency of the
search. Specifically, during the search process, 10,000 im-
ages are used as the training set and 2000 as the validation
set to estimate the performance. After evolution, all the
architectures decoded from the global non-dominated solu-
tions are re-trained using full 50,000 training images.

4.2. Baseline Networks
To estimate � and � in Eq. (10), we train five types of

popular hand-crafted CNNs as the baselines. The architec-
tures of the baselines and the 18 specific networks are as
follows. VGG-11/13 [54], ResNet-18/34/50/101/152 [55],
WideResNet-34, WideResNet-50-2/101-2 [56], ResNeXt-
50 [57], PreAct ResNet-18 [58], DenseNet-121 [59], MobileNet-
V2 [60], and ShuffleNet-V2-0.5×/1×/1.5×/2× [61].

4.3. Parameter Settings
The parameter settings of the experimental studies are

divided into four parts as described below.

4.3.1. Network architecture
We follow the same convolutional search space defined

by [34]. We set the number of phases np to three and the
number of nodes in each phase no to seven. In most re-
search, no is set to four or five to reduce the computation
burden. However, it is of significance to explore the robust-
ness of architectures in a larger search space. The operation
types are listed in Fig. 2. We also fix the spatial resolution
changes scheme similar to those in [47], in which a max-
pooling with stride 2 is placed after the first and the sec-
ond phases, and a global average pooling layer after the last
phase. We set the number of filters (channels) in all node to
24 for each one of the generated network architecture.

4.3.2. Adversarial attacks
The parameter settings of different adversarial attacks,

including FGSM, BIM, PGD, FFGSM, Blk-FGSM, are listed
in Table 1. We set the perturbation value � and step size � as
in their original paper. However, we set the attack iterations

Jia Liu et al.: Preprint submitted to Elsevier Page 6 of 12

DRAFT

Offspring Qt

Mutation

f
1

f
2

Evaluator

Environmental selection

Crossover

Initialization P0

5 0 … 2 1

Validation set Training set

Train model Mn using

fast adversarial training

decoding

Mn

Mn

Attack

Mn

Qt

Pt

Non-dominated
sorting

Crowding
distance sorting

Rejected

Pt+1

F2

F1

F3

EvaluationEvaluation

Update S

Final adversarial training

Terminate?

Yes

No

All solutions in S

decoding

Net-1, Net-2, …

Full training set

Fully trained

Models

Figure 3: A framework for multi-objective robust architecture search.

to a small number so that the accuracy will not be close to
0. We use the torchattacks library provided by [62] for all
the adversarial attacks in our experiments.

4.3.3. Evolutionary search
Although we do not use the full dataset during search-

ing, it is still highly time-consuming to evaluate an individ-
ual. So we use a relatively small population size 30 and the
generation is set to 50. Hence, the total number of searched
architectures in each compared algorithm is 1,500. The ini-
tial population is generated by uniform random sampling.
The probabilities for crossover and mutation are set to 0.9
and 0.02, respectively.

4.3.4. Training process
During architecture search, we train each architecture on

a subset of the training data for 15 epochs. The batch size is
128. All architectures are trained using FastAdv [16] and a
cyclic learning rate [21], which schedules the learning rate
linearly from zero to a predefined maximum learning rate
and back down to zero. Using a cyclic learning rate allows
the architectures to converge to the benchmark accuracies
in tens of epochs instead of hundreds. The maximum learn-
ing rates are set to 0.2 and 0.05 for CIFAR-10 and CIFAR-
100, respectively. After obtaining the non-dominated solu-
tions, we decode them and train the obtained networks on
the whole training set for 30 epochs.

4.4. Compared algorithms
To valid the performance of the MORAS, we compare

the proposed algorithm with the following two variants:

• Instead of evaluating the robustness on multiple types
of attacks, the robustness on adversarial examples gen-
erated from one white-box attack only, FGSM is max-
imized together with the performance on clean data.
All other settings are the same as the proposed algo-
rithm. The neural architectures decoded from the ob-

tained non-dominated solutions are named MORNet-
F.

• A single-objective genetic algorithm for neural archi-
tecture search to maximize the performance on clean
images. The obtained best architecture is named SGANet.

For fair comparisons, we train all network architectures found
by the compared algorithms in the same way as described in
Subsection 4.3.4.

5. Experimental Results
We present the evaluation results on CIFAR-10 in Sec-

tion 5.1, and CIFAR-100 in Section 5.2. In all experiments,
each individual is trained for 15 epochs on a subset of the
training data. Thereafter, individuals are evaluated based on
the objective functions. The non-dominated solutions are
stored in an external archive. The non-dominated solutions
obtained after 50 generations present a set of trade-off so-
lutions between accuracy and robustness. The performance
of the architectures obtained by the proposed approach are
then compared to those obtained in Section 5.3.

Hypervolume (HV) [63] is used as the performance indi-
cator to assess the convergence property of the multi-objective
search algorithms. The larger the HV value is, the better the
performance. The reference point for calculating the hy-
pervolume is set to (1.1 × max(f1), 1.1 × max(f2)) in all
experiments.

5.1. Performance of MORNet on CIFAR-10
The search results of the proposed MORAS are pre-

sented in Fig. 4. From Fig. 4(a), it can be observed that hy-
pervolume values increase during the evolutionary process.
Fig. 4(b) shows the non-dominated solutions in the objec-
tive space obtained in the first and last generation, which
are denoted by blue circles and red circles, respectively. We

Jia Liu et al.: Preprint submitted to Elsevier Page 7 of 12

DRAFT

Table 2
Standard and robust performance of the searched solutions on CIFAR-10. We compare
the non-dominated solutions obtained by the competitors. All models are adversarially
trained using FastAdv for 30 epochs. The training hyper-parameters are the same for
all models. The parameters of adversarial attacks are set the same as Table 1. For all
items, larger is better; best results are highlighted in bold.

Networks Clean (%) FGSM (%) BIM (%) PGD (%) FFGSM (%) Blk-FGSM (%) Robustness
MORNet-V1-1 83.86 40.24 73.79 37.72 38.03 42.80 -0.11
MORNet-V1-2 83.29 38.55 73.56 36.21 36.59 40.93 -20.42
MORNet-V1-3 84.10 42.55 74.40 39.71 40.11 45.02 27.73
MORNet-V1-4 84.24 41.00 74.77 38.28 38.70 43.35 10.69
MORNet-F1-1 81.52 40.48 72.19 37.89 38.22 43.18 -2.29
MORNet-F1-2 81.96 39.73 72.14 37.33 37.61 42.50 -10.28
MORNet-F1-3 83.32 40.72 73.68 37.90 38.26 43.38 3.95

SGANet 83.58 39.47 73.58 36.97 37.39 42.14 -9.27

0 5 10 15 20 25 30 35 40 45 50

Generation

10

20

30

40

50

H
y

p
er

v
o

lu
m

e

HV

(a) The HV values of MORAS over the generations on
CIFAR-10.

25 30 35 40 45 50

f
1

-0.4

-0.2

0

0.2

0.4

0.6

f 2

Gen=1

Gen=50

(b) Non-dominated solutions found by MORAS.

Figure 4: The results of MORAS on CIFAR-10.

sort the four non-dominated solutions in the final genera-
tion in an ascending order according to their f2 values and
denote them as MORNet-V1-1, MORNet-V1-2, MORNet-
V1-3, MORNet-V1-4.

After the multi-objective robust architecture search pro-
cess, we train the searched MORNets using FastAdv [16]
for 30 epochs on the full training dataset. To show the ad-
vantages of the proposed MORAS over the compared ap-
proaches, we present their test results on the clean test set
and different adversarial attacks in Table 2. Specifically, Ta-
ble 2 is divided into eight columns: the first column shows

the names of the compared algorithms; the second column
shows the classification accuracy (%) of different architec-
tures on the clean test set, the third to sixth columns denote
the classification accuracy on white-box adversarial attacks
(FGSM, BIM, PGD, and FFGSM), the performance of dif-
ferent models on the black-box adversarial attack is listed
in the seventh column. In addition, the last column shows
the robustness of the models against the above-mentioned
attacks. The best results are highlighted in bold.

As can be clearly seen from the second column in Table
2, on the clean test set, MORNet-V1-4 achieves 84.24% ac-
curacy and performs best among all the architectures. MORNet-
V1-3 and MORNet-V1-3, which achieve 84.1% and 83.86%,
respectively, still outperform MORNets and SGANet on the
original test set.

Under adversarial attacks, MORNet-V1-3 outperforms
other models under comparison on FGSM, PGD, FFGSM,
and Blk-FGSM. MORNet-V1-4 achieve the best results against
BIM and second-best results against FGSM, PGD and FFGSM.

To take a closer look, we calculate the robustness of
each architecture according to the method proposed in [64]
so that we can clearly compare the performance of various
architectures on different adversarial attacks. The robust-
ness is measured based on the classification accuracy under
five adversarial attacks. From the results presented in the
last column in Table 2, we can see that the robust values of
the proposed MORNet-V1-3 and MORNet-V1-4 are higher
than all competitors. Therefore, these result demonstrate the
effectiveness of the proposed approach. The obtained nor-
mal cell and reduction cell of MORNet-V1-4 architectures
are visualized in Fig. 5.

5.2. Performance of MORNet on CIFAR-100
We show the search results of the proposed MORAS

on CIFAR-100 in Fig. 6. From Fig. 6(a), it can be ob-
served that hypervolume values increase during evolution.
Fig. 6(b) shows the non-dominated solutions in the objec-
tive space obtained in the first and last generations. The
four non-dominated solutions obtained in the final genera-
tion, which are sorted in an ascending order according to f2

Jia Liu et al.: Preprint submitted to Elsevier Page 8 of 12

DRAFT

Table 3
Standard and robust performance of the searched solutions on CIFAR-100. We com-
pare the non-dominated solutions obtained by the compared algorithms. All models are
adversarially trained using FastAdv for 30 epochs. The training hyper-parameters are
the same for all models. All parameters of adversarial attacks are set the same as those
in Table 1. For all items, larger is better; the best results are highlighted in bold.

Networks Clean (%) FGSM (%) BIM (%) PGD (%) FFGSM (%) Blk-FGSM (%) Robustness
MORNet-V2-1 59.84 18.28 44.17 16.09 16.46 19.98 7.71
MORNet-V2-2 58.83 18.00 43.45 16.13 16.31 19.74 4.51
MORNet-V2-3 59.82 17.66 43.86 15.49 15.80 19.38 1.09
MORNet-V2-4 60.02 18.92 44.52 16.40 16.78 20.85 13.62
MORNet-F2-1 56.77 16.90 42.63 15.05 15.31 18.48 -7.98
MORNet-F2-2 57.34 16.71 42.21 14.69 15.04 18.13 -11.76

SGANet 59.66 17.05 43.49 14.67 14.93 18.57 -7.17

������

���

	
��
�

���	
�����

���
�������

��
�����

���
	
�����

�������

����

����������

	
�����

���

	
�����

	
�����

	
�����

���
�������

�������

	
�����

������ ������

(a) Normal Cell

������

�����	
���

��	
���

���
��	
���

���� ���
��
��

���

�

��	
���

������
���

������

������
���

��	
���

���

���

�

������
���

���
���

��������

��������
������

(b) Reduction Cell

Figure 5: Normal and reduction convolutional cell architec-
tures found by MORAS on CIFAR-10 dataset.

values, are referred to as MORNet-V2-1, MORNet-V2-2,
MORNet-V2-3, MORNet-V2-4.

The training procedure is similar to that on CIFAR-10.
Table 3 shows the performance on the clean test set and dif-
ferent adversarial attacks. The best results are highlighted
in bold.

It can be observed that on the clean test set, MORNet-
V2-4 achieves 60.02% accuracy and performs the best among
all the architectures. MORNet-V2-1 and MORNet-V2-3
also outperform MORNet-F2-1, MORNet-F2-2 and SGANet
with regards to the accuracy on the clean data.

Remarkably, our MORNet-V2-4 achieves highest robust
accuracy among peer competitors on all adversarial attacks.
From the results in the last column in Table 3, we can see
that the robustness values of MORNet-V2-1, MORNet-V2-
2, MORNet-V2-3 and MORNet-V2-4 are positive and larger
than that of MORNet-F2-1, MORNet-F2-2 and SGANet, in-
dicating that the proposed MORAS is effective in search for
robust architectures. The normal cell and reduction cell of
MORNet-V2-4 architectures are visualized in Fig. 7.

5.3. Comparison with existing robust
architectures

In the above experiments, we use FastAdv [16] to train
all the architectures with a small number of epochs to reduce
the evaluation cost. In this section, we compare the archi-
tectures having the highest robustness value in the proposed
MORAS family with the following networks: the widely
used PreAct ResNet-18 [58] and WideResNet-34 [56] in
adversarial literature; RobNet [12], which is obtained from
one-shot NAS with PGD-AT. We use FastAdv+ [22] to train
the models for 200 epochs and the learning curves on CIFAR-
10 and CIFAR-100 are shown in Fig. 8. Table 4 shows
the performance of and the robust architectures obtained by
MORAS on the CIFAR-10 and CIFAR-100 datasets. Note
that the results of RobNet in Table 4 are extracted from [12].

In addition to the four white-box adversarial attacks and
a transferable black-box adversarial attack, we also test these
architectures on PGD-10/20/50, which are the PGD attacker
with 10, 20 and 50 attack iterations. Although PGD with a
larger iteration number means a stronger adversary, the per-
formance of the above models remains stable as the number
of iteration increases.

As shown in Table 4, the performance of the architec-
tures obtained by MORAS outperforms the compared ex-
isting robust networks under the attack of FGSM, PGD-
7/10/20/50, FFGSM and Blk-FGSM on both CIFAR-10 and
CIFAR-100 datasets. Although our architectures did not
achieve higher accuracy than PreAct ResNet-18 on the clean
dataset, they produce satisfying accuracies compared to Wide
ResNet-34 and RobNet-free.

6. Conclusions and Future Work
Deep neural networks are vulnerable to adversarial ex-

amples, which becomes one of the most important research
topics in deep learning. While most existing work consid-
ers the robustness of neural networks on one single type of
attacks, this paper proposes a multi-objective evolutionary
approach to discover neural architectures that are relatively
insensitive to multiple types of adversarial attacks. To re-
duce the computing budget during the search, we randomly
select one type of attacks from four widely used white-box

Jia Liu et al.: Preprint submitted to Elsevier Page 9 of 12

DRAFT

0 5 10 15 20 25 30 35 40 45 50

Generation

20

40

60

80

100

120

H
y
p
er

v
o
lu

m
e

HV

(a) The HV values of MORAS over the generations on
CIFAR-100.

65 70 75 80

f
1

-4

-2

0

2

f 2

Gen=1

Gen=50

(b) Non-dominated solutions obtained by MORAS.

Figure 6: The results of MORAS on CIFAR-100

Table 4
Performance of networks on CIFAR-10 and CIFAR-100. We compare the best MORNet
models with the state-of-the-art architectures. The results of RobNets are extracted
from [12], and other models are adversarially trained using FastAdv+ [22].

Datasets Models Clean (%) FGSM (%) BIM (%) PGD-7 (%) PGD-10 (%) PGD-20 (%) PGD-50 (%) FFGSM (%) Blk-FGSM (%)

CIFAR-10

PreAct ResNet-18 83.54 55.50 67.89 48.47 48.45 48.43 48.43 48.47 59.05
WideResNet-34 86.52 53.57 67.65 47.10 47.10 47.10 46.90 47.10 56.75

RobNet-free 82.79 58.38 - - - 52.74 52.57 - 65.06
Ours 82.82 59.42 66.18 58.56 58.44 58.42 58.41 58.87 66.20

CIFAR-100
PreAct ResNet-18 60.78 30.35 47.51 28.63 28.04 28.02 28.01 28.30 31.50
WideResNet-34 60.57 30.84 44.93 29.53 29.11 28.61 28.61 29.34 32.94

Ours 59.98 35.72 42.24 35.02 34.55 34.56 34.56 35.11 41.59

������

���

	�
��
�

���

���

���

	�
��
�

��������

���

�����
�
���

��������

����

�����
�

��������
���

��������

������

�����
�
���

����

���

	�
��
�

����

������

(a) Normal Cell

������

���

�	
��
�

��������
�

�����
�

���

��
��
�

����
�����
�

�
���
�

���
�����
�

����	
��
�

��
��
�

���

�	
��
�

�����
�

���

�����
�

�
���
�

��������

������ ������

(b) Reduction Cell

Figure 7: Normal and reduction convolutional cell architec-
tures found by MORAS on CIFAR-100 dataset.

adversarial attacks and a transferable black-box adversarial
attack, instead of averaging over all types of attacks. Our re-
sults demonstrate that the proposed algorithm achieves the
best overall performance against different types of attacks
among all compared methods on the CIFAR-10 and CIFAR-

100 datasets, confirming the effectiveness of the proposed
algorithm.

A few limitations remain to be addressed. For exam-
ple, it is still very time-consuming to train all the offspring
architectures to obtain their fitness values during the evolu-
tionary search process. Thus, our future work will inves-
tigate computationally more efficient methods for evalua-
tion of the robustness against multiple attacks. Besides, this
work uses the same operations as those in DARTS, which
may limit the overall robustness of the searched architec-
tures. It is of interest to explore more effective operations to
defend against various types of adversarial attacks. Finally,
it is worth exploring more efficient and effective adversarial
training methods for various NAS search spaces.

References
[1] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing

adversarial examples, in: International Conference on Learning Rep-
resentations, 2015.

[2] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the
physical world, arXiv preprint arXiv:1607.02533 (2016).

[3] N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami, Distillation as
a defense to adversarial perturbations against deep neural networks,
in: 2016 IEEE Symposium on Security and Privacy (SP), IEEE, 2016,
pp. 582–597.

[4] N. Carlini, D. Wagner, Defensive distillation is not robust to adver-
sarial examples, arXiv preprint arXiv:1607.04311 (2016).

[5] G. K. Dziugaite, Z. Ghahramani, D. M. Roy, A study of the ef-
fect of JPG compression on adversarial images, arXiv preprint
arXiv:1608.00853 (2016).

[6] W. Xu, D. Evans, Y. Qi, Feature squeezing: Detecting adversarial

Jia Liu et al.: Preprint submitted to Elsevier Page 10 of 12

DRAFT

0 50 100 150 200

Training Epochs

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
 (

%
)

Train Acc on clean data

Train Acc on PGD-10

Valid Acc on clean data

Valid Acc on PGD-10

(a) CIFAR-10

0 50 100 150 200

Training Epochs

0

0.2

0.4

0.6

0.8

A
cc

u
ra

cy
 (

%
)

Train Acc on clean data

Train Acc on PGD-10

Valid Acc on clean data

Valid Acc on PGD-10

(b) CIFAR-100

Figure 8: Learning curves for FastAdv+ adversarial training
plotting the accuracy.

examples in deep neural networks, arXiv preprint arXiv:1704.01155
(2017).

[7] P. Samangouei, M. Kabkab, R. Chellappa, Defense-GAN: Protecting
classifiers against adversarial attacks using generative models, in:
International Conference on Learning Representations, 2018.

[8] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, J. Zhu, Defense against
adversarial attacks using high-level representation guided denoiser,
in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1778–1787.

[9] A. Athalye, N. Carlini, D. Wagner, Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples,
in: International Conference on Machine Learning, 2018, pp. 274–
283.

[10] D. V. Vargas, S. Kotyan, Evolving robust neural architectures to
defend from adversarial attacks, arXiv preprint arXiv:1906.11667
(2019).

[11] H. Cai, C. Gan, S. Han, Once for all: Train one network and spe-
cialize it for efficient deployment, arXiv preprint arXiv:1908.09791
(2019).

[12] M. Guo, Y. Yang, R. Xu, Z. Liu, D. Lin, When NAS meets robust-
ness: In search of robust architectures against adversarial attacks, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 631–640.

[13] C. Devaguptapu, D. Agarwal, G. Mittal, V. N. Balasubramanian,
On adversarial robustness: A neural architecture search perspective,
2020. arXiv:2007.08428.

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking
the inception architecture for computer vision, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 2818–2826.
[15] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards

deep learning models resistant to adversarial attacks, in: International
Conference on Learning Representations, 2018.

[16] E. Wong, L. Rice, J. Z. Kolter, Fast is better than free: Revisiting
adversarial training, in: International Conference on Learning Rep-
resentations, 2020.

[17] N. Papernot, P. McDaniel, I. Goodfellow, Transferability in machine
learning: from phenomena to black-box attacks using adversarial
samples, arXiv preprint arXiv:1605.07277 (2016).

[18] D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, Y. Gao, Is robustness
the cost of accuracy?–A comprehensive study on the robustness of 18
deep image classification models, in: Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 631–648.

[19] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,
L. S. Davis, G. Taylor, T. Goldstein, Adversarial training for free!,
in: Advances in Neural Information Processing Systems, 2019, pp.
3358–3369.

[20] L. Rice, E. Wong, Z. Kolter, Overfitting in adversarially robust deep
learning, in: International Conference on Machine Learning, PMLR,
2020, pp. 8093–8104.

[21] L. N. Smith, N. Topin, Super-convergence: Very fast training of
neural networks using large learning rates, in: Artificial Intelligence
and Machine Learning for Multi-Domain Operations Applications,
volume 11006, International Society for Optics and Photonics, 2019,
p. 1100612.

[22] B. Li, S. Wang, S. Jana, L. Carin, Towards understanding fast adver-
sarial training, arXiv preprint arXiv:2006.03089 (2020).

[23] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, Q. Gu, On the convergence
and robustness of adversarial training, in: Proceedings of the 36th In-
ternational Conference on Machine Learning, 2019, pp. 6586–6595.

[24] J. D. Schaffer, D. Whitley, L. J. Eshelman, Combinations of genetic
algorithms and neural networks: a survey of the state of the art, in:
[Proceedings] COGANN-92: International Workshop on Combina-
tions of Genetic Algorithms and Neural Networks, 1992, pp. 1–37.

[25] K. O. Stanley, R. Miikkulainen, Evolving neural networks through
augmenting topologies, Evolutionary Computation 10 (2002) 99–
127.

[26] K. O. Stanley, D. B. D’Ambrosio, J. Gauci, A hypercube-based en-
coding for evolving large-scale neural networks, Artificial Life 15
(2009) 185–212.

[27] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural net-
work architectures using reinforcement learning, arXiv preprint
arXiv:1611.02167 (2016).

[28] B. Zoph, Q. V. Le, Neural architecture search with reinforcement
learning, arXiv preprint arXiv:1611.01578 (2016).

[29] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, E. P. Xing,
Neural architecture search with bayesian optimisation and optimal
transport, in: Advances in Neural Information Processing Systems,
2018, pp. 2016–2025.

[30] C. White, W. Neiswanger, Y. Savani, BANANAS: Bayesian op-
timization with neural architectures for neural architecture search,
arXiv preprint arXiv:1910.11858 (2019).

[31] Z. Li, T. Xi, J. Deng, G. Zhang, S. Wen, R. He, Gp-nas: Gaus-
sian process based neural architecture search, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11933–11942.

[32] R. Shin, C. Packer, D. Song, Differentiable neural network architec-
ture search, in: 6th International Conference on Learning Represen-
tations, ICLR 2018 - Workshop Track Proceedings, 2018.

[33] X. Dong, Y. Yang, Searching for a robust neural architecture in four
gpu hours, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 1761–1770.

[34] H. Liu, K. Simonyan, Y. Yang, DARTS: Differentiable architecture
search, in: International Conference on Learning Representations,
2019.

[35] Y.-H. Kim, B. Reddy, S. Yun, C. Seo, NEMO: Neuro-evolution with
multiobjective optimization of deep neural network for speed and ac-

Jia Liu et al.: Preprint submitted to Elsevier Page 11 of 12

http://arxiv.org/abs/2007.08428

DRAFT

curacy, in: JMLR: Workshop and Conference Proceedings, volume 1,
2017, pp. 1–8.

[36] T. Elsken, J. H. Metzen, F. Hutter, Efficient multi-objective neu-
ral architecture search via lamarckian evolution, arXiv preprint
arXiv:1804.09081 (2018).

[37] C.-H. Hsu, S.-H. Chang, J.-H. Liang, H.-P. Chou, C.-H. Liu, S.-
C. Chang, J.-Y. Pan, Y.-T. Chen, W. Wei, D.-C. Juan, MONAS:
Multi-objective neural architecture search using reinforcement learn-
ing, arXiv preprint arXiv:1806.10332 (2018).

[38] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
Q. V. Le, MnasNet: Platform-aware neural architecture search for
mobile, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[39] H. Zhu, Y. Jin, Multi-objective evolutionary federated learning, IEEE
Transactions on Neural Networks and Learning Systems 31 (2020)
1310–1322.

[40] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman,
W. Banzhaf, NSGA-Net: neural architecture search using multi-
objective genetic algorithm, in: Proceedings of the Genetic and Evo-
lutionary Computation Conference, ACM, 2019, pp. 419–427.

[41] B. Wang, Y. Sun, B. Xue, M. Zhang, Evolving deep neural networks
by multi-objective particle swarm optimization for image classifica-
tion, in: Proceedings of the Genetic and Evolutionary Computation
Conference, 2019, pp. 490–498.

[42] Z. Yang, Y. Wang, X. Chen, B. Shi, C. Xu, C. Xu, Q. Tian, C. Xu,
CARS: Continuous evolution for efficient neural architecture search,
in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 1829–1838.

[43] G. Kyriakides, K. Margaritis, An introduction to neural architecture
search for convolutional networks, arXiv preprint arXiv:2005.11074
(2020).

[44] L. Xie, A. Yuille, Genetic cnn, in: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017, pp. 1379–1388.

[45] J. Liang, E. Meyerson, R. Miikkulainen, Evolutionary architecture
search for deep multitask networks, in: Proceedings of the Genetic
and Evolutionary Computation Conference, 2018, pp. 466–473.

[46] H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient architecture
search by network transformation, in: Thirty-Second AAAI Confer-
ence on Artificial Intelligence, 2018.

[47] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable
architectures for scalable image recognition, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 8697–8710.

[48] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu,
Hierarchical representations for efficient architecture search, arXiv
preprint arXiv:1711.00436 (2017).

[49] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evo-
lutionary Computation 6 (2002) 182–197.

[50] K. Deb, R. B. Agrawal, et al., Simulated binary crossover for contin-
uous search space, Complex Systems 9 (1995) 115–148.

[51] Y. Sun, B. Xue, M. Zhang, G. G. Yen, A particle swarm optimization-
based flexible convolutional autoencoder for image classification,
IEEE Transactions on Neural Networks and Learning Systems 30
(2019) 2295–2309.

[52] A. Krizhevsky, V. Nair, G. Hinton, Cifar-10 (canadian institute for
advanced research), URL http://www. cs. toronto. edu/kriz/cifar. html
8 (2010).

[53] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features
from tiny images (2009).

[54] K. Simonyan, A. Zisserman, Very deep convolutional networks
for large-scale image recognition, arXiv preprint arXiv:1409.1556
(2014).

[55] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[56] S. Zagoruyko, N. Komodakis, Wide residual networks, arXiv preprint
arXiv:1605.07146 (2016).

[57] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated resid-
ual transformations for deep neural networks, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 1492–1500.

[58] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual
networks, in: European Conference on Computer Vision, Springer,
2016, pp. 630–645.

[59] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely
connected convolutional networks, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
4700–4708.

[60] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mo-
bilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 4510–4520.

[61] X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient
convolutional neural network for mobile devices, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[62] H. Kim, Torchattacks: A pytorch repository for adversarial attacks,
arXiv preprint arXiv:2010.01950 (2020).

[63] L. While, P. Hingston, L. Barone, S. Huband, A faster algorithm for
calculating hypervolume, IEEE Transactions on Evolutionary Com-
putation 10 (2006) 29–38.

[64] C.-L. Chang, J.-L. Hung, C.-W. Tien, C.-W. Tien, S.-Y. Kuo, Evalu-
ating robustness of ai models against adversarial attacks, in: Proceed-
ings of the 1st ACM Workshop on Security and Privacy on Artificial
Intelligence, 2020, pp. 47–54.

Jia Liu et al.: Preprint submitted to Elsevier Page 12 of 12

