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ABSTRACT

It is expensive and time-consuming to collect sufficient labeled data for human
activity recognition (HAR). Domain adaptation is a promising approach for cross-
domain activity recognition. Existing methods mainly focus on adapting cross-
domain representations via domain-level, class-level, or sample-level distribution
matching. However, they might fail to capture the fine-grained locality informa-
tion in activity data. The domain- and class-level matching are too coarse that
may result in under-adaptation, while sample-level matching may be affected by
the noise seriously and eventually cause over-adaptation. In this paper, we pro-
pose substructure-level matching for domain adaptation (SSDA) to better utilize
the locality information of activity data for accurate and efficient knowledge trans-
fer. Based on SSDA, we propose an optimal transport-based implementation,
Substructural Optimal Transport (SOT), for cross-domain HAR. We obtain the
substructures of activities via clustering methods and seeks the coupling of the
weighted substructures between different domains. We conduct comprehensive
experiments on four public activity recognition datasets (i.e. UCI-DSADS, UCI-
HAR, USC-HAD, PAMAP2), which demonstrates that SOT significantly outper-
forms other state-of-the-art methods w.r.t classification accuracy (9%+ improve-
ment). In addition, SOT is 5× faster than traditional OT-based DA methods with
the same hyper-parameters.

1 INTRODUCTION

Human activity recognition (HAR) plays an important role in ubiquitous computing. Through col-
lected raw signals from sensors, it can easily learn high-level knowledge about human activity.
HAR has wide applications in many areas such as gait analysis (Zhao et al., 2018a), gesture recogni-
tion (Jia et al., 2020) and sleep stage detection (Zhao et al., 2017). The success of HAR is dependent
on an accurate and robust machine learning model. However, to build such good models, we always
need to acquire sufficient labeled training data which is time-consuming and expensive. To build
models for a new activity dataset that has extremely few or even no labels, a promising approach
is to transfer the knowledge learned on the labeled activity data from an auxiliary dataset that is
similar to this target dataset. The new problem is referred to as the cross-domain activity recogni-
tion (CDAR) (Wang et al., 2018a) since we aim to build models for the target domain (dataset) by
leveraging knowledge from the source domain (auxiliary dataset).

It is not appropriate to use labeled activity data from an auxiliary dataset directly, due to different
distributions between the auxiliary and the target datasets. Domain adaptation (DA) (Pan & Yang,
2009) is a popular paradigm to bridge the distribution gap between two domains for knowledge
transfer. Thus, its key is to match the cross-domain distributions. A fruitful line of work (Khan
et al., 2018; Rokni & Ghasemzadeh, 2018) on DA based HAR has achieved great success. We
divide these work into two categories according to their different distribution matching schemes.
The first category is rough matching which includes the domain-level matching methods (Fernando
et al., 2013; Sun et al., 2016), the class-level matching methods (Zhu et al., 2020; Wang et al.,
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Figure 1: Comparison of different distribution matching schemes in domain adaptation.

2018a) and both domain- and class-level matching methods (Wang et al., 2018b). These works try
to match distributions by learning domain-invariant representations, class-invariant representations,
or invariant distributions in both domain and class. The other category is sample-level matching
such as Optimal Transport for Domain Adaptation (OTDA) (Courty et al., 2016) and Hypergraph
Matching based Domain Adaptation (Das & Lee, 2018b;a). The core of these works is to achieve
pair-wise sample alignment for two domains.

For CDAR problems, we argue that these methods can suffer from the under-adaptation and over-
adaptation issues since they may ignore the locality information contained in activity data. The
locality refers to the fine-grained similarity between two sensor signals that should be consid-
ered for domain adaptation. As shown in Figure 1, domain-level matching completely ignores the
intra-domain data structure while class-level matching takes a slightly finer alignment (Wang et al.,
2018a). However, we find that there exist two un-adapted clusters in activity 2 which means rough
matching may result in under-adaptation, i.e., domain- and class-level matching fails to capture
the locality information. On the other hand, it is obvious that sample-level methods may be seri-
ously affected by some bad points, such as noisy points or outliers, resulting in over-adaptation, i.e.,
sample-level matching suffers from overfitting when learning the locality information. In addition,
sample-level methods need to match too many points, which is notoriously time-consuming.

In this paper, we tackle domain adaptation based HAR from a different perspective, and hence
propose Substructural Domain Adaptation (SSDA) for accurate and robust domain adaptation.
Generally speaking, Substructure describes the fine-grained latent distribution of data. For the en-
tire class, it can be understood as a data cluster of the class. Figure 1 shows how SSDA performs
substructure-level matching. Compared with the domain- and class-level methods, SSDA utilizes
more fine-grained locality information to overcome under-adaptation. In contrast to sample-level
methods that can be easily affected by noise or outliers, SSDA utilizes the substructure of the data
that can prevent over-adaptation. Based on SSDA, we propose an optimal transport-based imple-
mentation, namely, Substructural Optimal Transport (SOT), for the cross-domain HAR problems.
OT (Villani, 2008) has a solid theoretical background and allows a flexible mapping without be-
ing restricted to a particular hypothesis class (Redko et al., 2017), hence it has no restriction on
the numbers of substructures in different domains. Specifically, SOT first obtains the internal sub-
structures by a clustering method. Then, the activity substructure weights of the source domain are
given via partial optimal transport according to its distance from the target domain. Finally, two
representations of substructures are used to learn a transportation plan matching the probability dis-
tribution functions (PDFs) on both substructures. We conduct experiments on four public activity
recognition datasets (UCI DSADS (Barshan & Yüksek, 2014), UCI-HAR (Anguita et al., 2012),
USC-HAD (Zhang & Sawchuk, 2012), and PAMAP2 (Reiss & Stricker, 2012)). The results demon-
strate that our method outperforms other state-of-the-art methods with a significant improvement of
over 9% w.r.t classification accuracy, while it is 5× faster than traditional OT-based DA methods
with the same hyper-parameters.

Our contributions are mainly three-fold:

1. We propose SSDA for accurate and robust domain adaptation. SSDA can overcome the
under-adaptation and over-adaptation issues in existing domain-, class-, or sample-level
matching methods.
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2. Based on SSDA, we propose an optimal transport-based implementation, SOT, to perform
cross-domain activity recognition.

3. Comprehensive experiments on four public activity recognition datasets demonstrate the
superiority of SOT (9%+ improvement in accuracy). In addition, SOT is 5× faster than
traditional OT-based DA methods with the same hyper-parameters.

2 RELATED WORK

2.1 HUMAN ACTIVITY RECOGNITION

Human activity recognition has been a popular research topic in ubiquitous computing for its impor-
tant role in human daily life. HAR attempts to identify and analyze human activities using learned
high-level knowledge from raw data of various types of sensors. Several surveys have summarized
recent progress in HAR. (Bux et al., 2017; Beddiar et al., 2020) summed up vision-based HAR
and (Wang et al., 2019; Dang et al., 2020) summarized recent work from a different point. In this
paper, we focus on work about sensor-based HAR.

Conventional machine learning approaches often treat HAR as a standard time series classification
problem. After getting raw data from sensors, they first preprocess the raw data which includes
denoising (Castro et al., 2016) and segmentation (Triboan et al., 2019). Then feature extraction and
feature selection (Dawn & Shaikh, 2016) are implemented to extract useful features from the pre-
processed data. In the following, different models, such as random forest (RF) (Hu et al., 2018),
Bayesian networks (Xiao & Song, 2018), and support vector machine (SVM) (Reyes-Ortiz et al.,
2016; Chen & Wang, 2018), are built with selected features. Finally, we can use these learned
models to make activity inferences. Deep learning based HAR (Ignatov, 2018; Zhao et al., 2018b;
Khan & Taati, 2017; Hassan et al., 2018a;b) automatically extracts abstract features through several
hidden layers and reduces the effort of choosing the right features.

However, most of the methods mentioned before assume that the training and testing data are in
the same distribution, which is not suitable for CDAR problems. As for CDAR problems, source
and target data are usually from a different distribution, which results in weak generalization of the
aforementioned methods. Therefore, approaches to the CDAR are needed. And in this paper, we
mainly focus on the traditional approaches for CDAR problems.

2.2 TRANSFER LEARNING AND DOMAIN ADAPTATION

Transfer learning tries to leverage source domain knowledge to help learn models in the target do-
main, which mitigates the problem that the target domain has no label or few labels. (Pan & Yang,
2009; Weiss et al., 2016) concluded the traditional transfer learning methods, and (Tan et al., 2018;
Wilson & Cook, 2020) introduced the deep transfer learning methods. Domain adaptation, as a
branch of the transfer learning, solves the problem that a distribution shift exists between different
domains and has been successfully applied in many applications, such as visual image classifi-
cation (Wang & Deng, 2018), natural language processing (Li et al., 2020), sentiment classifica-
tion (Dai et al., 2020), etc. We roughly divide domain adaptation into two categories: 1) rough
matching which includes domain-level matching, class-level matching, and both domain- and class-
level matching; 2) sample-level matching which is a meticulous matching way.

Domain adaptation has developed for many years and most of those methods exploit rough matching
between two domains. (Pan et al., 2010) proposed a method, named Transfer Component Analysis
(TCA), which learns a kernel in the reproducing kernel Hilbert space (RKHS) to minimize the
maximum mean discrepancy (MMD) between domains. (Wang et al., 2018a) proposed stratified
transfer learning (STL) and achieved the goal of intra-class transfer. Joint distribution adaptation
(JDA) (Long et al., 2013) is based on minimizing joint distribution between domains. (Wang et al.,
2017; 2020) extended it and proposed Balanced Distribution Adaptation (BDA) which adaptively
adjusts the importance of marginal distribution and conditional distribution. (Zhao et al., 2020)
proposed a method, named Local Domain Adaptation (LDA), which takes a compromise between
domain- and class-level matching and utilizes high-level abstract clusters to organize data.

Sample-level matching is the other way to match distribution between domains and the representa-
tive work is (Courty et al., 2016). Nicolas Courty et al. utilized the theory of optimal transport to
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learn the coupling between two probability density functions. Through the barycentric mapping (Vil-
lani, 2008), the images of the source samples in the target domain are obtained, and then a simple
classification model can be used to classify the target samples. (Kerdoncuff et al., 2020) extended
it which designs a metric learning optimal transport (MLOT) algorithm to optimizes a mahalanobis
distance. Besides optimal transport based methods, (Das & Lee, 2018b;a) used hypergraph matching
to match the samples between two domains.

SSDA is different from these methods. It takes advantage of the substructure of domains and utilizes
the substructure-level matching to seek the balance of rough matching and sample-level matching.

2.3 HUMAN ACTIVITY RECOGNITION WITH TRANSFER LEARNING

There is much prior work focusing on HAR with transfer learning and a detailed survey can be found
in (Cook et al., 2013).

(Zhao et al., 2011) proposed an algorithm known as transfer learning embedded decision tree
(TransEMDT) which integrates a decision tree and the k-means clustering algorithm to solve the
cross-people activity recognition problem. Lin et al. (Lin et al., 2016) identified a compact joint sub-
space for each class and then measured the distance between classes using principal angle. (Wang
et al., 2018a) tried to learn more reliable pseudo labels using the majority voting technique on
both domains. (Rey & Lukowicz, 2017) considered a special case that the new domain just con-
tains the old one and (Feuz & Cook, 2017) proposed a heterogeneous transfer learning method for
HAR. Recently, Qin et al. (Qin et al., 2019) proposed an adaptive spatial-temporal transfer learning
(ASTTL) approach to select the most similar source domain to the target domain and accurately
transfer activity. Despite many approaches have been designed to solve the CDAR problem and
some of them attempted to use clustering methods, little work is substructure-based. SOT tries to
complete substructure-level matching through joint Gaussian Mixture Model and optimal transport.
The number of substructures may be different from the number of the classes.

3 METHOD

3.1 PROBLEM FORMULATION

In a CDAR problem (Wang et al., 2018a), a labeled source domain Ds = {(xi, yi)}nsi=1 and an
unlabeled target domain Dt = {xj}ntj=1 are given, where ns and nt are the number of source and
target samples respectively. In our problem, Ds and Dt have the same feature spaces and label
spaces, i.e. Xs = Xt ⊂ Rd and Ys = Yt, where d is the feature dimension. ys, yt ∈ {1, · · · , C},
and C is the number of classes. Two domains have different distributions, i.e., ps(x, y) 6= pt(x, y).
The goal of cross-domain learning is to obtain the labels yt for the target domain with the help of
the source domain Ds.

3.2 MOTIVATION

In a CDAR problem, labeled source data often has a different distribution with target data. For
example, source data may be collected from the sensor tied on the front right hip while target data
may contain waist-mounted smartphone data. When we perform rough distribution matching which
aligns whole data or aligns data based on classes, we may not be able to match data perfectly since
different people have their styles even performing the same activity. Thus, we need to capture the
locality information.

The raw activity data can be represented as x = z+δ, where z ∈ Rd represents an activity prototype
containing the data collected from the standard activity in an ideal situation and δ corresponds to
the noise in reality. Therefore, sample-level matching that aligns x directly may introduce noise,
and performing sample-level matching might have no practical meaning. Overall, a compromise be-
tween rough matching and sample-level matching is needed to obtain more fine-grained alignments
and avoid noise influence.
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Apart from empirical analysis, we theoretically analyze our motivation by formulating the distribu-
tion as:

p(x) =
∑
y

p(x|y)p(y) (1a)

=
∑
y

(
∑
o

p(x, o|y))p(y)

=
∑
y

∑
o

p(x|y, o)p(y, o) (For source domain) (1b)

=
∑
o

∑
y

p(x|y, o)p(y|o)p(o)

=
∑
o

p(x|o)p(o). (For target domain) (1c)

According to Equation equation 1a, domain-level matching tries to match p(x) while class-level
matching tries to match p(x|y). From the previous analysis, we know that one class may in-
clude more fine-grained locality information, which means class-level matching may not be enough.
Therefore, a deeper decomposition of x is needed. We denote o as the locality information con-
tained in each y, i.e., o is the substructure. As shown in Equation equation 1b, we can divide the
labeled source domain into multiple substructures. Since the target domain has no labels, further
conversion is performed and Equation equation 1c shows we can divide the target domain into finer
substructures.

We know that

p(y|o) =

{
1 o is part of y

0 o.w.
(2)

Denote the substructure of o as yo, then
∑
y

∑
o p(x|y, o)p(y, o) =

∑
o p(x, yo|o)p(o), which indi-

cates that Equation equation 1b and Equation equation 1c are identical. Now, we can match p(x|o).
Obviously, this substructure-level matching is more fine-grained compared with domain- and class-
level matching while it avoids the influence of noise via the use of substructures compared with
sample-level matching.

Table 1 compares different matching schemes.

Table 1: Comparison between different matching schemes.
Type Assumption Formulation Limitations

Domain-level domain-invariant features p(xs)←→ p(xt) too coarse matching
Class-level class-invariant features p(xs|ys)←→ p(xt|yt) coarse matching

Substructure-level substructure-invariant features p(xs, ys|os)←→ p(xt|ot)
Sample-level no strict restrictions (xs, ys)←→ xt affected by noise, low-efficiency

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

Source samples
Target samples

(a) toy dataset distribuion (b) OTDA for toy dataset (c) SOT for toy dataset

Figure 2: Toy example to show the effectiveness of substructure-level matching.

To explain the necessity of using the substructures more clearly, we give a toy example. As we can
see from Figure 2(a), the source has three clusters that are sampled from a Gaussian Mixture Model
(GMM) and the target also has three clusters sampled from a slightly different GMM. Both domains
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Figure 3: Overview of the SSDA framework.

have two classes while the different colors respond to the different classes. It is obvious that one
of the classes has two components, which means rough matching may not be suitable. Next, we
consider the sample-level matching. The concrete data can be treated as the noisy version of the
prototypes, i.e. the cluster centers adding perturbation. Figure 2(b) shows that if we directly match
two domains with concrete data points, there will be miss matching. The red circle in Figure 2(b)
points one miss matching. Intuitively speaking, the matching of noise points to noise points has no
practical meaning.

3.3 SSDA: A GENERAL FRAMEWORK FOR DOMAIN ADAPTATION

In this paper, we propose a general Substructural Domain Adaptation (SSDA) method. SSDA
is a general framework consistent with the substructure and Figure 3 illustrates the main process of
SSDA which mainly contains three steps. Firstly, SSDA clusters the data to obtain the substructures
of activities. As a general framework, we can choose a suitable clustering algorithm for customiza-
tion. Then, it gives weights to the source substructures according to priors or adaptive methods.
Weight represents the importance of substructures and different substructures often play different
roles. For example, some substructures far away from most data should play small roles with small
weights. For simplicity, we usually give uniform weights to all structures without priors. Finally,
mapping is performed on the substructures of different domains. We can extend some traditional
method, such as CORrelation alignment (CORAL) (Sun et al., 2016), to perform substructure-level
matching, which is really commendable.

3.4 SOT: AN OT IMPLEMENTATION OF SSDA

In this section, we propose an OT implementation of SSDA, named SOT. SOT utilizes GMM to get
substructures while it uses OT to perform weighting and mapping. According to the substructure
representation, we introduce SOTc with center representation and SOTg with distribution represen-
tation.

3.4.1 SUBSTRUCTURES GENERATION AND REPRESENTATIONS

We denote δ ∼ N (0;σ2) and X represents all feature data. Equivalently, Xk conforms to a Gaus-
sian distribution whose center is the corresponding prototypes, i.e. Xk ∼ N (zk,σk). zk means the
value of kth center, σk means the kth covariance, and Xk means the data belong to the kth cluster.
Now, we have data X and our goal is to get zk and σk. It is easy to use Expectation Maximum
(EM) (Dempster et al., 1977) algorithm to obtain the parameters of the Gaussian Mixture Models.

To maintain label consistency in the source domain, we treat the source domains as a mixture distri-
bution of C Gaussian mixture models and each one corresponds to one class in the source domain.
The number of components is determined by the Bayesian Information Criterion (BIC) (Schwarz
et al., 1978), i.e.

BIC = −2 ln(L) + k ln(m), (3)
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where L represents the maximized value of the likelihood function for the estimated model, k rep-
resents the number of free parameters to be estimated, and m is the sample size. We seek K which
minimizes BIC. Due to the lack of labels in the target domain, we have to perform clustering on the
entire target domain and the number of clusters is up to the specific dataset.

After getting the clusters in the source domain and the target domain, we design two different ways
to represent the substructures which correspond to SOTc and SOTg respectively. SOTc with center
representation utilizes only information from cluster center, and it is simple and computationally
efficient while SOTg with distribution considers more information on clusters, but it needs some
approximations when computing.

SOTc: After clustering, two domains are expressed as the cluster centers, i.e. µc,s =∑ks
i=1 ws,iδzs,i , µc,t =

∑kt
i=1 wt,iδzt,i . z ∈ Rd represents the cluster centers and δz is a Dirac

function at location z. µc,s, µc,t are distributions of the source domain and the target domain respec-
tively and w are probability masses associated to the z. Obviously,

∑ks
i=1 ws,i = 1,

∑kt
i=1 wt,i = 1.

In addition, the squared Euclidean distance can be chosen as the cost between zs,i and zt,j , i.e.

c(zs,i, zt,j) = ||zs,i − zt,j ||22. (4)

SOTg: This one utilizes the cluster distributions to represent the substructures, and the covariance
of the clusters can be understood as the difficulty of the activity for the person. Therefore, the source
domain can be expressed as µg,s =

∑ks
i=1 ws,iN (zs,i,σs,i) and the target domain can be expressed

as µg,t =
∑kt
i=1 wt,iN (zt,i,σt,i). The meanings of the symbols are similar to the first way. The

only difference is that we use a Gaussian distribution N (z,σ) instead of a Dirac function δz. In
this situation, the squared Wasserstein distance (Peyré et al., 2019) replaces the squared Euclidean
distance as the cost function, i.e.

c(N (zs,i,σs,i),N (zt,j ,σt,j)) = W 2
2 (N (zs,i,σs,i),N (zt,j ,σt,j))

= ||zs,i − zt,j ||2 +B(σs,i,σt,j)
2,

where B is the Bures metric (Bhatia et al., 2019) between positive definite matrices and can be
calculated as follows,

B(σs,i,σt,j)
2 = tr(σs,i + σt,j − 2(σ

1/2
s,i σt,jσ

1/2
s,i )1/2), (5)

where tr(·) denotes the trace of a matrix, σ1/2 is the matrix square root. For simplicity, we force
the covariance matrix to be a diagonal matrix, i.e. σ = diag(ri)

d
i=1. In this case, the Bures metric

is the Hellinger distance B(σs,i,σt,j) = ||√rs,i −
√
rt,j ||. Overall, the cost function is

c(N (zs,i,σs,i),N (zt,j ,σt,j)) = ||zs,i − zt,j ||2 + ||√rs,i −
√
rt,j ||22

= ||(zs,i,
√
rs,i)− (zt,j ,

√
rt,j)||22.

(6)

rs,i and rt,j represent diagonals of the ith source domain cluster’s covariance and the jth target
domain cluster’s covariance respectively. (z,

√
r) concatenates the z and

√
r and serves as the new

feature of the substructure.

3.4.2 WEIGHTING SOURCE SUBSTRUCTURES

For unity, we denote the source domain as Ps =
∑ks
i=1 ws,ips,i and denotes the target domain as

Pt =
∑kt
i=1 wt,ipt,i. Due to little information about the target domain, we treat pt,i equally and fix

wt,i to 1/kt. Now, we compute the ws,i adaptively.

Since we only know
∑ks
i=1 ws,i = 1, it can be seen as a partial optimal transport problem, and the

upper bounds of ws,i are all 1. Obviously, the total cost of the partial optimal transport is 〈π,C〉F ,
where 〈·, ·〉F is the Frobenius dot product, C is the cost matrix, and π is the coupling matrix between
two PDFs. For calculation convenience, an entropy item, i.e.H(π) =

∑
ij πij log πij , is added.

Now, our goal is to obtain the optimal transport.
π∗1 = arg min

π
〈π,C〉F + λ1H(π)

s.t πT1ks = wt

π1kt ≤ 1ks

1Tktπ
T1ks = 1.

(7)
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1k is k-dimensional vector of ones and λ1 is a hyper-parameter that balances the calculation speed
and accuracy. H(π) requires π ≥ 0. When π ≥ 0 and 1Tktπ

T1ks = 1, it is obvious that π1kt ≤ 1ks
always holds. In addition, 1Tktwt = 1 holds, which means 1Tktπ

T1ks = 1 also always holds.
Therefore, Equation equation 7 can be simplified as the following.

π∗1 = arg min
π
〈π,C〉F + λ1H(π)

s.t πT1ks = wt.
(8)

We denote the feasible solution set of πT1ks = wt as C1. Obviously, the C1 is a convex set. The
optimization goal of Equation equation 8 is also convex. And, it is easy to get the closed form of
this problem. In the following, the Lagrange method is adopted to solve the problem.

We denote φ as the Lagrange multiplier, then our goal can be derived as

L = 〈π,C〉F + λ1H(π) + φT (πT1ks −wt).

To get the optimal point, the following equations must hold:
∂L

∂π
= 0 (9a)

πT1ks −wt = 0. (9b)

Using Equation equation 9a, we can get C + λ1(1 + logπ) + 1ksφ
T = 0, which means

π = e−
1ks

φT−C

λ1
−1. (10)

Then, we substitute Equation equation 10 into Equation equation 9b and get

e
−1ks

φT−C

λ1
−1

T

1ks = wt.

Therefore, we get

e
−C
λ1
−1T � e

−1ks
φT

λ1

T

1ks = wt,

where � means element-wise product. Obviously, each element in the same row of exp(
−1ksφ

T

λ1
) is

the same number, and we can easily get the optimal π∗. We initialize π0 = exp(− C
λ1
− 1) and get

π∗1 = π0diag(wt � πT0 1ks), (11)

where� denotes element-wise divide and diag denotes diagonals. Once the optimal coupling matrix
π∗1 is obtained, the source weight can be easily calculated as ws = π∗11kt .

3.4.3 OT-BASED MAPPING OF THE SUBSTRUCTURES

Through the previous steps, the source domain distribution is Ps =
∑ks
i=1 ws,ips,i while the target

domain distribution is Pt =
∑kt
i=1 wt,ipt,i. And the label corresponding to ps,i is the label of the

data belongs to ith cluster in the source domain, i.e. ỹs,i. According to Equation equation 4 or
Equation equation 6, we can easily get the cost matrix C. Following (Courty et al., 2016), the
objective for SOT is

π∗ = arg min
π
〈π,C〉F + λH(π) + ηΩ(π)

s.t πT1ks = wt

π1kt = ws.

(12)

Ω(π) is group-sparse regularizer, and it expects that each target sample receives masses only from
source samples that have the same label. And following (Courty et al., 2016), we define the regular-
izer as Ω(π) =

∑
j

∑
cl ||π(Icl, j)||2, where || · ||2 denotes the l2 norm and Icl contains the indices

of rows in π related to source domain samples of class cl. π(Icl, j) is a vector containing coeffi-
cients of the jth column of π associated to class cl, and it induces the desired sparse representation

8



Algorithm 1 SOT: Substructural Optimal Transport
Input: source dataset Ds = {(xs,i, ys,i)}nsi=1, target dataset Dt = {(xt,i)}nti=1, hyper-parameters
λ1, λ, η, kt
Output: target labels{yt,i}nti=1

1: Use EM for GMM, cluster each class data in the source domain to obtain {(ps,i, ỹs,i)}ksi=1. The
number of clusters is determined by Equation equation 3.

2: Use EM for GMM to obtain {(pt,i)}kti=1
3: Compute cost matrix C according Equation equation 4 (SOTc) or Equation equation 6 (SOTg)
4: Use Equation equation 11 to compute the source substructures’ weights ws. Set wt =

1kt
kt

5: Use GCG to compute the optimal coupling matrix π∗

6: According to Equation equation 13, compute the transformation of the source substructures and
obtain P̂s

7: Use P̂s and Ỹs to build the model and predict the Pt. The predictions are noted as Ỹt

8: Assign ỹt,i to the data belonging to pt,i in the target domain

in the target samples. λ and η are hyper-parameters. We use generalized conditional gradient (GCG)
following (Courty et al., 2016) to solve the optimization problem.

Once obtaining the optimal coupling matrix π∗, we can compute the transformation of ps,i by
barycentric mapping, i.e. p̂s,i = arg minp

∑
j π
∗(i, j)c (p,pt,j). When the cost function is the

squared l2 distance, this barycentric mapping can be expressed as:

P̂s = diag(π∗1kt)
−1π∗Pt, (13)

where Pt represents the target representation and P̂s represents the source mapping representation.
Now, any traditional machine learning model, such as 1-Nearest Neighbor (1NN), can be used to
learn the predictions with help of P̂s and ỹs,i. After getting the label ỹt,i corresponding to pt,i, we
assign the same label, ỹt,i, to the data belonging to pt,i in the target domain.

The overall process of SOT is described in Algorithm 1.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of SOT via extensive experiments on cross-domain ac-
tivity recognition. The source code of our SOT is at https://github.com/jindongwang/
transferlearning/tree/master/code/traditional/sot.

4.1 DATASET AND PREPROCESSING

We adopt four common public datasets. Table 2 describes the information and the selected data
volume of these datasets. In the following, we briefly introduce the basic information of each dataset,
and more information can be found in their original papers.

UCI daily and sports dataset (DSADS, D) (Barshan & Yüksek, 2014) consists of 19 activities col-
lected from 8 subjects wearing body-worn sensors on 5 body parts. UCI human activity recogni-
tion using smartphones data set (UCI-HAR, H) (Anguita et al., 2012) is collected by 30 subjects
performing 6 daily living activities with a waist-mounted smartphone. USC-SIPI human activity
dataset (USC-HAD, U) (Zhang & Sawchuk, 2012) composes of 9 subjects executing 12 activities
with a sensor tied on the front right hip. PAMAP2 physical activity monitoring dataset (PAMAP2,
P) (Reiss & Stricker, 2012) contains data of 18 different physical activities, performed by 9 subjects
wearing 3 sensors.

The cross-domain activity recognition experimental setup is in the following ways. Since different
datasets use different sensors and contain different classes of activities, we need to unify our exper-
imental setup for datasets first, and we choose the common parts of the sensors and four common
categories of activities. Specifically, we utilize the accelerometer and gyroscope, and each sensor
provides 3-axial data (x-, y- and z-axis). We combine them byα =

√
x2 + y2 + z2 following (Wang
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Table 2: Information of four datasets. Num means the select data volume.
Dataset Subject Activity Sample Location Num
DSADS 8 19 1.14M Tarso, Right Arm, Left Arm, Right Leg, Left Leg 2400

UCI-HAR 30 6 1.31M Waist 6616
USC-HAD 14 12 2.81M Front Right Hip 4187

PAMAP 9 18 2.84M Wrist, Chest, Ankle 1688

et al., 2018a). Then, according to (Wang et al., 2018a), we exploit the sliding window technique to
extract features, and 19 features from both time and frequency domains are extracted for a single
sensor. We extract 38 features from one position since two sensors are selected. We choose data
from Right Arm, Waist, Front Right Hip, and Right Wrist from these four datasets respectively,
and choose four categories, including lying, walking, ascending, descending. In experiments, we
perform unsupervised domain adaptation on the target domain.

4.2 COMPARISON METHODS AND IMPLEMENTATION DETAILS

We adopt nine comparison methods including both general transfer learning and cross-domain HAR
areas:

1. Baseline models
• 1NN: 1-Nearest Neighbor.
• LMNN: Large margin nearest neighbor (Weinberger & Saul, 2009).

2. Rough matching
• TCA: Transfer component analysis (Pan et al., 2010).
• SA: Subspace alignment (Fernando et al., 2013).
• CORAL: CORrelation alignment (Sun et al., 2016).
• STL: Stratified transfer learning (Wang et al., 2018a).

3. Sample-level matching
• OT: Optimal transport (Cuturi, 2013).
• OTDA: Optimal transport for domain adaptation (Courty et al., 2016).
• MLOT: Metric learning optimal transport (Kerdoncuff et al., 2020).

1NN and LMNN serve as baseline models and TCA, SA, and CORAL perform the rough matching
while OT, OTDA, and MLOT belong to sample-level matching methods. And all of these methods
use a 1NN classifier for the classification tasks. We conduct experiments in every pair of four
datasets and construct 12 tasks in total.

For most of the comparison methods, we use the codes from (Wang et al.) for implementation. For
a particular hyper-parameter configuration, we follow the similar protocol used in (Courty et al.,
2016). The target domain is partitioned in validation and test sets. The validation set is used to
obtain the best accuracy in the range of the possible hyper-parameters. The hyper-parameter range
used follows (Kerdoncuff et al., 2020) and we slightly reduce the range to fit our task. With the best
selected hyper-parameters, we evaluate the performance on the testing set. Classification accuracy
on the target domain is adopted as the evaluation metric.

4.3 CLASSIFICATION RESULTS

The results of classification are shown in Table 3 and Figure 4. From these results, we have the fol-
lowing observations: 1) Both SOTc and SOTg achieve the best classification accuracy on all tasks.
It is obvious that SOT significantly outperforms other methods with a remarkable improvement
(over 9% on average). 2) Compared to baseline methods, rough matching methods and sample-level
matching methods only have slight improvements due to neglecting the details or introducing much
noise. Thus, being too rough or too delicate is not suitable for cross-dataset activity recognition.
3) Figure 4 shows lying is easy to identify correctly while walking, ascending and descending are
difficult to classify, which is in line with the intuition and is consistent with Figure 5(a). 4) SOTg
is slightly worse than SOTc. Maybe because SOTg uses more approximations when computing. In
the following experiments, we use SOTc by default if there is no special instruction.
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Table 3: Activity recognition results on 12 cross-domain tasks.
method D→H D→U D→P H→D H→U H→P U→D U→H U→P P→D P→H P→U AVG

NA 62.70 56.40 66.03 65.16 55.03 60.81 71.30 61.38 60.37 60.99 55.26 51.63 60.59
LMNN 55.24 65.74 48.38 64.27 56.55 65.00 64.58 65.46 67.13 59.53 39.11 41.21 57.68
TCA 60.79 51.98 65.66 62.50 41.87 52.06 69.06 53.43 60.88 57.81 46.38 51.45 56.16
SA 63.61 57.36 65.44 66.35 55.60 60.88 70.62 59.64 61.18 62.60 55.45 50.58 60.78

CORAL 64.23 52.25 64.85 64.48 53.03 64.41 68.75 61.93 60.15 60.21 56.20 54.46 60.41
STL 62.83 70.93 65.66 66.15 65.89 67.43 74.69 68.76 65.00 68.96 56.75 55.27 65.69
OT 62.13 65.86 65.66 68.91 58.58 67.50 69.90 59.49 63.75 66.77 51.71 57.59 63.15

OTDA 59.36 54.97 65.52 68.91 59.45 67.50 70.26 62.25 63.09 67.19 53.41 59.09 62.58
MLOT 62.53 53.33 64.85 68.12 58.10 62.13 69.53 59.68 61.25 65.99 63.30 49.24 61.51
SOTc 67.74 79.74 73.31 73.39 70.87 73.23 80.99 78.04 74.41 76.46 72.82 76.51 74.79
SOTg 74.84 79.74 68.68 73.39 71.26 73.23 79.90 72.82 72.28 74.48 72.82 76.51 74.16
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Figure 4: Confusion matrices for U → D.

4.4 VISUALIZATION STUDY

As we can see in Figure 5(a), the number of points is much smaller after clustering, which can
bring high efficiency, and the margins between points are bigger. The class of the substructures
in the target domain is temporarily determined by most of the data in the corresponding cluster.
In Figure 5(b), we can see that it is easy to misclassify the points which are near the margins or
intersected with other classes’ points. Due to the bigger margins and the fewer intersecting points,
the accuracy on the substructures is 73% while the accuracy on raw data using OTDA is 70.375%.
Figure 5(c) shows the misclassified data using SOTc and the accuracy is improved over 9% due to
the exploitation of the substructures.
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Figure 5: Visualization for U → D using SOT. Different colors mean different classes while black
means error predictions. The boundaries of different colors correspond to the boundaries of different
classes.
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4.5 ABLATION STUDY

We first demonstrate SSDA is not limited to its OT implementation (i.e., SOT), but a general frame-
work, and then evaluate the importance and robustness of three important parts of SOT, namely,
substructures generation, weighting source substructures and OT-based mapping of substructures.
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Figure 6: Accuracy of different matching levels with different methods for task U → D.

4.5.1 IMPLEMENTING SSDA USING OTHER METHODS

We implement CORAL with domain-, class- and substructure-level matching and Figure 6(a)
shows that class-level matching CORAL gets better accuracy than domain-level matching while
substructure-level matching CORAL achieves the best accuracy, which demonstrates finer matching
gets better results. In addition, we implement OTDA with class-, substructure- and sample-level
matching, and Figure 6(b) illustrates that substructure-level matching OTDA gets a better accuracy
than the sample-level matching OTDA, which may be substructure-level matching is robust to noise.
Overall, Figure 6 demonstrates SSDA is a general framework and can achieve commendable results.
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Figure 7: Ablation study of substructures generation and weighting source substructures.

4.5.2 SUBSTRUCTURES GENERATION

We generate substructures with GMM using different initial parameters and the results are in Fig-
ure 7(a). The x-axis shows the different initial states. Obviously, SOT performs better than OTDA
on any random initial states. The initial parameters obtained from k-means get the best accuracy,
which indicates that good clustering results bring high accuracy.

4.5.3 WEIGHTING SOURCE SUBSTRUCTURES

To demonstrate the effect of weighting source substructures, we compare the accuracy between
the experiments with it and without it. Without weighting source substructures, we simply assign
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the same weight to all the source substructures. Figure 7(b) shows there is an improvement with
weighting source substructures.

(a) η = 0 (b) η = 0.5

Figure 8: The group regularizer’s function.

4.5.4 OT-BASED MAPPING OF SUBSTRUCTURES

In this part, we illustrate the function of the group regularizer. No group regularizer is used in
Figure 8(a) while there is a group regularizer with η = 0.5 is used in Figure 8(b). In Figure 8(a),
some points with different colors are linked with the red point while only red points are linked with
the red point in Figure 8(b), which are caused by the group regularizer.

4.6 PARAMETER SENSITIVITY

In this section, we evaluate the parameter sensitivity of SOT. SOT involves four parameters: λ1,
λ, η and kt. We change one parameter and fix the other parameters to observe the performance
of SOT. In Figure 9, the red points are the optimal points, and we observe the surrounding results.
From 9(a)-9(d), we can see that the results with parameters around the red points are all better than
OTDA. The results reveal that SOT is more effective and robust than other methods under different
parameters near the optimal.
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Figure 9: Influence of different hyper-parameters.

4.7 CONVERGENCE AND TIME COMPLEXITY

In this section, we investigate the convergence and time complexity. In Figure 10(a), we can see
SOT convergences in the 10th epoch. And in the actual experiments, 20 epochs are enough for SOT.
This means our SOT can reach fast convergence. With the same hyper-parameters, SOT is 5× faster
than traditional OT-based DA methods.

To compare the time complexity, we conduct each experiment 10 times and sum over the time.
Figure 10(b) indicates that SOT gets the best accuracy while the time spent is much less than TCA
and MLOT. When we slightly change the parameters of OTDA, the time used changes from 71.11s
to 285.32s. From Figure 10(c), we can see that GMMs use most of the time in SOT. These two parts
can be fixed in real experiments, which means we only need to pay attention to the parts of weighting
and mapping. Obviously, the time used in the weighting part is negligible, and the time used in the
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mapping part is smaller than all the other methods compared. In the following, we analyze the time
complexity theoretically.
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Figure 10: Convergence and Time Complexity.

As we know, without the entropy regularizer, combinatorial algorithms, such as the simplex methods
and its network variants, are used to solve the optimal transport. However, their computational
complexity is shown to be O((ns + nt)nsnt log(ns + nt)), which is impossible to handle large
datasets. When handling the OT with the entropy regularizer, we can get an algorithm with the
quadratic complexity, which is still below our expectations. The key problem is that ns and nt are
too large to get the fast results. To deal with this problem, we use the substructures instead of initial
data points. The numbers of the substructures are ks and kt respectively, and they are much smaller
than ns and nt. To get the substructures, GMM, whose time complexity is O(L1KN), is adopted.
K is the number of clusters, N is the number of data, while L1 is the number of iterations. We can
get the weights of the substructures with one matrix operation and the time spent on this operation
is negligible. To sum up, the time complexity of our method is about O(L1KN + L2K

2), where
L1 and L2 are the numbers of the iterations, and they are much smaller than N.

5 CONCLUSIONS AND FUTURE WORK

Leveraging labeled data from auxiliary domains is a usual way to deal with the label scarcity prob-
lem in Human Activity Recognition. In this paper, we propose SSDA to utilize substructures and
propose an OT based implementation, SOT, for cross-domain activity recognition. Comparing to ex-
isting methods which perform rough matching or sample-level matching, SSDA obtains the internal
substructures and completes substructures-level matching which considers more fine-grained local-
ity information of domains and is robust to noise in a certain degree. Comprehensive experiments on
four large public datasets demonstrate the significant superiority of SOT over other state-of-the-art
methods. In addition, SOT is much faster than other methods, which means it can be used in the
larger datasets.

In the future, we plan to extend SOT using deep clustering, as well as applying SSDA to other
fine-grained activity recognition problems.
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