Deep Fair Models for Complex Data:
Graphs Labeling and Explainable Face Recognition

Danilo Franco?, Nicolo Navarin®, Michele Donini®,
Davide Anguita?®, Luca Oneto®*

@ University of Genoa - Via Opera Pia 11a, 16145, Genova, Italy
b University of Padua - Via Trieste 63, 35121, Padova, Italy
¢Amazon - Rocket Tower, Charlottenstrasse 4, 10969, Berlin, Germany

Abstract

The central goal of algorithmic fairness is to develop Al-based systems which
do not discriminate subgroups in the population with respect to one or mul-
tiple notions of inequity, knowing that data is often humanly biased. Re-
searchers are racing to develop Al-based systems able to reach superior per-
formance in terms of accuracy, increasing the risk of inheriting the human
biases hidden in the data. An obvious tension exists between these two lines
of research that are currently colliding due to increasing concerns regarding
the widespread adoption of these systems and their ethical impact. The prob-
lem is even more challenging when the input data is complex (e.g. graphs,
trees, or images) and deep uninterpretable models need to be employed to
achieve satisfactory performance. In fact, it is required to develop a deep ar-
chitecture to learn a data representation able, from one side, to be expressive
enough to describe the data and lead to highly accurate models and, from the
other side, to discard all the information which may lead to unfair behavior.
In this work we measure fairness according to Demographic Parity, requir-
ing the probability of the model decisions to be independent of the sensitive
information. We investigate how to impose this constraint in the different
layers of deep neural networks for complex data, with particular reference to
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deep networks for graph and face recognition. We present experiments on
different real-world datasets, showing the effectiveness of our proposal both
quantitatively by means of accuracy and fairness metrics and qualitatively
by means of visual explanation.

Keywords:  Algorithmic Fairness, Learning Fair Representation,
Demographic Parity, Deep Learning, Structured Data, Graphs, Face
Recognition, Visual Explanation

1. Introduction

It has been argued that Artificial Intelligence (Al), and Machine Learning
(ML) especially [TH3], is experiencing a fast process of commodification. This
phenomenon means that ML-based systems are reaching the society at large
and, therefore, the societal and ethical issues related to their use need to be
directly addressed. Designing ML models from this human-centered perspec-
tive, thus building a more responsible Al [4], means incorporating human-
relevant requirements such as safety, fairness, privacy, and interpretability,
but also considering broad societal issues such as ethics and legislation. While
these are essential aspects to foster the acceptance of Al and ML-based
technologies, the research community has identified two main research di-
rections [5]. The first one studies how Al-based systems can learn moral
notions or ethical behaviors and then autonomously behave ethically. In this
framework, Comparative Moral Turing Test [6] or Ethical Turing Test [7]
have been proposed to assess the morality of the choices of automated sys-
tems. Because of the strong connection between philosophical, ethical, and
technical problems, this branch of research is currently quite unexplored.
The second one focuses on how humans should design and develop Al-based
systems minimizing the possible harms derived from poor design, inappro-
priate application, or misuse. Algorithmic Fairness [§], Privacy Preserving
Data Mining [9], Explainable AI [10], Adversarial Learning [11] are examples
of efforts made in this direction. Our work falls within this category and, in
particular, in the context of Algorithmic Fairness.

Generally speaking, Algorithmic Fairness deals with the problem of de-
veloping Al-based systems able to treat subgroups in the population equally.
These subgroups are often determined by means of sensitive attributes, which
should not be taken into account for decision purposes. Examples of these
attributes are gender, ethnicity, and sexual or political orientation, etc. For



example, let us consider the emerging problem of political opinion polariza-
tion, where individuals’ opinions are in opposition [I2HI5]. Al-based sys-
tems may exacerbate this disparity by creating echo chambers, consequently
pushing towards an increased polarization. Social network algorithms try
to maximize users engagement by providing limitative feeds on a particular
subject, failing to furnish broader points of views. These echo chambers are
quite dangerous since they reinforce and radicalize existing opinions [16-18].
Algorithmic Fairness, in this context, should help in designing algorithms
able to avoid these filtered bubbles by showing to users interesting, plural,
and informative feeds independently, for example, from their specific political
orientations. Another representative case is the use of Face Recognition soft-
ware by government agencies [19]. Many recent evidences [20-22] show how
these algorithms can be biased against black people and females. In reaction
to these issues, according to CNN [23], some governments banned the usage
of face recognition systems in law enforcement agencies and public-facing
businesses. Again, algorithmic fairness should help in designing algorithms
able to mitigate and rectify these kinds of discrimination.

More specifically, one of the main questions in Algorithmic Fairness is how
to enhance ML models, with fairness requirements. In fact, when these mod-
els take a decision in an human-oriented environment (e.g. decide whether
to hire, to grant a loan, or to approve an insurance), it is ethically as well
as legally discriminating to ground the choice on one or more sensitive at-
tributes [24]. More formally, two types of discrimination are mainly consid-
ered in the literature: disparate treatment and disparate impact [25]. Dis-
parate treatment highlights the case where the outputs depends directly on
the knowledge of the sensitive attributes, while disparate impact describes de-
cisions that end up being biased due to the correlation between non-sensitive
and sensitive attributes, even if the latter are unknown. These observations
give immediately hints on the complexity of formally defining fairness. Nev-
ertheless, several notions of fairness already exist in the literature [26]. The
most common notions are surely Demographic Parity (DP) [27] or Equal
Odds and Equal Opportunities [28]. The idea behind the general notions
of fairness is that the learned ML model should behave equally, or at least
similarly, no matter whether it is applied to one subgroup in the population
or to another one (e.g. females respect to males or black people respect to
white people). For example, DP implies that the probability of a certain ML
model output should not depend on the value of one or more specific sensitive
attributes. Nevertheless, these definitions, also called Group (or Statistical)
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Fairness [29], are far from being perfect. Specifically, many Group Fairness
definitions proved to be mathematically incompatible [30 31]. Moreover,
Group Fairness definitions, despite removing averaged discrimination from
the models, might still allow unfair treatments between specific individuals.
In this regard, Individual Fairness [29] definitions try to fill these gaps. Once
one or more formal definitions of fairness are chosen depending on the specific
problem under exam [32], it is possible to plug them into the process of build-
ing models through ML training algorithms. For this purpose, three main
mitigation approaches exists [§]. The first approach consists in pre-processing
the data to remove historical biases and then feeding this refined data to clas-
sical ML models. This approach is quite convenient when one wants to make
out-of-the-box ML tools fairer, slightly tweaking the data, without actually
changing the tool. The second approach consists in post-processing the out-
put of an already learned ML model. This approach is particularly useful
to avoid the retraining or fine-tuning of already trained complex models for
fairness reasons. The third approach, called in-processing, consists in impos-
ing fairness constraints directly into the learning phase, enforcing fairness in
the models inner structures.

A specific approach, which lies in the middle between pre- and in-processing,
is to extract a fair representations of the data that can be transferred and
used for other tasks while ensuring that every model trained over this rep-
resentation will be again fair [33H35]. This particular approach, referred to
as fair representation learning [8, 26, [36], is becoming increasingly impor-
tant nowadays due to the intensive use of Deep Learning (DL) architectures.
In fact, nowadays, DL [37] represents the state-of-the-art alternative for a
wide variety of real world applications which require to automatically learn a
compact yet rich representation of complex data. Visual Understanding [3§],
Natural Language Processing [39], Drug Discovery [40], Medicine [41], and
Graph Analysis [42] are just few examples of domains where DL outperformed
classical MLL methods. For example in Face Recognition, traditional meth-
ods attempted to extract handcrafted shallow features (e.g. Viola-Jones [43],
Gabor [44], LBP [45], LGBHPS [46]) and, before the advent of DL, they
represented the state of the art for classical benchmark datasets [47]. DL
approaches have recently shown to outperform these methods being more
robust to changes in illumination, face pose, aging, expressions, and occlu-
sions [48].

Besides face recognition applications, in some other cases DL is even able
to surpass human performances (e.g. melanoma classification [49] and logic
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based game [50]) or is expected to do it in the near future [51]. Classical
ML methods exploit features engineered from the raw data based on the
domain knowledge [52]. DL, instead, is able to actually learn a compact
and rich data representation by means of a multilayered deep network de-
signed to comply with the particular raw data format under exam and a huge
amount of (un-)labeled samples [37]. As a positive side effect, these repre-
sentations can be reused, incrementally enriched, and fine-tuned for many
different tasks [53-56]. This preamble clearly points to the fact that DL is
much more effective than classical ML when the input data are complex, or
more precisely, structured (e.g., in the form of graphs [42], trees [57], gen-
eral images [B8], or faces [59]). The complex geometrical and topological
relations present in these kind of data, usually require ad-hoc pre-processing
or kernels [60] methods, based on the experience of domain specialists. DL
revolutionized this field by actually being able to learn those representations
directly from the data. Nevertheless, this ability of relying ultimately on data
transformations for shaping highly performant models also increases the risk
of carelessly inheriting the human historical biases hidden in the data itself.

For this reason, in this paper, extending our previous work [61] and lever-

aging on the theoretical results of [33], we investigate how to impose the fair-
ness constraint in the representation layers of Deep Neural Networks (DNNs)
for complex input data, with particular reference to DNNs for Graphs and
Face Recognition. We decided to measure fairness according to DP, requiring
the probability of a data representation, and consequently of possible model
decisions, to be independent of the sensitive information.

The contribution of our work can be summarized as follows:

e We analyze how the layers of a DNN for complex data have to be
constrained in order to obtain fairer and accurate results, measuring
the effects by means of different fairness and accuracy metrics. Then
we specialize our analysis to two tasks with particularly complex input
data: Graph labelling and Face Recognition;

e We impose the fairness constraint by means of different Tikhonov [62]
regularizers. All the proposed constraints are differentiable, and in
some cases also convex approximations of the DP, which is computa-
tionally hard to handle in its naive formulation. Specifically, we define
the fairness regularizers by means of (i) a simple first order convex ap-
proximation [63] of the DP, (ii) the Maximum Mean Discrepancy [64-
60, and (iii) the Sinkhorn Divergence [67, 68];

e Apart from using classical metrics like the Difference of Demographic



Parity (DDP) [33] for characterizing the models fairness and misclas-
sification error or the area under the receiver operating characteristic
curve for characterizing the models accuracy, we try to reach a deeper
understanding of the effects of the proposed fairness constraints on the
learning process of the DNNs. For this reason, in order to see the
modifications of the DNNs perception for image recognition, we ex-
ploit a state-of-the-art Explainable-Al [10] [69] tool: visual explanation
through the use of attention maps [70] employing the Grad-CAM tech-
nique [71]. This step allows us to show the effectiveness of our proposal
not just from a quantitative point of view but also qualitatively via
visual explanation;

e We consider also real-world state-of-the-art datasets in our study, namely
FairFace [72] for Face Recognition and Pokec[73] for Graph labeling.
Finally, in case of Graph labeling, we also generate a new dataset,
which we named Marvel, combining two publicly available datasets on
the Marvel universe [74], [75].

The rest of the paper is organized as follows. Section [2 discusses the
related works on the topic of Learning Fair Representation. Section [3] in-
troduces some preliminary definitions. Section [4| presents the specific DL
architectures for Graphs and Face Recognition. Section [5| presents our pro-
posal to make the architectures described in Section [ fairer. Results on real
world datasets are presented in Section [6] Section [7] concludes the paper.

2. Related Works

Recently, Fair Representations Learning has attracted the attention of the
scientific community due to the inherent fairness guarantee characterizing any
predictor trained on top of an unbiased representation space. Similarly to
what is proposed in this work, the vast majority of the literature on this topic
advances to learn fair representations using regularizers to balance utility and
fairness.

The idea of mapping data points from the original input space to a new,
so called, representation space where any implicit or explicit information re-
garding the sensitive attribute is removed was firstly introduced by Zemel
et al. [36]. In this work, fairness is ensured through a probabilistic mapping
from the original input space to a set of prototypes satisfying DP. Specifically,
each data point in the input space is assigned to a particular prototype with
a probabilistic rule constructed by the Euclidean distance between the origi-



nal and the representation spaces. In order to satisfy DP, the probability of
mapping two random individuals belonging to two different subgroups to the
same prototype should be the same no matter the value of the sensitive at-
tribute. Moreover, other constraints for an optimal mapping are introduced,
such as the preservation of both the non-sensitive information of the original
input space and the original prediction accuracy.

Lahoti et al. [76] extend the work of Zemel et al. [36] by considering a
fairness definition close to individual fairness [77]. Specifically, given a set
of input data and their respective non-sensitive counterparts (where the sen-
sitive attributes are removed), the task is to find an optimal representation
that minimizes both the reconstruction loss and the individual fairness loss
for a chosen binary distance function. Again, the intuition behind individ-
ual fairness, which can be easily observed in the previous formulation, is
that any difference in the new representation space needs to be justified by
a non-sensitive difference in the original space. Note how this formulation
automatically enables the support for multiple sensitive attributes with un-
known values (as long as the distance can be defined both on the original
and representation spaces).

Another line of works [7T8-8I] on the regularization framework exploits
auto-encoders [82] for ensuring fairness. These works formulate a generic
Bayesian model which admits two distinct independent sources: one which
determines the sensitive information, and one which models all the remaining
“legal” information. The input datapoint is then generated according to a
conditional probabilistic rule that takes into account both the prior sources.
Consequently, the problem results in finding a representation that is invariant
to the values of the sensitive prior through modeling the parameters of the
posterior distribution. Moreover, Luoizos et al [7§] also penalize any leakage
of the sensitive attribute into the posterior of the representation by comparing
the two posterior distributions for a binary sensitive attribute through the
Maximum Mean Discrepancy [64].

Oneto et al. [33] tackle the problem of learning transferable fair represen-
tations through the regularization over compositional models with a shared
representation. In this setting, fairness is enforced at the representation level
by imposing the DP via Maximum Mean Discrepancy [64] and Sinkhorn Di-
vergence [67]. They complement their work also proving the existence of
learning bounds on the accuracy and fairness of the learned model in the
lifelong setting.

Many works [34] [83H99] exploits the Generative Adversarial Networks [100]
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to achieve fairness. These works find an optimal fair representation through
an optimization process where two entities, an encoder and a decoder (a.k.a.
the adversary) are opposed in a minimax game. Specifically, the adversary
tries to maximize an unfairness measure, while the encoder tries to fool the
adversary finding a representation that is able to minimize the dependency
with the protected attributes and to minimize a reconstruction error from
the original space (thus preserving the non-sensitive information). In a su-
pervised setting, the encoder will also consider a prediction error for finding
a suitable representation vector.

Recently, Song et al. [I01] unified some of the previous works and develops
a general framework relying on the concept of mutual information between
the legitimate and protected attributes.

Other works in the literature enforce Fair Representation Learning by
following intuitions different from imposing fairness through a regularization
framework. Since these works are quite different from the one proposed in
this work, we just briefly analyze their contributions (for more details please
refer to recent reviews on algorithmic fairness [26], 29]):

e Rank of Conditional Distributions [102H104], the learned representation
aims at removing discrimination while preserving the rank of the legit-
imate variables distributions conditioned on the protected attributes;

e Fuairness Graph [105], the extracted representation is constrained by
a graph structure and, specifically, it preserves the graph local neigh-
borhoods. Rather than learning fair embeddings for a specific graph
(for example, through adversarial regularization on protected attributes
decoding [106]), this approach associates similar points in the learned
representation to connected individuals in the fairness graph, enforcing
individual fairness.

e Fair Dimensionality Reduction [107], the unbiased representation is ex-
tracted from the orthogonal complement of the feature projection that
captures the information related to the protected attribute to obtain a
fair subspace for high predictive kernel models.

e Fuair Disentangled Representation [108] [109], the aim is to find a gen-
erative model composed by latent independent ground factors. A fair
predictor could be then just trained on the latent independent factors
(known as disentangled representations) that are not related to the
protected attributes.

e Semantical Meaning Preservation [90) 110, 111], in addition to the task
of learning fair representation, these approaches aim at preserving se-
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mantical meaning. For example, in the context of face recognition, they
aim at conditioning images input data by removing features correlated
with a protected attribute (the presence of a beard in the example of
gender discrimination), while retaining the structure of a face in the
extracted representation.

e Theoretical Guarantees, the trade-off between utility and different no-
tions of fairness when learning invariant representation is theoretically
characterized. Zhao et al. [I12] proved the existence of a lower bound
on the joint error across groups when the base prediction rates dif-
fer. Another line of works quantified the reduction in discrimination
capabilities achieved by a certain representation mapping [113], 114].

3. Preliminaries

Let us consider the problem of assigning a binary label to structured
inputﬂ with fairness requirements.

The problem is identified by a probability distribution g on Z x & x Y,
where 7 is a (semi-)structured input space, S = {1,2} is the set of values
of a binary sensitive variableﬂ and Y = {—1,1}. We let D = (I}, s;,y:)1, €
(Z x & x V)" be a set of data, which is sampled independently from pu.
For each sensitive s € {1,2} we also let D! = {(I,s,y) € D : s = 1}
and D? = {(I,s,y) € D : s = 2} be the set of inputs in the first and
second group, respectively. The goal is to learn a model h : Z x § — Y
able to well approximate P{y| I, s}. Note that using, implicitly of explicitly,
the sensitive attribute in the functional form of the model may be illegal
with respect to some jurisdictions [I15, 116]; in these cases h : Z — Y
approximates P{y|I}. Formally, we will indicate h : Z — ) such that
it well approximates P{y|Z} where Z € Z may contain (£ = Z x S) or
not (£ = Z) the sensitive attribute, depending on the actual legislation.
The ability of h in approximating P{y | Z} is usually measured with different
indices of performance P(h) based on the different task under exam [37]. For
example, when tackling a binary classification problem, typical formulation

LOur method will be tested on binary classification of graph nodes and images but it
naturally extends to multiclass and regression and other kinds of structured data such as
natural language and trees.

2Qur method naturally extends to multiple sensitive variables but to ease the presen-
tation we consider only the binary case in the paper.



of P(h) are the Accuracy measure, the Binary Cross-Entropy, or the Area
Under the Receiver Operating Characteristic curve [117].

With the increased use of deep learning models, the model h is actually
a composition of models m(r(Z)), where m : R? — Y is usually a (non-
)linear function approximating the desired prediction and r : Z — R? is
a function mapping the input into a vector, which is usually referred to
as the representation. Note that r can be a composition of functions too
r:ro---oryory, for example, in a deep architectures of [ layers [37]. In other
words, the function r synthesizes the information needed to well describe the
structured input and to learn an accurate model m.

Moreover the model h should be fair with respect to one or more no-
tions of fairness [§]. As recently theoretically studied in [33] and practically
demonstrated in many works [34H36, [78] 85, 88, 113, 114, 118], when deep
learning models are developed, learning fair representation is a much more
effective and cognitively grounded way of learning fair models. In fact, learn-
ing a fair representation implies (i) to learn fair models no matter the task
that will leverage on this representation, and (ii) being able to remove the
historical biases not just in the last layer of the network but also from the
deeper layers making the entire network fairness-aware. Specifically, we re-
quire that the representation vector satisfies the Demographic Parityﬂ (DP)
constraint [29, [33]. Namely, we require that

P{r(Z)cCls=1} =Py{r(Z) €C|s =2}, VC C R, (1)

that is, the two conditional distributions of the representation vector, the
one for nodes with s = 1 and the one with s = 2, should be the same. Note

that our method naturally extends to constraining all (Vi € {1,---,l}) or
some (Vi € L C {1,---,1}) of the layers composing the representations as
follows

Py{ri(Z)eCls=1} =Pz{rn(Z2) e C|s =2}, VC C R(r), (2)

where R(r;) is the domain of the r;-th layer. The constraint of Eq. (or
Eq. ) implies also that any model learned on top of a fair representation

30ther notion of fairness could be exploited in this paper like Equal Opportunity and
Equal Odds [28], but the extension of the proposal is quite simple and out of the scope of
this paper.

10



will be again fair [33]

Pz{m(r(2)) =yls =1} =Pz{m(r(Z)) =y|s =2},y €Y.  (3)
with respect to the notion of DP for binary classification, namely the prob-
ability of assigning a particular label should not depend on the value of the
sensitive attribute.

The final model performances P(h) will be evaluated through the Accu-
racy measure (ACC,(h)) or the empirical Area Under the Receiver Operating
Characteristic curve (AUROC,(h)), which is more informative in the case of
unbalanced datasets. Such measures will be computed on a test test not ex-
ploited during the model training phase in order to avoid biased results [119].

The fairness of the final models h, instead, will be measured with the
Difference of Demographic Parity [33] (DDP(h))

1

3 [h<z>>0]—|712| S @)=, @

(Z,y)eD?! (Z,5,y)€D?

where the Iverson bracket notation is exploited, together with the accuracy
of h in learning s (e.g. by means of ACC,(h) or AUROC,(h)). The latter is a
sanity check on the fairness of r(Z) since we are measuring the ability of the
same model m to learn s instead of y from r(Z) itself. Also the fairness will
be computed on a test set not exploited during the model learning phase in
order to avoid biased results [119].

3.1. Graph Binary Classification

Let us introduce the graph nodes binary classification problem faced in
this paper. A training graph G = (V,&,X,s,y) is given, where V =
{v1,...,vq,} is the set of d; nodes (or vertices), £ C V x V is the set of edges,
X € R4z i5 the matrix of non-sensitive attributes (x;, the i-th row of X, is
the vector of attributes associated to the vertex v;), s; € {1, 2} is the sensitive
attribute associated to node v;, and y; € {£1} is label associated to node v;.
Let us define the neighborhood of a vertex v; as N (v;) = {v;|(v;,v;) € E}.
The training set is composed by all nodes in the training graph. The goal
is to learn a model h(Z), where we indicate Z its input composed by v, &,
x, and possibly s if legally possible. We consider the challenging inductive
setting, where two different graphs are taken, one for training and one for
testing. In other words, the test is the set of nodes from a second graph Gr..
A dataset, D, = {(Z;,si,y:)|i € {1,--+ ,dq}}, is generated from Gy, and,
analogously, Dr, is generated from Gr,.
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3.2. Faces Binary Classification

Let us introduce the faces binary classification problem. In this case Z
is the space of all RGB images of human faces. Then Z C R"%*3 where h
and w are the height and width of the image, and then we have the three
color channels (red, green, and blue). Images have two type of information:
one is the actual color of each pixel and the other one is the relative position
of the pixels. For this reason, the model needs to take into account both
information in order to achieve acceptable performances. In this case Dt
and D, are set of different and mutually exclusive human faces.

4. Deep Neural Networks

In this section, we will recall the DNN exploited in this paper for binary
labeling of graph nodes and faces.

4.1. Deep Neural Networks for Graphs

In this paper, we consider the GraphSAGE DGNN model [120], since,
contrarily to other architectures in literature (e.g. [121]), it is designed to
deal with large graphs (such as social network graphs) sampling a fixed-
size set of neighbors, while achieving competitive predictive performance, in
particular on the considered inductive setting. The representation of a node
v at layer k is defined as:

Mo = ReLU (Wy - mean ({re—1.} U {rg—1.4, Yu € sample(N'(v),ns)})), (5)

where W), is the matrix of parameters for the k-th layer, ReLU [122] is the
rectified linear activation function, mean is the function returning the mean
vector over a set of Vectorsﬂ and sample is a function randomly sampling a
subset of ng elements in the set of neighbors N/ (v). We then stack multiple
(dy) layers like the one of Eq. (f]), and a fully connected output layer. For more
details about the network, we refer the reader to the original paper [120]. The
DGNN has been trained using the Adam optimizer, minimizing the empirical
Binary Cross-Entropy (BCE(h)).

4In the original work [120] mean can be substituted with any aggregation operator.
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4.2. Deep Neural Networks for Face Recognition

For the facial recognition task, we rely on the VGGNet-16 convolutional
neural pre-trained network [123, Configuration D]. The peculiarity of the
VGG-based nets is that they exploit deeper architectures, leading to more
accurate results for a variety of different tasks, while maintaining low com-
putational requirements thanks to the use of small filters. In fact, stacking
convolution layers with small kernels is equivalent, yet less computationally
demanding, to use a single layer with larger kernels [123]. Moreover, the use
of multiple stacked layers allows to easily increase the non linearity of the
network by adding an activation function at each intermediate step (e.g. the
ReLU [122]) if compared to a single layer with larger kernel. The VGGNet-16
embeds the faces in a 25 088-dimensional vector space r by means of 14 mil-
lion parameters. The VGGNet-16 deployed in this work has been pre-trained
on the VGG-Face face recognition dataset [124]. Exploiting the VGGNet-16
embeddings it is possible to easily achieve almost state-of-the-art results, in
terms of accuracy, in multiple face recognition related tasks [125-H128].

Using VGGNet-16, allows us to test the effectiveness of our methods for
learning fair representations also in complex tasks which would require huge
amount of data and computational power for simply training the network.
Instead, using a pre-trained network allows us to start already from “good”
(in terms of accuracy) embeddings and then fine-tune them, exploiting differ-
ent alternatives and regularizers, toward the definition of “good” (accurate)
and “fair” (in terms of DDP) embeddings. In order to use the VGGNet-
16 embeddings for our final face recognition task, we stacked on top of the
embeddings a single hidden layer neural network (a universal approximator).
The hidden layer has a sigmoid activation and the output layer has a softmax
activation. The weights of these last layers are initialized randomly accord-
ing to a 0-mean and .0l-variance Gaussian distribution. The VGGNet-16
has been fine-tuned using the ADADELTA [129] minimizing the empirical
Binary Cross-Entropy (BCE(h)). Based on the final scope of the analysis, we
kept fixed or fine-tuned its weights (e.g. just the ones of the embedding or
also the deeper ones).

4.2.1. Visual Explanation

In order to visualize how the different DNNs for Face Recognition reacts
to the input images, we will exploit a state of the art Visual Explanation
tool: Grad-CAM [71]. Visual Explanation produces visual attention maps
(namely, heatmaps images) that highlight the most predictive image regions
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for a particular task. In our context, attention maps can graphically represent
any divergence between the heatmaps of images belonging to different pop-
ulations. More specifically, we extract the Grad-CAMs relative to the last
convolution layer (since it represents the face embedding/representations)
and analyze any difference based on the sensitive attribute.

Grad-CAM works as follows: fixed a prediction target Y, a non-normalised
network score Y; for the target Y (namely prior to the softmax activation at
the end of the DNN), a convolutional layer output A € RE*UV*V where we
extract the matrix A, € RVXV relative to the channel k € {1,--- K} (U, V
are the output matrices dimensions for any of the k channels), the gradient
Gy € RV of Y, with respect to Ay is then defined as

“= ok (6)

We can then obtain the importance weight of the dimension k£ with respect to
the class Y as the average ay;, across the convolutional layer matrix entries

(or pixels)
1 U v
Ay = W ; ; GY,k,i,j (7)

The latter quantity captures the importance of the channel & (across the
whole layer feature mapping) when trying to predict Y. Finally, the Grad-
CAM map with respect to a target Y is defined as Ly, namely the weighted
sum across all the dimensions &

Ly = RelLU (i CkyykAk> (8)

k=1

where the ReLU [122] simply suppresses the negative values highlighting the
interest for the features that have only a positive influence towards a certain
target.

Although gradient-based methods might not be the optimal solution for
visual explanation (e.g. saturation, zero-gradient image regions, and false
confidence in the output score phenomena [70]) the computational cost Grad-
CAMs is negligible compared to other methods that require multiple network
forward-passes per image [70, 130]. Moreover, in most recent works, Grad-
CAM is used as the baseline methods from improvements margins [I30H134].
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5. Deep Fair Neural Networks

In this section we will propose different approaches for imposing the fair-
ness constraint of Eq. into the DNNs described in Section

In particular, we propose to add the fairness constraint as regularizer
F(h), through the Tikhonov philosophy [37, 62], in the cost function to be
minimized for training the DNNs; together with the P(h), as follows

h* = arg mhin (1 = A)P(h) + AF(h), 9)

where A € [0,1] trades off accuracy and fairness as we will also see in Sec-
tion [6] Note that the constraint could have been imposed using the Ivanov
philosophy [I35], and the results would be the the following optimization
problem

h* = argmhin P(h), s.t.F(h) <n, (10)

where 1 € [0, 1] regulates the level of accepted fairness, which is cognitively
more close to the problem of imposing a certain level of fairness to the final
model. Nevertheless note that, for some values of 7 and A the two problems
are equivalent and that Problem @D is much less computationally demanding
with respect to Problem (10) [136]. Note also that setting n = 0 in Prob-
lem ([10) (or A — 1 in Problem (9)) to impose the DP, does not guarantees
fairness in terms of generalization since Problem (or Problem (9)) ex-
ploit empirical quantities. 7, A € [0, 1] allow to avoid to overfit the particular
sample.

As previously described, the constraint, and then the regularizers, can
act on the representation layers in different ways. On way is to impose the
constraint just on the last layer of the representation, namely F(h) — F(r).
The other way is to impose the constraint on all or some of the layers of the
representation, namely F(h) — F(r;|Vi € £) where £ C {1,--- ,l}.

Unfortunately, the constraint of Eq. is hard to handle and transform
in an effective yet computationally efficient regularizer. In this work, we
propose three different alternatives to reach this goal.

The first one is based on the work of [33], where a convex approximation
and relaxation of the constraint of Eq. is proposed. In particular, the
regularizer assumes the following form

AVG(r):é ID%I 3 r(Z)—ﬁ S w2 (11)

(Zy)eD! (Zy)eD? 1
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where || - ||; is the Manhattan norm, which means that the average repre-
sentation output, conditioned on the sensitive features, should be the same
independently from the sensitive features. Note that Eq. is the first
order approximation of Eq. (I).

This second and third regularizers are theoretically studied in [33] and
need some preliminary definitions to be defined. Let P(Z) be the set of
probability measures on Z. Let us define a metric as a function mapping
P(Z) x P(Z2) - R. Let K: Z x Z — R be a positive definite kernel
and let ¥ : Z — H be the corresponding feature map [137] where H is the
corresponding Hilber space. If P,Q € P(Z) we can define a metric, called

squared Maximum Mean Discrepancy (MMD) [65, [66], relative to the kernel
K as

MMD(P, Q) = [Ez~p¥(Z) — Ezo¥(Z) |- (12)

Moreover, the Optimal Transport (OT) problem with entropic regularization

(€) is defined as [13§]

OT.(P,Q)= min / |21 — 22]|%dm (21, 22) + eKL(7| P ® Q),e > 0 (13)
r€ll(PQ) | z2

where KL(7|P® Q) is the Kullback-Leibler divergence [I139] between the can-

didate transport plan 7 and the product distribution P ® @, and II(P, Q) =

{m € P(Z x 2Z)|m = P,my = Q}, with m; and 7y the marginals of 7. The

case € = 0 corresponds to the classic Optimal Transport problem introduced

by Kantorovich [140]. Sinkhorn divergence SNK is defined as

and was shown in [I41] to be non-negative, biconvex and to metrize the con-
vergence in law under mild assumptions. The Sinkhorn divergence is a fast
approximation of the Wasserstein distance which is a quite well suited way
of e to quantify how much two probability densities differ. The Wasserstein
distance has appealing geometrical properties but it also raises important
statistical and computational challenges [I38, 142, 143]. Sinkhorn diver-
gence is one of the state-of-the-art approaches that allows to overcame such
challenges [68]. Note that when € — 0 SNK(P, Q) converges to the Wasser-
stein distance [68]. Note also that when ¢ — oo, SNK(P, Q) converges to
MMD (P, Q)-like distance [141], [144].
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Surely other metrics could be exploited, but the best known metrics can-
not be effectively adopted in our work for reasons due to numerical or geo-
metrical problems. For example the Rényi divergence and Kullback-Leibler
divergence which show good statistical properties, including convexity and
continuity [139], can assume a value up to infinite, which make them hard to
exploit in practice, and are not able to well describe some properties, namely
they are not symmetric and do not satisfy the triangle inequality [139].

Now that we have defined these two metrics, we can show how to exploit
them to define a regularizer F able to impose the fairness constraint of Eq. .
First, note that the fairness constraint of Eq. forces the distribution of
the representation vector to be the same no matter the value of the sensitive
feature. This means that the distribution of the representation vector when
s = 1, namely P, should be equal to the one when s = 2, namely ). In
other words MMD(P, Q) = 0 or alternatively SNK(P, @) = 0. Unfortunately,
P and @ are unknown but, thanks to D' and D?, we have the corresponding
empirical distributions P and Q

'_%Z 0, _’LZ(;

eD? ZeD?

where 0 is the Dirac delta function. Then we can impose MMD(ﬁ’, Q) =0
or SNK(P, Q) = 0 which, as described above, is not the most effective way
of imposing the constraint since we risk to overfit our data. So we impose
to MMD(P, Q) or SNK(P,Q) to be small, or, in other words, we can set
F(r) = MMD(P, Q) or F(r) = SNK(P, Q) in Problem (7).

Note that MMD(P, Q) can be easily computed noting that

2 D K(r(Z).r(z)

Z,€DY ZpeD!

QPZ D K(r(Za).r(Z)

Z,€D? ZeD?

|D1||D2| YD K %)) (15)

Zo,€D Z,eD?

MMD(P, Q) = |D1|2

while the computation of SNK(p , Q) is a bit more complex since we have to
solve the optimization problem reported in Eq. for three cases OT (P, @),
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OT.(P, P), and OT.(Q,Q). The solution of the optimization problem, be-
cause of its convexity, can be solved iteratively using the Sinkhorn itera-
tions [67].

6. Experimental Results

In this section we will presents the results of applying the methodology
presented in Section |5| on the DNNs presented in Section 4| on real world
datasets.

6.1. Results on Graphs Datasets

In this section we will presents the results of applying the methodology
presented in Section |5l on the DNN for graphs presented in Section on
two real-world social network datasets: Pokec [73] and Marvel. The experi-
ments reported in this subsection were deployed on machines running Ubuntu
18.04.5 (LTS) OS equipped with 2 Intel Xeon E5-2650 @2.30 GHz CPUs and
160 GB of RAM. Our experiments have been coded in Python 3.8.5, and are
based on Deep Graph LibraryE] 0.5.3 and the PyTorch [145] 1.7 framework.
Note that we did not use GPUs for these experiments.

6.1.1. The Datasets

While during the last few years the number of popular on-line social net-
works has been steadily increasing, it is hard to access real-world data from
such social networks for research purposes. Pokec is the most popular on-line
social network in Slovakia. Its popularity has not changed even after the rise
of Facebook. Pokec released an anonymized version of the data of the whole
network, including user profiles and connections. We consider gender as the
sensitive attribute and marital status as the target (in this work, simplified
in the binary attribute single/in-a-serious-relationship). Our dataset, after
removing users with missing data, comprehends a total of 361,450 users:
184,862 males and 176, 588 females. Table [1| reports the statistics of this
dataset.

Given the lack of other similar resources in the literature, we decided to
study another kind of social network that closely resemble real-world ones
without posing any concern on user’s privacy: the Marvel universe [74]. To
mimic a real-world social network, we need both the graph structure and

Shttps://www.dgl.ai
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Single In a relationship senszltwe
marginals

Females 35.44 % 13.41 % 48.86 %
128117 48471 176588

Males 41.58 % 9.56 % 51.14 %

150293 34569 184862

class 77.02 % 22.98 %

marginals 278410 83040 361450

Table 1: Pokec dataset labels distribution when gender is chosen as sensitive feature and
marital status as target.

some features associated to the users. To this end, we built a novel dataset
merging two existing ones:

e The Marvel Universe [74] that encodes the Marvel characters as nodes
and connects them if they appear in at least one comic together. This
dataset, however, does not provide any information about the charac-
ters beside their name;

e Data behind the story Comic Books Are Still Made By Men, For Men,
and About Men[75)]. The dataset contains information about Marvel
and DC characters, including their gender, alignment (good, bad, neu-
tral) and other information.

We matched the characters in the two datasets using fuzzy string matching,
obtaining a social network where users have associated gender and alignment
information. While there may be a small amount of errors in the automatic
character matching between the two datasets, this is not relevant for our
purposes since it may be resembled to the noise intrinsically present in social
networks. We consider gender as the sensitive attribute, while our task will
be to predict the character’s alignment (for simplicity, we considered only
good and bad characters, removing neutral ones). The dataset is composed
by 2,612 characters: 745 females and 1,867 males. The dataset statistics are
reported in Table [2|

We split both datasets considering 50% of the nodes as the training set

and the other half as the test set.

6.1.2. How fair is the learned representation using different constraints?

In this section we evaluate the effectiveness of the different regularizers
in terms of effects on both the final Area Under ROC curve AUROC, and
fairness DDP on the test set. The reference case is always when no fairness
regularizer (NOR) is introduced (namely A = 0). Each constraint is applied
at either one of three different network representation layers: the first graph
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Bad Good sensitive

marginals

Females 10.00 % 18.52 % 28.52 %
261 484 745

Males 44.64 % 26.84% 71.48 %
1166 701 1867
class 54.64 % 45.36 % 92612

marginals 1427 1185

Table 2: Marvel dataset labels distribution when gender is chosen as sensitive feature and
alignment as target.

convolutional layer (FCL), the second (and last) graph convolutional layer
(LCL), and the output layer (OUT). As previously described in Sections
and [3] in order to create a fair deep model we can impose the constraint just
on the output or in one or more of the deeper layers. Specifically, the latter
allows one to extract a data representation able to automatically deliver fair
models. For our experiments, we applied the constraints in a subset of all the
many possibilities since all the possibilities cannot be explored due to space
constraints. This subset is still general enough to be applied also in other
applications, as well as architectures. We train the graph neural network for
10 epochs, and we report the mean of 10 repetitions of the experiment. We
sample 25 neighbors for each GraphSAGE layer. We use the Adam optimizer,
64 neurons for each graph convolutional layer and a batch size of 512.

Let us now analyze our results starting from the Pokec dataset. Figure
reports the AUROC, against the DDP for the different constraints (AVG, SNK,
and MMD) applied on the different layers of the Graph DNN (NOR, FCL,
LCL, and OUT) when different values of A are exploited. Figure (13 clearly
shows the effectiveness of the proposed approaches in learning fair models.
Each constraint forces the network to discard an increasing amount of sen-
sitive information as the regularization parameter A (Eq. (9)) strengthen,
resulting in fairer but less accurate predictions. Note that all constraints
works quite well but, in our experimental setting AVG and MMD resulted
the most effective one, significantly improving the DDP (obtaining a value
< 0.02 compared to 0.11 of NOR) without compromising the AUROC, (losing
just around 2% performance w.r.t. NOR). The SNK method, while slightly
less effective compared to the others, still performs quite well when the fair-
ness constraint is applied to the first graph convolution layer (FCL). Let us
now consider the Marvel dataset. Figure [Lb| reports, similarly as before, the
AUROC, against the DDP for the different constraints and applying the fair-
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ness constraint on different layers of the Graph DNN. Note that in this case,
the model without fairness constraints (NOR) is very unfair, with a DDP of
0.64. While also in this case we can obtain substantially fairer models with
all the considered fairness constraints, AVG provides consistently good re-
sults no matter where we insert the fairness constraint in the network. SNK
constraint shows good performance as well, while being slightly less effective
than AVG. MMD shows good performance with FCL and LCL, while OUT
seems to be less effective in reducing the DDP.

6.1.3. Is the fair representation able to “forget” the sensitive attribute?

In this section, we focus on a setting similar to the one in previous section
but instead of comparing the AUROC, against the fairness DDP, we will com-
pare AUROC, against the performance in reconstructing the sensitive feature
AUROC;. In other words, we will test how much the fair representation is
able to “forget” the sensitive attribute. To compute AUROC;, we train an
SVM on the hidden representation and we optimize the SVM regularization
hyperparameter via a 5-fold cross validation on the training set.

Figure [2| reports the AUROC, against the AUROC; for the different con-
straints (AVG, SNK, and MMD) applied on the different layers of the Graph
DNN (NOR, FCL, LCL, and OUT) when different values of A\ are exploited
for both the analyzed graphs datasets.

Figure[2|shows that all the fairness constraints work quite well in reducing
the AUROC,. On both datasets, AVG and MMD achieve an AUROC; close to
0.5 without much reducing the AUROC,. SNK, while performing well, cannot
achieve AUROC, as low as the other two methods. Moreover, we can observe
that increasing the A parameter (thus the weight assigned to the fairness
constraint in the loss) always results in a decrease on the reconstruction of
the sensitive feature AUROC,. Note that by increasing the A parameter, all
methods are able to achieve an AUROC, of 0.5. However, if the resulting
AUROC, was too low, we decided not to report them to not impact the
readability of the plots, since those models are not interesting due to the
low predictive performance. In general, we can conclude that the models
that exhibited good fairness values in the previous section also encode few
information about the sensitive attribute in the representation they learn.

6.2. Results on Face Recognition Datasets

In this section we present the results of applying the methodology pre-
sented in Section [5to the DNN for Face Recognition presented in Section
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Figure 1: Graph DNNs on the Pokec and Marvel Datasets: AUROC, against the DDP
for the different constraints (AVG, SNK, and MMD) applied on the different layers of the
DNN (NOR, OUT, FCL, and LCL) when different values of A are exploited.
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Figure 2: Graph DNNs on the Pokec and Marvel Datasets: AUROC, against the AUROC,
for the different constraints (AVG, SNK, and MMD) applied on the different layers of the
DNN (NOR, OUT, FCL, and LCL) when different values of A are exploited.
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on the real-world FairFace dataset [72]. These experiments are deployed
on an Ubuntu 18.04.5 (LTS) OS-based server equipped with an Intel Xeon
@2.30GHz dual core CPU, 12GB of RAM and one NVidia Tesla T4 GPU.
Experiments have been coded in Python 3.7 leveraging on the PyTorch 1.7
framework.

6.2.1. The Dataset

FairFace dataset [72] is a collection of ~100 thousand facial images ex-
tracted from the YFCC-100M Flickr dataset [146]. It also provides age
groupff, gender, and ethnicityf} Gender and Ethnicity can be used as sen-
sitive attributes. Our task consists in predicting whether a face belongs to
a person with more (+1) or less (-1) than 30 years old adopting binary sex
(Females and Males) or selecting two categories from ethnicity (in our exper-
iments, Blacks and Western Whites). Table |3| reports some statistics about
the FairFace dataset when gender or ethnicity are chosen as sensitive features.
The training and test sets are composed of 86.7 thousand and 10.9 thousand
images respectively (same split as in the original paper [72]) when gender is
exploited as sensitive feature, while they will be composed of 28.7 thousand
and 3.6 thousand respectively when considering the binary ethnicity (Blacks
and Whites) sensitive feature.

6.2.2. How fair is the learned representation using different constraints?

In this section, analogously to what have been done for the DNNs for
Graphs, we evaluate the effectiveness of the different regularizers in terms
of effects on both the final accuracy ACC, and fairness DDP on the test set.
The reference case is always when no fairness regularizer (NOR) is introduced
(namely A = 0). Each constraint is applied at either one of three different
network layers: the output layer (OUT), the first dense layer (FDL), and
the last convolution layer (LCL). The same considerations that we did for
the graph labelling experiments also apply here: also in this case we chose
to apply the fairness regularizers in a subset of all the many possibilities,
which cannot be explored due to space constraints, that is general enough to

6The groups are [0-2], [3-9], [10-19], [20-29], [30-39], [40-49], [50-59], [60-69], and [70+].

"For this dataset, the attribute gender refers to the perceived binary phisical sex (Male
and Female) of an individual.

8 The different ethnicities are Western White, Middle Eastern White, East Asian,
Southeast Asian, Black, Indian, and Latinx.
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Age >30 | Age <30 sensitive
marginals
Femal 18.60 % 28.40 % 47.00 %
emates 18174 27746 45920
Males 27.21 % 25.79 % 53.00 %
26587 25191 51778
class 45.82 % 54.18 %
marginals 44761 52937 97698
(a) Sensitive features: Gender
Age >30 | Age <30 || Sersiive
marginals
Blacks 18.1 % 24.5 % 42.6 %
5862 7927 13789
. 29.5 % 27.9 % 57.4 %
Whites 9559 9053 18612
class 47.6 % 52.4 % .
marginals 15421 16980 32401

(b) Sensitive features: Ethnicity

Table 3: Fairface dataset labels distribution when gender or ethnicity are chosen as sensi-
tive features.

be exploited also in other architectures and applications. Each experimental
run exploits a random selection of 20 thousand training and 10 thousand test
images from the training and test sets respectively. We train every model for
a total of 10 epochs using the ADADELTA [129] with mini batches of 200
images. The layers until the last convolution one excluded have not been
fine-tuned.

Figure |3 reports the ACC, against the DDP for the different constraints
(AVG, SNK, and MMD) applied on the different layers of the DNN for for
Face Recognition (NOR, OUT, FDL, and LCL) when different values of A
are exploited. Both the cases when gender and ethnicity are considered
as sensitive feature are reported. Figure (3| clearly shows the effectiveness
of the proposed approaches in learning fair models. Each constraint forces
the network to discard an increasing amount of sensitive information as the
regularization parameter A (Eq. @D) strengthen, resulting in fairer but less
accurate predictions. Note that all constraints work quite well but, in our
experimental setting MMD resulted to be the most effective one, namely the
one which improves more the DDP without compromising the ACC,. SNK
resulted to be the worst performing method (especially when applied to LCL)
while AVG performs averagely well.
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Figure 3: DNNs for Face Recognition on the FairFace dataset: ACC, against the DDP
for the different constraints (AVG, SNK, and MMD) applied on the different layers of the
DNN (NOR, OUT, FDL, and LCL) when different values of A are exploited.
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6.2.3. Is the fair representation able to “forget” the sensitive attribute?

In this section, we focus on the very same setting of the previous section
but, instead of comparing the final accuracy ACC, against the fairness DDP,
we will compare ACC, against the sensitive accuracy ACC;.

Figure @ reports the ACC, against the ACC; for the different constraints
(AVG, SNK, and MMD) applied on the different layers of the DNN for for
Face Recognition (NOR, OUT, FDL, and LCL) when different values of A
are exploited. Both the cases when gender and ethnicity are considered as
sensitive features are reported. Figure 4| clearly shows the effectiveness of the
proposed approaches in forgetting the sensitive feature from the representa-
tion. Each constraint forces the network to forget an increasing amount of
sensitive information as the regularization parameter A strengthen, resulting
in fairer but less accurate predictions. Also in this case, all constraints work
quite well, analogously to what have been seen for ACC, against the DDP ex-
cept for the case when the constraint is applied on FDL and OUT. In these
cases, the effect on the representation is less evident due to the fact that
we are not imposing the constraint directly on the LCL (the representation
layer). This was expected from theory and in fact the effect here is quite
evident.

6.2.4. Visualizing the Effects of the Fairness Constraints by means of Visual
Ezplanation

In this section, we aim at assessing a possible discriminatory attention
behavior carried out by the DNNs for face recognition (see Sections and
observe whether the application of different fairness regularizers produces
less discriminatory attention mechanisms.

In our visualization experiments, in order to standardize the image face
regions, we exploit a set of 50 thousand images of frontal faces extracted
from the Diversity in Faces dataset as proposed in [147].

Firstly, we want to analyze the dataset average attention map to as-
sess whether the trained DNNs show any discriminatory attention behaviors.
Hence, for each face we extract the attention map corresponding to the LCL
using Grad-CAM. Then, we take the average attention map of both males
and females. Finally we compute the difference between these two average
attention maps through the Frobenius distance [148].

More formally, for each image in the dataset we compute Ly (see Sec-
tion 4.2.1). Then, we define M, € RV*Y with s € {males, females}, as
the averaged Ly for each subgroup (males, females) in the populations and
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Figure 4: DNNs for Face Recognition on the FairFace dataset: ACC, against the ACC,
for the different constraints (AVG, SNK, and MMD) applied on the different layers of the
DNN (NOR, OUT, FDL, and LCL) when different values of A are exploited.
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Figure 5: Males, Mtemales; and FRO(Mpates; Mtemales) for the different constraints (AVG,
SNK, and MMD) applied on the different layers of the DNN for for Face Recognition (NOR,
OUT, FDL, and LCL) for A which showed the best accuracy/fairness trade-off (i.e. the
best DDP allowing a maximum of 5% of loss in ACC,).

compute thee Frobenius distance of M aes and Miemales

\%
FRO(MmaleS7 Mfemales) = Z (Mmales,i,j - Mfemales,i,j>2 (16>

i=1 j=1

Figure [5| reports Mates, Miemates, and FRO(Myates; Miemates) for the dif-
ferent constraints (AVG, SNK, and MMD) applied on the different layers of
the DNN for for Face Recognition (NOR, OUT, FDL, and LCL) for A which
showed the best accuracy/fairness trade-off (i.e. the best DDP allowing a
maximum of 5% of loss in ACC,)).

Figure [5| clearly shows the positive effect of each one of the different
regularizers in reducing the networks’ discriminatory attention mechanism,
which is quite evident when no fairness regularizer is imposed.
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Old Female Old Male Young Female Young Male

Original Face

NOR Grad-CAM

LCL Grad-CAM

Figure 6: Examples of attention maps for a young (Y = —1) male, for a young (Y = —1)
female, an old (Y = 1) male, and for an old (Y = 1) female before (NOR) and after (LCL)
the application of the fairness constraint. Results show the use of the MMD constraint
with A = 250 which showed the best accuracy /fairness trade-off.

For sake of completeness, we also report in Figure@ for a young (Y = —1)
male, for a young (Y = —1) female, an old (Y = 1) male, and for an
old (Y = 1) female their attention map before (NOR) and after (LCL) the
application of the fairness constraint. Due to space limitations, we report just
the results with the MMD and A = 250 which show the best accuracy/fairness
trade-off.

Figure [6] shows how the fairness regularizer is able to restrict the DNN
receptive field to class-specific face regions. These face areas can present
distinctive traits for age related tasks: a network activation in the eyes region
is observed as an indicator for the negative class (age less than 30), while
a strong activation on the skin portion below the nose, on the cheeks, and
around the mouth represents a clear trait of the positive class (arguably, these
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area are the most affected from seniority-related markers, as the presence of
wrinkles or beard).

7. Conclusions

In this work, we focused our attention on the problem of algorithmic
fairness, namely developing Al-based systems which do not discriminate with
respect to one or multiple notions of inequity. A challenge exists between
the race for superior performance in Al-based systems and the effort to not
inherit also the human biases hidden in the data.

We considered a particularly challenging task: how to make models for
structured input data (graphs and images) fairer. We addressed this issue by
means of learning fairer representations that are on the one hand expressive
enough to well describe the data and lead to highly accurate models, while
on the other hand are simultaneously able to discard the information which
may lead to unfair behaviors. Exploiting the fairness notion of Demographic
Parity, we investigate how to impose these fairness constraints in the different
layers of deep neural networks for complex data through the use of different
regularizers.

We present experiments on different real-world datasets, showing the ef-
fectiveness of our proposal both quantitatively by means of accuracy and
fairness metrics and qualitatively by means of visual explanation.

In the future, we plan to extend our work to a larger number of archi-
tectures and datasets, providing more insights and guidelines on the best
practice of building fairer models for complex input data. Moreover, we will
investigate the possibility of including human oriented requirements, such as
robustness and privacy.
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