
ar
X

iv
:2

10
7.

05
29

8v
1

 [
cs

.L
G

]
 1

2
Ju

l 2
02

1

HEMP: High-order Entropy Minimization

for neural network comPression

Enzo Tartaglionea,1, Stéphane Lathuilièreb, Attilio Fiandrottia,b, Marco Cagnazzob,

Marco Grangettoa

aUniversity of Torino, Torino, Italy
bTélécom Paris, Paris, France

Abstract

We formulate the entropy of a quantized artificial neural network as a differentiable

function that can be plugged as a regularization term into the cost function minimized

by gradient descent. Our formulation scales efficiently beyond the first order and is

agnostic of the quantization scheme. The network can then be trained to minimize

the entropy of the quantized parameters, so that they can be optimally compressed via

entropy coding. We experiment with our entropy formulation at quantizing and com-

pressing well-known network architectures over multiple datasets. Our approach com-

pares favorably over similar methods, enjoying the benefits of higher order entropy es-

timate, showing flexibility towards non-uniform quantization (we use Lloyd-max quan-

tization), scalability towards any entropy order to be minimized and efficiency in terms

of compression. We show that HEMP is able to work in synergy with other approaches

aiming at pruning or quantizing the model itself, delivering significant benefits in terms

of storage size compressibility without harming the model’s performance.

Keywords: deep learning, compression, entropy, neural networks, regularization

1. Introduction

Artificial Neural Networks (ANNs) achieve state-of-the-art performance in several

tasks via complex architectures with millions of parameters. Deploying such architec-

tures over resource-constrained devices such as mobiles or autonomous vehicles entails

tackling a number of practical issues. Such issues include tight bandwidth and storage

caps for delivering and memorizing the trained networks and limited memory for its

deployment. Let us assume a neural network has to be deployed to a device such as a

smartphone or an autonomous car over a wireless link. Downloading the network may

exhaust the subscriber’s traffic plan, plus the downloaded network will take storage

on the device that will be unavailable to other applications. In an autonomous driving

context, safety-critical updates may be delayed due to the limited bandwidth available

∗Corresponding author

Email address: enzo.tartaglione@unito.it (Enzo Tartaglione)

Preprint submitted to Neurocomputing July 13, 2021

http://arxiv.org/abs/2107.05298v1

Dataset

Quantizer

Loss

Regularization

Encoder

Compressed
Model

Continuous

Quantized

Figure 1: Proposed approach for neural network compression. At training time, we employ two parametriza-

tions of the same neural network: continuous parameters are used for loss minimization, while quantized

parameters are used for high-order entropy estimation. A regularization term enforces consistency between

the neuron activations of the networks and a low entropy of the quantized network. The final model is

obtained using any entropy-based encoder.

over the wireless channel [1]. Such examples show the importance of efficiently com-

pressing neural networks for transmission and storage purposes.

Multiple approaches have been proposed to compress neural networks. A first ap-

proach consists is designing the network topology from the ground up to encompass

fewer parameters [2, 3]. Needless to say, this approach requires designing novel topolo-

gies from scratch. A second approach consists in pruning some parameters from the

network, i.e. removing some connections between neurons [4, 5, 6], yielding a sparse

topology. Pruning might reduce the memory footprint [7, 8, 9], however it does not

necessarily minimize storage or bandwidth requirements. A third approach consists in

quantizing the network parameters [10, 11, 12], possibly followed by entropy-coding

the quantized parameters. Similar approaches achieve promising results, however most

quantization schemes just aim at learning a compressible representation of the param-

eters [12, 13, 8] rather than properly minimizing the compressed parameters entropy.

Indeed, the entropy of the quantized parameters is not differentiable and cannot be eas-

ily minimized in standard gradient descent-based frameworks. In this work, we tackle

the problem of compressing a neural network by minimizing the entropy of the com-

pressed parameters at learning time. Enhancing model’s compressibility we are able to

reduce required bandwidth for bit streaming as well as storage required. Deep models

are redundant [14, 15]: hence, there is a overhead in the deep model’s representation,

which can be hereby compressed.

This work introduces HEMP, a method that relies on high-order entropy minimiza-

tion to allow for efficiently compression of the parameters of a neural network. The

proposed method is illustrated in Fig. 1. The main contribution of HEMP is the dif-

ferentiable formulation of the quantized parameters’ entropy, which can be extended

beyond first-order with finite computational and memory complexity. Namely, HEMP

relies on a twin parametrization of the neural network: continuous parameters and the

corresponding quantized parameters, where the entropy of the latters is estimated from

the entropy of the former. We design a regularization term around our entropy formu-

2

lation that can be plugged into gradient descent frameworks to train a network to mini-

mize the entropy of the quantized parameters No assumptions are made on the quanti-

zation scheme (including non-uniform quantization), nor entropy coding scheme, that

are not part of the proposed method and towards which our method is totally agnostic.

Other techniques like ℓ1 norm or rank-based ones aim at removing parameters: this

has a different effect on the distribution of the parameters. Indeed, while these other

approaches maximize the frequency of the pruned parameters, which are still encoded

with zeros, HEMP is more general as it is able to enhance the compressibility of any

quantized representation for the values.

We experiment with different quantization and entropy coding scheme showing that

training a network to minimize the 2-nd order entropy of the quantized parameters is

already sufficient to outperform state-of-the-art competing schemes.

The rest of the paper is organized as follows. Sec. 2 reviews state-of-the-art ap-

proaches in network compression, Sec. 3 introduces the proposed high-order entropy

regularizer, and the overall training procedure is described in Sec. 4. Experimental

results are discussed in Sec. 5 and finally, in Sec. 6 conclusions are drawn.

2. Related works

A lot of work has been done around neural network size reduction. In general, we

can group them into three large categories, according to their primary goal.

Minimizing the architecture. Focusing from the architectural point of view, it is pos-

sible to design some memory-efficient deep networks, typically relying on strategies

like channel shuffling, point-wise convolutional filters, weight sharing or a combina-

tion of them. Some examples of customized deep networks towards memory footprint

reduction are SqueezeNet [2], ShuffleNet [16] and MobileNet-v2 [3]. Recently, a huge

interest in automatically reducing the shape of the deep networks has gained interest,

with works on neural network sparsification [4, 5, 6, 17] boosted by the recent lottery

ticket hypothesis by Frankle and Carbin [18]. These approaches address the problem

of improving inference efficiency with limited memory footprint, but do not directly

tackle the problem of reducing stored model size.

Minimizing the computation. Recently, this topic is collecting ever-increasing interest.

While deepening its roots in statistical physics, some works exploited low-precision

training in artificial neural networks [7, 19, 20]. A large number of works attempts

to also use low-precision back-propagation signals and low-precision activations, as it

leads to lower power consumption at inference time [21, 9, 8]. These techniques, how-

ever, do not explicitly address the problem of minimizing the storage size of the entire

model.

3

Minimizing the stored model’s memory. Here the main goal is not to modify the ar-

chitecture of a deep model, but to merely compress it, to reduce its stored size: while

the other two approaches focused on somehow changing the architecture of the deep

model to simplify it and/or to reduce its memory footprint, here the objective is to com-

press a stored model with no architectural change. Towards this end, many approaches

have been proposed: context-adaptive binary arithmetic coding [12], learning the quan-

tized parameters using the local reparametrization trick [22], cluster similar parameters

between different layers [11], using matrix factorization followed by Tucker decompo-

sition [10], training adversarial neural networks towards compression [23] or employ-

ing a Huffman encoding scheme [24] are just some of them. Recently, Oktay et al.

proposed an entropy penalized reparametrizations to the parameters of a deep model,

which leads to competitive compression values sacrificing a little bit the deep model’s

performance [13]. However, their approach has some training overhead, like the fact

they require to train a decoder, they make their formulation differentiable through the

use of straight-through estimators (STE). The big advantage provided by their approach

relies more in the re-parametrization leading to the quantization strategy, but the com-

pressibility of their quantized parameters is limited to arithmetic coding.

Deep learning based compression schemes proposing a direct high entropy-based reg-

ularizer are difficult to design because of the non-differentiability of the entropy and

its computational heaviness. All the discussed methods do not explicitly minimize

the final compressed file size but they are limited to rigid quantization and compres-

sion schemes [12] or they build dictionaries on-purpose [24], losing generality. In the

next section, we introduce our efficient and differentiable n-th order entropy proxy,

to be used in the HEMP framework: it can be freely associated to any quantization

strategy and any entropic compression algorithm. Differently to the work by Wiede-

mann et al. [12], HEMP is not bound to a particular quantization scheme, and provides

a direct, scalable and differentiable entropy estimator on the continuous parameters.

3. Entropy-based regularization

In this section, we describe our entropy-based framework for quantization. We

introduce a regularization formulation that uses a differentiable entropy proxy, evalu-

ated on the continuous parameters of the model, to indirectly reduce the compressed

size of the quantized network. We will show that this term easily scales-up to any en-

tropy orders, thus improving the compression efficiency of actual algorithms such as

dictionary-based compression.

3.1. Preliminaries

Here, we introduce preliminaries and notations. Let a feed-forward, multi-layer

artificial neural network be composed of L layers. Let wl,i ∈ R be the i-th parameter

of the l-th layer. Let us assume all ANN parameters are quantized onto N discrete

levels, with:

• quantization index ql,i ∈ [1, N] for every parameter wl,i;

• reconstruction (or representation) levels rl(k), k = 1 . . . N ; as shown in the

following, every layer of the ANN model gets its own optimized set of recon-

struction levels.

4

Table 1: Overview on the notation used in this work.

Symbol Meaning

wl,i i-th (continuous) parameter in the l-th layer

ŵl,i i-th (quantized) parameter in the l-th layer

ql,i quantization index corresponding

to the i-th parameter in the l-th layer

N quantization levels

ξ generic quantization index in range [1;N]
p(ŵl,i → ξ) probability that the quantized representation

of wl,i will have ξ as quantization index

Ĥn n-th order entropy on the quantization indices

Hn differentiable proxy of Ĥn proposed

within HEMP

From these, we get the quantized parameters ŵl,i according to

ŵl,i = rl(ql,i). (1)

Table 1 collects the most recurring symbols of this section. Please notice that multi-

dimensional versions of the symbols are in bold.

Now, let us consider ŵn as the n-uples of the quantized parameters, where ŵn
j is the j-

th n-uple of quantized parameters. In general, the n-th order entropy on the quantized

model is

Ĥn = −
∑

ξ

p(ŵn → ξ) log2 p(ŵ
n → ξ), (2)

where ‖W‖0 (L0-norm) is the total number of parameters, ξ ∈ [1;N]n and, using the

chain rule, we can express p(ŵn → ξ) as

p(ŵn → ξ) =
n

‖W‖0

∑

j

n∏

m=1

p

[
ŵn

j,m → ξm

∣∣∣∣∣
m−1⋂

s=1

(
ŵn

j,s → ξs
)
]
. (3)

In (3), the “probability” of the event ŵn
j,m → ξm is

p(ŵn
j,m → ξm) = 1ξm (ql,i) (4)

where 1ξ(·) is the indicator function. Minimizing (2) results in maximizing the final

compression for the quantized model when using an entropic compression algorithm

([25, 26]). Unfortunately, the problem in minimizing (2) within a gradient descent

based optimization framework lies in the non-differentiability of (4). In the next section

we introduce a differentiable proxy for (4) which directly optimizes the continuous

parameters wl,i such that their quantization is highly compressible.

3.2. Differentiable n-th order entropy regularization

In the previous section we have stated the impossibility of directly optimizing (2)

using gradient descent-based techniques because of the non-differentiability of (3). We

5

Figure 2: Visual representation of (7).

are going to overcome this obstacle providing a formulation of (3) based on the distance

between the continuous parameter wl,i and its quantized reconstruction ŵl,i. Here on,

we will drop the subscript l, but in general all the layers have different reconstruction

levels.

Let us define first the distance between a parameter wi and the reconstruction level

r(ξ):
d[wi, r(ξ)] = |wi − r(ξ)| (5)

From (5), we can estimate the probability of binningwi to ξ using the softmax function:

p(wi → ξ) =
e−d[wi,r(ξ)]

∑
j e

−d[wi,r(j)]
(6)

Such general formulation is computationally expensive, so we propose an efficient ap-

proximation thereof exploiting a “bin locality” principle, for which we say that a pa-

rameter wi can be binned to the two closest bins only. Under the assumption of quasi-

static process, indeed, locally the probability of binning the continuous parameter wi

in other bins than the two closest between two iteration steps can be neglected. We

refer to these bins as qi,− and qi,+. In this case, we know wi ∈ [r(qi,−); r(qi,+)]. Here

we can design a relative distance linearly-scaling probability:

p(wi → ξ) =





1−
wi−r(qi,−)

∆i
ξ = qi,−

1−
r(qi,+)−wi

∆i
ξ = qi,+

0 otherwise

(7)

where ∆i = r(qi,+) − r(qi,−). Figure 2 displays the behavior of (7). Hence, the

binning probability in (7) scales as the relative distance from the center of the bin. If

we combine (7) with (4) and, finally, with (2), we obtain

Hn =
n

‖W‖0

∑

ξ






∑

j

p(wn
j → ξ)


 ·

·


log2(‖W‖0)− log2(n)− log2

∑

j

p(wn
j → ξ)





 (8)

6

where

p(wn
j → ξ) =

n∏

m=1

p

[
wn

j,m → ξm

∣∣∣∣∣
m−1⋂

s=1

(
wn

j,s → ξs
)
]

(9)

3.3. Study of the entropy regularization term

In this section we are detailing the derivations of the proposed entropy regulariza-

tion. Obtaining an explicit formulation for the update terms allows to efficiently imple-

ment the update rule explicitly (when using gradient-based optimizers, without relying

on the automatic differentiation packages) and to study both the stationary points of the

regularization term and bounds of the gradient respectively.

3.3.1. Explicit derivation of the entropy regularization term’s gradient

Let us consider here the first order entropy proxy:

H1 = −
∑

ξ

p(w → ξ) log2 [p(w → ξ)] (10)

with

p(w → ξ) =
1

‖W‖0

∑

i

p(wi → ξ) (11)

Let us differentiate (10) with respect to wi:

∂H1

∂wi

= −
∂

∂wi




∑

ξ

p(w → ξ) log2 [p(w → ξ)]





= −
∑

ξ

{
∂

∂wi

[p(w → ξ)] · log2 [p(w → ξ)] + p(w → ξ) ·
∂

∂wi

log2 [p(w → ξ)]

}

= −




∑

ξ

∂

∂wi

[p(w → ξ)] · log2 [p(w → ξ)] +

+
∑

ξ

p(w → ξ) ·
∂

∂wi

log2 [p(w → ξ)]



 . (12)

According to (7), we can write

∂H1

∂wi

= −




∑

ξ

∂

∂wi

[p(w → ξ)] · log2 [p(w → ξ)] +

+
∑

ξ={qi,−,qi,+}

p(w → ξ) ·
∂

∂wi

log2 [p(w → ξ)]

}
, (13)

7

and considering that

∂

∂wi

p(w → ξ) =





− 1
‖W‖0∆i

ξ = qi,−

1
‖W‖0∆i

ξ = qi,+

0 otherwise

(14)

where

∆i = r(qi,+)− r(qi,−), (15)

we have

∂H1

∂wi

= −
∑

ξ={qi,−,qi,+}

{
∂

∂wi

[p(w → ξ)] · log2 [p(w → ξ)]

}

=
1

‖W‖0∆i

log2
p(w → qi,−)

p(w → qi,+)
. (16)

Using a similar approach, we can explicitly write the gradient for the n-th order entropy

term in (8):

∂Hn

∂wn
j,m

=
n

∆n
j,m‖W‖0

log2





∏

{ξ}j , ξm=ξn
j,m,−

p(wn
j → ξ)

∏

{ξ}j , ξm=ξnj,m,+

p(wn
j → ξ)





(17)

where {ξ}j indicates the set of ξ whose binning probability for wn
j is non-zero.

Having (17) explicit enables efficient gradient computation: indeed, given the designer

choice in (7), every n-uple of parameters has 2n possible quantization indices n-uples

{ξ} only, which is independent on the number of quantization levels N . On the con-

trary, using (6) would result in Nn possible quantization indices n-uples ∀w
n
j . Hence,

out proposed approach allows us to save (N/2)n× memory at computation time.

For sake of simplicity, the following analysis on stationary points and boundaries will

be performed on the first order entropy, but similar conclusions can be equivalently

drawn for any n-th order.

3.3.2. Stationary points for H1

In this section we are looking for H1 stationary points (or in other words, when

gradient vanishes). From (16) we observe that

∂H1

∂wi

= 0 ⇔ p(w → qi,−) = p(w → qi,+), (18)

assuming ∆i, ‖W‖0 finite positive numbers. We can make wi explicit in the condition

(18):

[p(wi → qi,+)− p(wi → qi,−)] = Ki,+ −Ki,− (19)

8

Figure 3: Gradient vanishing condition for both p(wi → qi,−) (in cyan) and p(wi → qi,+) (in violet).

where

Ki,+ =
∑

j 6=i

p(wj → qi,+)

Ki,− =
∑

j 6=i

p(wj → qi,−) .

According to (7), we can rewrite (19) as

p(wi → qi,+) =





1

2
(Ki,+ −Ki,− + 1) if (Ki,+ −Ki,−) ∈ [−1;+1]

∄ otherwise

(20)

because p(wi → qi,+) ∈ [0; 1] by definition. As we expect, if qi,+ and qi,− are evenly

populated, Ki,+ = Ki,− and the stationary point of ∂H1

∂wi
is

p(wi → qi,+) = p(wi → qi,−) =
1

2

which results in

wi =
1

2
[r(qi,+) + r(qi,−)] , (21)

exactly between the centre of the two bins. From the entropy point of view, this is

essentially what we expect, since we have two equi-populated bins; however, this is

not what we like to have when we quantize a deep network, considering that it leads to

an high quantization error. For this reason, favoring solutions in which p(wi → ξ) 6= 1
2

is a good strategy and this is also the reason we included a reconstruction error in the

overall regularization function.

9

0.0 0.2 0.4 0.6 0.8 1.0

p(w → qi,−)

1.0

0.8

0.6

0.4

0.2

0.0

p
(w

→
q
i,
+
)

0

+∞

Figure 4: Plot of the absolute upper bound (22) for
∂H1

∂wi
as a function of p(w → qi,−) and p(w → qi,+).

In black we represent regions out of the considered domain.

3.3.3. Bound for H1’s derivative

In this section we are looking for an upper bound of ∂H1

∂wi
and we study the cases in

which such quantity explodes, in order to assess conditions to avoid gradient explosion.

We can set the bound for the gradient magnitude as:

∂H

∂wi

≤

∣∣∣∣
1

∆i‖W‖0
log2

p(w → qi,−)

p(w → qi,+)

∣∣∣∣ . (22)

Considering that ‖W‖0 ∈ N and that ∆i > 0 (so, both are finite, real-valued quanti-

ties), we are interested to guarantee

∂H

∂wi

≤
1

∆i‖W‖0

∣∣∣∣log2
p(w → qi,−)

p(w → qi,+)

∣∣∣∣ < K (23)

where K is a positive real-value finite number. Given p(w → ξ) ∈ [0; 1], let us study

the cases in which such quantity explodes.

• Case
p(w→qi,−)
p(w→qi,+) → 0+. In this case we have p(w → qi,−) → 0+ and p(w →

qi,+) 6= 0. According to (16) wi ∈ [r(qi,−); r(qi,+)); so at least one parameter

lies in the considered interval and the condition is impossible by construction.

• Case
p(w→qi,−)
p(w→qi,+) → +∞. In this case we have p(w → qi,+) → 0+ and p(w →

qi,−) 6= 0. Similarly to the previous case, wi ∈ [r(qi,−); r(qi,+)); so at least

one parameter lies in the considered interval and the condition is impossible by

construction.

10

Figure 5: Schematic representation of HEMP.

• Case
p(w→qi,−)
p(w→qi,+) → 0+

0+ . By construction, wi ∈ [r(qi,−); r(qi,+)) so this case is

impossible.

In the next section we will describe the overall HEMP framework.

4. Training scheme

The overall training scheme is summarized in Fig. 5 and includes a quantizer and

an entropy encoder. The quantizer generates the discrete-valued representation Ŵ of

the network parameters at training time. The encoder produces the final compressed

file embedding the deep model once the training is over. Our scheme does not make

any assumption about the quantization or entropy coding scheme, contrarily to other

strategies tailored for, e.g., specific quantization schemes ([24, 12]). Therefore, in the

following we will assume a very general, non-uniform Lloyd-max quantizer, while we

will not make any assumption about the entropy encoder for the moment as it is external

to the training process. Our learning problem can be formulated as follow: given

a dataset and a network architecture, we want to compress the network parameters

W , while preserving the network performance as measured by some loss function L.

Towards this end, we introduce the following regularization function:

R = λHHn + λEE (24)

where λH and λE are two positive hyper-parameters and

E =

√
1

‖W‖0

∑

l

∑

i

[wl,i − rl(ql,i)]
2

(25)

is a reconstruction error estimator. Minimizing E makes wl,i → ŵl,i and, for instance,

loss evaluation on the continuous parameters network approaches the loss estimated on

11

the quantized network. Overall, we minimize the objective function:

J = L+R (26)

Minimizing J requires finding the right balance between L and R: towards this end,

we propose to dynamically re-weightR according insensitivity of each parameter ([5]).

The key idea here is to re-weight the regularization gradient ∂R
∂wl,i

at every parameter

update depending on the sensitivity of the loss L with respect to every parameter. We

say that the larger the magnitude of the gradient of the loss with respect to wi, the

smaller the perturbation from the minimization induced by R we desire. Hence, in the

update of the parameter wl,i, we re-weight the gradient of R by the insensitivity:

S̄l,i = 1−

∣∣∣ ∂L
∂wl,i

∣∣∣

maxj

{∣∣∣ ∂L
∂wl,j

∣∣∣
} (27)

The HEMP framework allows to solve the learning problem using standard optimiza-

tion strategies, where the gradient of (26) is descended.

5. Experiments

In this section we evaluate the effectiveness of HEMP. Towards this end, we pro-

pose experiments on several widely used datasets with different architectures.

Datasets and architectures. We experiment with LeNet-5 on MNIST, ResNet-32 and

MobileNet-v2 on CIFAR-10, ResNet-18 and ResNet-50 on ImageNet. We always train

from scratch except for ImageNet experiments where we rely on pre-trained models.1

Setup. We experiment on a Nvidia RTX 2080 Ti GPU. Our algorithm is implemented

using PyTorch 1.5.2 For all our simulations we use SGD optimization with momentum

0.9, λH = 1 and λE = 0.1. Learning rate and batch-size depend on the dataset and

the architecture: for all the datasets except for ImageNet the learning rate used is 10−2

and batch-size 100, for ResNet-18 trained on ImageNet the learning rate is 10−3 with

batch-size 128 while for ResNet-50 learning rate is 10−4 with batch-size 32. The file

containing the quantized parameters is entropy-coded using LZMA [27], a popular

dictionary-based compression algorithm well-suited to exploit high-order entropy.

Metrics. The goal of the present work is to compress a neural network without jeopar-

dizing its accuracy, so we rely on two distinct, largely used, performance metrics:

• the compressed model size as the size of the file containing the entropy-encoded

network,

• the classification accuracy of the compressed network (indicated as Top-1 in the

following).

1https://pytorch.org/docs/stable/torchvision/models.html
2The source code will be made available on GitHub upon acceptance of the work.

12

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 20 40 60 80 100 120 140

H
n n

,
Ĥ

n n

epochs

Ĥ1

H1

Ĥ2

H2

Ĥ4

H4

(a) LeNet-5 trained on MNIST

2

2.5

3

3.5

4

4.5

0 50 100 150 200

Ĥ
n n

epochs

Ĥ1

Ĥ2

Ĥ3

(b) ResNet-32 trained on CIFAR-10

Figure 6: Different entropy order minimization for LeNet-5 trained on MNIST (a) and on ResNet-32 trained

on CIFAR-10 (b): in red first order is minimized, in blue the second one and in black the fourth (a) / third (b).

Continuous lines represent the differentiable quantity introduced in (8) while dashed lines are the actual

entropies directly computed on the quantized architecture (2).

5.1. Preliminary experiments

As preliminary experiments, we evaluate if the regularizer function (8) is a good

estimator of (2). Towards this end, we train the LeNet-5 architecture on MNIST mini-

mizing Hn while logging the entropy on the quantized parameters Ĥn. Fig. 6a shows

the normalized Ĥn and its approximation Hn: three findings are noteworthy.

First, Hn accurately estimates Ĥn, i.e. minimizing Hn yields to minimizing Ĥn.

Under the assumption the quantized parameters are entropy-coded, minimizing Ĥn

shall minimize the size of a file where the encoded parameters are stored.

Second, when n = 1, the training converges to a higher entropy, while minimizing

higher entropy orders enables access to lower entropy embeddings. Higher entropy re-

flects on the final size of the model: while for n = 1 we could get a final network size

of 61kB, for n = {2, 4} the final size drops to approximately 27.5kB, having a top-1

accuracy of 99.27%. This better performance can be explained by the fact that higher

order entropy can catch repeated sequences of parameters’ binnings which can lead to

a significant compression boost.

Third, the higher n, the fewer the epochs required to converge to low entropy val-

ues. However, in terms of actual training time, the available GPU memory limits the

parallelism degree for computing the derivative term in (17). In the following, we will

stick to n = 2 as it enables both reasonably low entropy embeddings and training

times.

As a further verification, we have run the same experiments on the ResNet-32 ar-

chitecture trained on the CIFAR-10 dataset: also here, we minimize Hn while logging

the entropy on the quantized parameters Ĥn at different values of n. Fig. 6b shows the

normalized Ĥn. Similarly to what observed in the main paper, second-order entropy

minimization results to be a good trade-off between complexity and final performance,

considering that the reached entropic rate of n = 2 is comparable to n = 3. Please

notice also that the entropy estimated on the quantized model, and reported Fig. 6b, is

proportional to the final file sizes.

13

Figure 7: Typical distribution of w values during HEMP optimization for LeNet-5 trained on MNIST (second

convolutional layer), with N = 3.

Table 2: Results on the MNIST dataset using LeNet-5 architecture.

Model Method Top-1 [%] Size

LeNet-5

Baseline 99.30 1.7MB

LOBSTER [28] 99.10 19kB

Han et al. [24] 99.26 44kB

Wiedemann et al. [12] 99.12 43.4kB

HEMP 99.27 27.5kB

Wiedemann et al.(+pruning) [12] 99.02 11.9kB

HEMP+LOBSTER [28] 99.05 2.00kB

As a further analysis of HEMP’s effect of the parameter, in Fig. 7 we show the distribu-

tion of the optimized parameters on the second convolutional layer in LeNet-5 trained

on MNIST (the other layers follow a similar distribution). In this case we optimize

the model having 3 quantized values. As we observe the continuous w values are dis-

tributed tightly around their quantized representations ŵ: as w → ŵ, L(w) → L(ŵ);
in the end the accuracy of the quantized representation of the model approaches the ac-

curacy of the continuous model. Additionally, as observed in Fig. 6a, also the entropy

of the quantized model is minimized, achieving both a quantized trained model with

high accuracy and high compressibility of its representation.

5.2. Comparison with the state-of-the-art

HEMP. We now compare our method with state-of-the-art methods for network com-

pression. Our main goal is to minimize the size of the final compressed file while keep-

ing the top-1 performance as close as possible to the baseline network’s one. Therefore,

14

Table 3: Results on CIFAR-10 using different architectures.

Model Method Top-1 [%] Size

ResNet-32

Baseline 93.10 1.9MB

LOBSTER [28] 92.97 439.4kB

HEMP 91.57 168.3kB

HEMP+ LOBSTER [28] 92.55 86.2kB

MobileNet-v2
Baseline 93.67 9.4MB

HEMP 92.80 872kB

Table 4: Results on ImageNet using different architectures.

Model Method Top-1 [%] Size

ResNet-18

Baseline 69.76 46.8MB

LOBSTER [28] 70.12 17.2MB

Lin et al. [21] 68.30 5.6MB

Shayer et al. [22] 63.50 2.9MB

HEMP 68.80 3.6MB

HEMP+LOBSTER [28] 69.70 2.5MB

ResNet-50

Baseline 76.13 102.5MB

Wang et al. [29] 70.63 6.3MB

Han et al.[24] 68.95 6.3MB

Wiedemann et al. [12] 74.51 10.4MB

Tung et al. [30] 73.7 6.7MB

HEMP (high acc.) 74.52 9.1MB

HEMP 71.33 5.5MB

MobileNet-v2

Baseline 72.1 13.5MB

Tu et al.[31] 7.25 10.1MB

He et al.[32] 9.8 4.95MB

Tung et al.[30] 70.3 2.2MB

HEMP 71.3 1.7MB

Custom, latency 6.11ms, APQ [33] 72.8 20.8MB

energy 9.14mJ APQ [33] + HEMP 72.5 3.04MB

15

our approach can be compared only with works that report the real final file size. To

the best of our knowledge, only the methods reported in Tables 2, 3 and 4 can be in-

cluded in this compression benchmark. Indeed, most of the pruning-based methods

([4, 5]) typically report pruning-rates only, which can not be directly mapped to file

size: encoding sparse structures requires additional memory to store the coordinates

for the un-pruned parameters. We implemented one state-of-the-art pruning method

(LOBSTER [28]) to report pruning baseline storage memory achieved. Concerning

quantization methods, existing approaches either focus on quantization to boost infer-

ence computation minimization ([7, 19, 21, 9, 8]) or do not report the final file size

([17, 10, 23, 11]). We also tried to directly compress the baseline file and we did not

observe any compression gain. Therefore, to make reading easier, we did not report

these numbers.

As a first experiment, we train LeNet-5 on MNIST (Table 2): despite the simplic-

ity of the task, the reference LeNet-5 is notoriously over-parametrized for the learning

task. Indeed, as expected, most of the state-of-the-art techniques are able to compress

the model to approximately 40kB. In such a context, HEMP performs best, lowering

the size of the compressed model to 27.5kB.

Then, we experiment with ResNet-32 and MobileNet-v2 on CIFAR-10 (as reported

in Table 3), achieving also in this case significant compression: ResNet-32 size drops

from 1.9MB to 168kB and MobileNet-v2 from 9.4MB to 822kB. Note that, other liter-

ature methods do not report experiments on CIFAR-10 on the proposed architectures.

Nevertheless, HEMP approximately reduces the network size by a factor 11 for both

architectures.

We also compress pretrained ResNet-18, ResNet-50 and MobileNet-v2 trained on

ImageNet (Table 4). Also in this case, HEMP reaches competitive final file size, be-

ing able to compress ResNet-18 from 46.8MB to 3.6MB with minimal performance

loss and ResNet-50 from 102.5MB to 5.5MB. For the ResNet-50 experiment, we also

report partial result for high accuracy band, indicated as “high acc”, to compare to

Wiedemann et al. [12]: for the same accuracy, HEMP proves to drive the model to a

higher compression. In the case of ResNet-18, [22] achieves a 0.5MB smaller com-

pressed model, which is however set off by a 4.3% worse Top-1 error. Also in the case

of very efficient architectures like Mobilenet-v2, HEMP is able to reduce significantly

the storage memory occupation, moving from 13.5MB to 1.7MB only. Furthermore,

the error drop is in this case very limited (0.8%) when compared to other techniques,

like Tung et al. which, in the case of less optimized architectures like ResNet-50, do not

have a large drop. While concurrent techniques rely on typical pruning+quantization

strategies, aiming at indirectly eliminating the redundancy in the models, HEMP is di-

rectly optimizing over the existing redundancy.

Finally, we also tried to make HEMP cope with a different quantize and prune scheme.

In particular, APQ [33] proves to be a perfect framework for our purpose, since it is

a strategy performing both network architecture search, pruning and quantization. We

have used HEMP in the most challenging scenario proposed by Wang et al., with the

lowest latency constraint (6.11ms) and the lowest energy consumption (9.14mJ) at in-

ference time. In this case, we have fine-tuned the APQ’s provided model for 5 epochs.

Even in this case, HEMP is able to reduce the model’s size, from the 20.8MB of the

model to 3.04MB only, proving on-the-field its deployability as a companion besides

16

other quantization/pruning scheme, and non-exploiting any prior on the network’s ar-

chitecture.

Overall, these experiments show that HEMP strikes a competitive trade-off between

compression ratio and performance on several architectures and datasets.

HEMP+LOBSTER. It has been observed that combining pruning and compression

techniques enhances reduces the model final file size with little performance loss [12].

In our context, this translates into including two constraints to the learning:

• force the quantizer to have, for some ξ, the representation r(ξ) = 0 (or in simpler

words, a quantization level corresponding to “0”);

• include a pruning mechanism (permanent parameter set to “0”).

Both of the constraints work independently from HEMP: indeed, HEMP is not a quan-

tization technique, but it is thought to side any other learning strategy whose aim is to

quantize the model’s parameters (in such context, pruning “quantizes to zero” as many

parameters as possible). Hence, we tried to side HEMP to LOBSTER [28], which

is a state-of-the-art differentiable pruning strategy (hence, compatible within HEMP’s

framework).

The results are as well reported in Tables 2, 3 and 4: it is evident that, including a

prior on the optimal distribution of the parameters (removing all the un-necessary ones

for the learning problem) helps HEMP to compress more. We have tested the setup

HEMP + LOBSTER on one architecture per dataset: LeNet-5 (MNIST), ResNet32

(CIFAR-10) and ResNet-18 (ImageNet). While LOBSTER alone is able to achieve

highly compressed models for toy datasets (like MNIST), it can not achieve high com-

pression alone on more complex datasets. Still, siding a technique like LOBSTER to

HEMP, boosts the compression of 10x for MNIST and ImageNet dataset and 4x for

CIFAR-10.

HEMP minimizes the n-th entropy order (in these experiments, n = 2) - or in other

words, maximizes the occurrence of certain sequences of quantization indices. The

mapping of these quantization indices to quantization levels has to be determined out-

side HEMP: when we run experiments with “HEMP” alone, the loss minimization (in

our case, the cross-entropy) automatically determines these levels - with the general-

purpose Lloyd-max quantizer. However, pruning strategies include a prior on one of

the quantization levels (the one corresponding to “0”), and this helps towards having a

higher entropy minimization.

5.3. Ablation study

Here, we evaluate the impact of the reconstruction error term (25) and the overall

insensitivity re-weighting (27) for the regularization function. Towards this end, we

perform an ablation study on the ResNet-32 architecture trained on CIFAR-10.

Reconstruction error regularization. Fig. 8a (left), shows the ResNet-32 loss for the

continuous and the quantized models (L(W) and L(Ŵ) when the reconstruction error

E is included or excluded (λE = 0) from the regularization function (24). We ob-

serve that both continuous models (solid lines) obtain similar performance on the test

17

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0 5 10 15 20 25

te
st

se
t

lo
ss

epochs

L(Ŵ), λE = 0

L (W) , λE = 0

L(Ŵ), λE = 0.1

L (W) , λE = 0.1

(a) Reconstruction error regularization

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0 5 10 15 20 25
2

2.5

3

3.5

4

te
st

se
t

lo
ss

R
v
al

u
e

epochs

R minimized, test loss

R minimized, R value

(0.1 · R) minimized, test loss

(0.1 · R) minimized, R value

(S̄ · R) minimized, test loss

(S̄ · R) minimized, R value

(b) Insensitivity re-weighting

Figure 8: Test set losses for different trainings on ResNet-32 trained on CIFAR-10 (a), and effect of the

insensitivity as re-weighting factor for R (b). Please notice that the blue line in both (a) and (b) refers to the

same simulation, which refers to the standard HEMP training.

set. However, the quantized models (dashed lines) perform very differently. When the

reconstruction error is not included in the training procedure (red lines), the quantized

model reach a plateau with a high loss value showing that the network performs poorly

on the test set. Conversely, when the reconstruction error is included (blue lines), the

quantized model reaches a final loss closer to the continuous models. Indeed, regu-

larizing also on (25) makes wl,i → ŵl,i ∀ l, i, hence L(W) → L(Ŵ). This exper-

iment verifies the contribution of the error reconstruction regularization term towards

the good performance of the quantized model.

Insensitivity-based re-weighting. Fig. 8b (right) shows the performance of the ResNet-

32 model including or excluding the insensitivity re-weighting S̄l,i for the regulariza-

tion function (27). Here, we report the test set losses obtained by the continuous models

(continuous lines) and the value for the overall R function (dashed lines). We observe

a very unstable test loss without insensitivity re-scaling for R (magenta line). Hence,

minimization with an overall 0.1 re-scaling for R is also shown (in cyan): in such

case, the test loss on the continuous model remains low, but R is extremely slowly

minimized. Using the insensitivity re-weighting (in blue) proves to be a good trade-off

between keeping the test set loss low and both minimizing R. This behavior is what we

expected: the insensitivity re-weighting, acting parameter-wise (ie. there is a different

value per each parameter), dynamically tunes the re-weighting of the overall regular-

ization function R, allowing faster minimization with minimal or no performance loss.

This is why we could use the same λH and λR values for all the simulations, despite

optimizing different architectures on different datasets. Such robustness of the hyper-

18

parameters over different dataset is a major practical strength of our approach.

6. Conclusion

We presented HEMP, an entropy coding-based framework for compressing neural

networks parameters. Our formulation efficiently estimates entropy beyond the first or-

der and can be employed as regularizer to minimize the quantized parameters’ entropy

in gradient based learning, directly on the continuous parameters. The experiments

show that HEMP is not only an accurate proxy towards minimizing the entropy of the

quantized parameters, but are also pivotal to model the quantized parameters statis-

tics and improve the efficiency of entropy coding schemes. We also sided HEMP to

LOBSTER, a state-of-the-art pruning strategy which introduces a prior on the weight’s

distribution which gives a further boost to the final model’s compression.Future works

include the integration of a quantization technique designed specifically for deep mod-

els to HEMP.

References

[1] S. Samarakoon, M. Bennis, W. Saad, M. Debbah, Distributed federated learning

for ultra-reliable low-latency vehicular communications, IEEE Transactions on

Communications.

[2] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer,

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb

model size, arXiv preprint arXiv:1602.07360.

[3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: In-

verted residuals and linear bottlenecks, in: Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018, pp. 4510–4520.

[4] D. Molchanov, A. Ashukha, D. Vetrov, Variational dropout sparsifies deep neu-

ral networks, in: Proceedings of the 34th International Conference on Machine

Learning-Volume 70, JMLR. org, 2017, pp. 2498–2507.

[5] E. Tartaglione, S. Lepsøy, A. Fiandrotti, G. Francini, Learning sparse neural net-

works via sensitivity-driven regularization, in: Advances in neural information

processing systems, 2018, pp. 3878–3888.

[6] C. Louizos, M. Welling, D. P. Kingma, Learning sparse neural networks through

l 0 regularization, International Conference on Learning Representation (ICLR).

[7] M. Courbariaux, Y. Bengio, J.-P. David, Binaryconnect: Training deep neural

networks with binary weights during propagations, in: Advances in neural infor-

mation processing systems, 2015, pp. 3123–3131.

[8] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou, Dorefa-net: Training

low bitwidth convolutional neural networks with low bitwidth gradients, arXiv

preprint arXiv:1606.06160.

19

[9] A. Mishra, E. Nurvitadhi, J. J. Cook, D. Marr, Wrpn: wide reduced-precision

networks, International Conference on Learning Representation (ICLR).

[10] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of deep

convolutional neural networks for fast and low power mobile applications, Inter-

national Conference on Learning Representation (ICLR).

[11] Y. Xu, Y. Wang, A. Zhou, W. Lin, H. Xiong, Deep neural network compression

with single and multiple level quantization, in: Thirty-Second AAAI Conference

on Artificial Intelligence, 2018.

[12] S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase, A. Marban, T. Marinc,

D. Neumann, T. Nguyen, H. Schwarz, T. Wiegand, D. Marpe, W. Samek, Deep-

cabac: A universal compression algorithm for deep neural networks, IEEE Jour-

nal of Selected Topics in Signal Processing.

[13] D. Oktay, J. Ballé, S. Singh, A. Shrivastava, Scalable model compression by en-

tropy penalized reparameterization, arXiv preprint arXiv:1906.06624.

[14] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, S.-F. Chang, An explo-

ration of parameter redundancy in deep networks with circulant projections, in:

Proceedings of the IEEE international conference on computer vision, 2015, pp.

2857–2865.

[15] C. Lee, Y.-B. Kim, H. Ji, Y. Lee, Y. Hur, H. Lim, On the redundancy in the rank of

neural network parameters and its controllability, Applied Sciences 11 (2) (2021)

725.

[16] X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolu-

tional neural network for mobile devices, in: Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018, pp. 6848–6856.

[17] K. Ullrich, E. Meeds, M. Welling, Soft weight-sharing for neural network com-

pression, International Conference on Learning Representation (ICLR).

[18] J. Frankle, M. Carbin, The lottery ticket hypothesis: Finding sparse, trainable

neural networks, International Conference on Learning Representation (ICLR).

[19] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classifi-

cation using binary convolutional neural networks, in: European conference on

computer vision, Springer, 2016, pp. 525–542.

[20] C. Baldassi, F. Gerace, H. J. Kappen, C. Lucibello, L. Saglietti, E. Tartaglione,

R. Zecchina, Role of synaptic stochasticity in training low-precision neural net-

works, Physical review letters 120 (26) (2018) 268103.

[21] X. Lin, C. Zhao, W. Pan, Towards accurate binary convolutional neural network,

in: Advances in Neural Information Processing Systems, 2017, pp. 345–353.

[22] O. Shayer, D. Levi, E. Fetaya, Learning discrete weights using the local reparam-

eterization trick, International Conference on Learning Representation (ICLR).

20

[23] V. Belagiannis, A. Farshad, F. Galasso, Adversarial network compression, in:

Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp.

0–0.

[24] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural net-

works with pruning, trained quantization and huffman coding, International Con-

ference on Learning Representation (ICLR).

[25] I. H. Witten, R. M. Neal, J. G. Cleary, Arithmetic coding for data compression,

Communications of the ACM 30 (6) (1987) 520–540.

[26] G. Seroussi, A. Lempel, Lempel-ziv compression scheme with enhanced adapa-

tion, uS Patent 5,243,341 (Sep. 7 1993).

[27] I. Pavlov, Lzma sdk (software development kit) (2007).

[28] E. Tartaglione, A. Bragagnolo, A. Fiandrotti, M. Grangetto, Loss-based sen-

sitivity regularization: towards deep sparse neural networks, arXiv preprint

arXiv:2011.09905.

[29] K. Wang, Z. Liu, Y. Lin, J. Lin, S. Han, Haq: Hardware-aware automated quanti-

zation with mixed precision, in: Proceedings of the IEEE conference on computer

vision and pattern recognition, 2019, pp. 8612–8620.

[30] F. Tung, G. Mori, Deep neural network compression by in-parallel pruning-

quantization, IEEE transactions on pattern analysis and machine intelligence

42 (3) (2020) 568–579.

[31] C.-H. Tu, J.-H. Lee, Y.-M. Chan, C.-S. Chen, Pruning depthwise separable con-

volutions for mobilenet compression, in: 2020 International Joint Conference on

Neural Networks (IJCNN), IEEE, 2020, pp. 1–8.

[32] Y. He, Z. Pan, L. Li, Y. Shan, D. Cao, L. Chen, Real-time vehicle detection from

short-range aerial image with compressed mobilenet, in: 2019 International Con-

ference on Robotics and Automation (ICRA), IEEE, 2019, pp. 8339–8345.

[33] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, S. Han, Apq: Joint search for nerwork

architecture, pruning and quantization policy, in: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020.

21

