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Abstract

Multi-human parsing aims to segment every body part of every human instance.

Nearly all state-of-the-art methods follow the “detection first” or “segmentation

first” pipelines. Different from them, we present an end-to-end and box-free

pipeline from a new and more human-intuitive perspective. In training time,

we directly do instance segmentation on humans and parts. More specifically,

we introduce a notion of “indiscriminate objects with categories” which treats

humans and parts without distinction and regards them both as instances with

categories. In the mask prediction, each binary mask is obtained by a combi-

nation of prototypes shared among all human and part categories. In inference

time, we design a brand-new grouping post-processing method that relates each

part instance with one single human instance and groups them together to ob-

tain the final human-level parsing result. We name our method as Nondiscrim-

inatory Treatment between Humans and Parts for Human Parsing (NTHP).

Experiments show that our network performs superiorly against state-of-the-

art methods by a large margin on the MHP v2.0 and PASCAL-Person-Part

datasets.
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Figure 1: An example. (a) is the original picture, (b) is the bounding-box ground truth and

(c)(d) are human-level mask labels. In (b), the Intersection over Union (IOU) between the

two bounding boxes is 97.5% through calculation.

1. Introduction

Human parsing has become a significant aspect of human-centric analysis in

recent years, which requires fine-grained semantic segmentation on pixel level.

Extensive studies have been explored on parsing a single human in an image

and obtained remarkable progress [1][2][3]. But in real cases, various numbers

of persons are present simultaneously with interaction and occlusion, which

heighten the need for better instance-level multi-human parsing methods. Multi-

human parsing has many real-world applications, such as virtual reality [4],

video surveillance [5], and human behavior analysis [6][7][8]. In this work, we

aim at solving the task of multi-human parsing.

Due to the successful development of fully convolutional neural networks

[9][10] [11][12][13], multi-human parsing has achieved great progress[14][15][16][17].

Existing works dealing with multi-human parsing can be divided into two cate-

gories, “detection first” and “segmentation first” paradigms.

“Detection first” methods consist of two stages. They detect human in-

stances in the first stage then utilize regions-of-interest (ROIs) to parse the de-

tected human instances in the second stage [14][16][45]. However, these methods

may have the following drawbacks. 1)Human instances are often with irregular

shapes, while ROIs are axis-aligned bounding-boxes, so the cropped features

used to parse a single human can be excessive. We show an example in Figure
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1 (b). 2)These methods strongly rely on the quality of the bounding boxes pre-

dicted. A Little deviation can result in huge faults. 3)Human parsing requires

more detailed information in the second stage so that cropping the region to a

14×14 resolution of the conventional ROI align operation is not enough. 4)In

these methods, the second stage must wait for the first stage to get accurate

ROIs so that the processing procedure is slow.

On the other hand, “segmentation first” methods also have two stages. They

apply a fine-grained semantic segmentation to obtain a pixel-level classification

in the first stage then group pixels that belong to the same human instance in the

second stage [17][48]. In the first stage, different parts demand different receptive

fields due to their various sizes. Many approaches are committed to solving

this problem, such as ASPP [18] , PSP [19], but lead to great computational

complexity. In the second stage, some works separate different human instances

via edges [17]. There is more than one boundary if a human is blocked. Figure 1

(b)(c) shows examples, both persons are in two parts, and previous approaches

tend to group the apart hand by mistake.

Our research explores multi-human parsing from a brand-new point of view.

We imitate the thinking process of human beings as shown in Figure 2, which

views a human as a collection of parts and regards each part or human as an

instance with category rather than pixels with categories. We simultaneously

execute instance segmentation from two aspects, part and human, with nondis-

criminatory treatment and predict their class-agnostic masks and instance cate-

gories. We named our notion “indiscriminate objects with categories”. To bet-

ter implement our notion, we propose a unified mask prediction module named

Unified Mask Prediction Based on Prototypes (UMPP) which uses a unified

prototype generation for both aspects. Finally, we design a simple grouping

strategy that combines the separate parts belonging to the same human. Note

that in our method, two aspects (human and part) are not completely unrelated.

Both features are extracted from the same FPN structure but different levels,

and share the prototypes, which can benefit from each other.

To evaluate our proposed framework, we conduct extensive experiments on
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Figure 2: Solution formulation. According to human intuition, a human in the picture is

composed of several parts with categories rather than dense pixels with semantic labels.

the MHP v2.0 [20] and PASCAL-Person-Part [21] datasets. We achieve state-

of-the-art performance with 51.1 AP p
50, 49.5 AP p

vol, and 49.9 PCP50, with a

margin of 5.8 points AP p
50, 2.7 points AP p

vol, and 6.1 points PCP50 over the

best previous entry on the MHP v2.0 dataset [20]. As for the PASCAL-Person-

Part dataset, we also achieve state-of-the-art performance with 47.1 AP r
vol and

53.9, 44.7, 31.9 AP r with IoU thresholds of 0.5, 0.6, 0.7, separately with a

margin of 4, 5.8, 6.4, 6.2 points over the best previous entry.

The main contributions of our work are concluded as follows:

• We design an end-to-end and box-free framework named NTHP for multi-

human parsing keeping in line with our new notion of “indiscriminate objects

with categories”, which views both the humans and parts as object instances

with categories rather than pixels with semantic labels.

• We propose a unified mask prediction module named Unified Mask Predic-

tion Based on Prototypes (UMPP) formed by a linear combination of prototypes

shared among humans and parts.

• We design a new grouping strategy in inference.

• We outperform all state-of-the-art methods on the MHP v2.0 [20] and

PASCAL-Person-Part [21] datasets.
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2. Related work

2.1. Human parsing

Human parsing has received a lot of attention in recent years. The hardest

thing lies in obtaining the structure information within the human body. PCNet

[22] designs a relational aggregation module and a dispersion module to deliver

human structure information between different parts. Hierarchical Human Pars-

ing [23] utilizes graph convolutional networks to understand hierarchical human

layouts better. CorrPM [24] puts forward a heterogeneous non-local block to

fully take advantage of the correlation between parsing, pose, and edge. All

these works are within the scope of the single person parsing which can be

viewed as a dense per-pixel classification problem.

Human parsing is elevated to a new level which has an unfixed number of

persons in an image with the representation of the MHP dataset[15]. Nearly all

methods follow the “detection first” or “segmentation first” pipeline in instance

segmentation. PGN [17] adopts the “segmentation first” pipeline which appends

a human-level instance-aware edge detection branch parallel with semantic seg-

mentation and connects segments via the predicted boundary. Parsing R-CNN

[16] and Unified Framework [14] adopt the “detection first” pipeline to parse

distinct parts within the predicted human instances. CE2P [25] further appends

a global parsing branch in parallel with the “detection first” pipeline to improve

the performance. In contrast, we deal with humans and parts at the same time

using the same structure.

2.2. Instance segmentation

Multi-human parsing can be viewed as a more complicated instance seg-

mentation to some extent. Most of the methods tackling multi-human parsing

are evolved from instance segmentation. Instance segmentation is one of the

most common tasks in computer vision. The methods mainly follow the “top-

down” or “bottom-up” pipeline. “Top-down” methods follow the principle of

Mask R-CNN [26]. They first employ a detector to extract human-level fea-

tures within a bounding-box. Then for each human instance, regions-of-interest
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(ROIs) are cropped from the original picture-level feature maps. Finally, these

ROIs are used to obtain the detailed segmentation results. Follow-up works are

dedicated to improving the accuracy. PANet [27] adds another “bottom-up”

path in FPN [28] to reinforce the feature representation and uses the “adaptive

feature pooling” strategy to fuse the features from different levels to get better

representation. Mask Scoring R-CNN [29] realizes the misalignment between

the masks and the classification scores so that a MaskIoU head is appended

to predict the quality of the masks predicted. Other approaches adopt the

“bottom-up” strategy. For instance, Panoptic Deeplab [30] aims at panoptic

segmentation but achieves good performance in instance segmentation too.

Recently, some methods that follow another pipeline named “one-stage” have

obtained more interest due to their simplicity and easy-understanding nature.

YOLACT [31] makes use of prototypes to generate instance masks and coeffi-

cients to get a linear combination of all predicted masks, after which a cropping

operation is used to localize the objects. PolarMask [32]handles the task from a

new perspective, which directly predicts the contours of instances in the polar

coordinate. SOLO [33] directly predicts binary masks and mask categories by

building two branches following the same backbone and FPN [28], one is the

category branch, and the other is the mask branch. SOLOv2 [34] further splits

the mask branch into mask feature and convolutional kernel paths to implement

dynamic convolution. One-stage methods have difficulty localizing objects since

it’s commonly believed that convolutional operations are translation-invariant.

YOLACT [31] obtains translation-variance by cropping the final mask with

the predicted bounding box and SOLO [33][34] utilizes CoordConv [35] to get

translation-variance. In this work, we introduce one-stage method to multi-

human parsing and tackle the translation-invariant problem with CoordConv.

2.3. Prototypes

Learning prototypes (aka vocabulary or codebook) has been extensively ex-

plored in object detection[36][37]. But the prototypes in these works are used

to represent features. YOLACT [31] learns prototypes specific to each image
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Figure 3: NTHP structure. The topmost level of FPN is assigned to humans, and the rest

are to parts. UMPP represents our proposed module (Unified Mask Prediction Based on

Prototypes). UMPP has two types of inputs: one is the corresponding FPN output, and the

other is the combination of all FPN outputs.

rather than global prototypes shared across the entire dataset. We obtain mask

predictions using a linear combination of prototypes shared among humans and

parts in this work.

3. Proposed method

In this section, we propose a straightforward approach extending one-stage

methods original designed for instance segmentation to multi-human parsing

[31][33][34]. We will introduce problem formulation, NTHP architecture, learn-

ing details, and inference procedure in detail.

3.1. Solution formulation

We consider the task from a human visual perspective. As shown in Figure

2, when a person looks at an image and does the same parsing job, he will first

notice a human instance, then consider which parts belong to that human. There

are three discoveries, 1) people will see an object as an instance with a category

rather than a collection of pixels with categories, 2) parts and humans are both

objects with little distinction from human perspective, 3) human instances are
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made up of different part instances. Based on the first two discoveries, we

introduce the notion of “indiscriminate objects with categories”, which views

humans and parts as indiscriminate objects and completes instance predictions

with one structure. Based on the last discovery, we introduce our grouping

strategy in inference time.

3.2. Overview

In this work, we directly predict the masks and their corresponding categories

for both humans and parts with the same structure based on our notion of

“indiscriminate objects with categories”.

We show our structure in Figure 3. Similar to [33][34], we divide the input

images into several S×S grids aligned to different levels of the feature pyramid

network (FPN) [28]. One of the grids (i, j) is activated if it falls into the

center region of any ground-truth mask. There are two branches following FPN,

category branch (C×S×S) and mask branch (S2×H×W ), where C equals the

number of classes and H, W respectively represent feature height and width.

There is a one-to-one relationship between masks and categories. If a grid

(i, j) is activated, its category prediction is at (i, j) of the category branch with

C channels, and the class-agnostic mask is at the (i · S + j)th channel of the

mask branch. We elaborate on the category branch in section 3.3. We name

our structure in mask branch Unified Mask Prediction Based on Prototypes

(UMPP) and tell more detail in 3.4.

There is a principle that, in most cases, two instances in an image either have

different center locations or have different object sizes [33][38]. For the location

issue, it is generally accepted that the original convolutions are translation-

invariant to some degree. The solution is that we add Coordconv [35] in the

mask branch, the same as SOLO [33][34] and YOLACT [31]. And for the size

issue, we assign objects of different sizes to different levels of FPN (five levels

in total). Human instances always have bigger sizes than part instances, so we

assign the topmost level to human instances and the rest to the parts. Detailed

parameters for each level are shown in Table 1.
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With the obtained instances with categories, we group part instances con-

cerning human instances to form the human-level parsing result. We elaborate

on the grouping process in section 3.6.

3.3. Category branch

There are five levels in total with output space C × S × S in the category

branch. C equals 1 for the human category prediction branch and the number

of classes excluded background for parts. There are 4×convs (3×3) for feature

extraction and one for prediction in each level. We share weights for those levels

assigned to parts. Note that the classes predicted here are for instances rather

than pixels, thus worsening the difficulty.

One puzzling question is that without the structure based on the single hu-

man, the network may have difficulty differentiating confusing categories like

left-right hands and left-right arms. But our network can successfully accom-

plish that. The reasons are: 1) Left and right have different directional prop-

erties, and the network can learn that information if the feature is fine enough.

Thanks to the specific attribute of FPN, our network can satisfy the receptive

fields required for objects of various sizes thus obtaining sufficient context in-

formation. 2) We use only one FPN so that parts can also get the human-level

structure information through information flow.

3.4. Unified Mask Prediction Based on Prototypes (UMPP)

In UMPP, as shown in Figure 4, we learn mask coefficients separately for hu-

mans and parts and a unified collection of prototypes to form the class-agnostic

masks.

Conventional convolutional operations are adept in taking advantage of the

spatial coherence to obtain context information while fc operations are good at

producing semantic vectors. In our structure, the branches for mask coefficients

are parallel with the category branches, also with 4×convs (3×3) for feature

extraction and one conv (1×1) for prediction. The former 4×convs can learn

the context information for each grid due to the attribute of convolutions and
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Figure 4: Unified Mask Prediction Based on Prototypes (UMPP) Blue/yellow indicates

low/high values in the prototypes. We use all levels of FPN to form prototypes. “U” in

brackets represents the upsampling operation

the last 1×1 conv is the re-implementation for S×S fc operations to produce

semantic vectors. For each grid, we predict K coefficients in the channel direc-

tion. The output space of mask coefficients F is K×S×S. Just like the category

branch, the highest level is for humans. We use K = 256 for both humans and

parts in experiments.

We learn a unified collection of prototypes P for humans and parts by ap-

plying feature pyramid fusion proposed in [39] but adding Coordconv [35] to

the highest part level. We use all levels of FPN. Each level consists of a series

of convolutions, and all levels are upsampled to 1/4 scale of the input image

and summed together. There is a 1×1 conv with ReLU at the end. The output

space is K×H×W . In the center-of-right of Figure 4, we show some of the visu-

alization results of prototypes. The first two examples are prototypes of humans

while the others are parts. We can see that our network can successfully learn

the location information, thus obtaining translation-variance, i.e., two individ-

ual persons. Such phenomenon largely owes to Coordconv [35] or the padding

operation according to YOLACT[31], which demonstrates that padding gives
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the network the ability to tell how far away from the image’s edge a pixel is.

We also consider that using a unified expression brings mutual-benefits. In

FPN, higher-level features are convoluted using lower-level features and lower-

level features combine higher-level features. That is to say, part features can

get human-level information and learn more accurate context information, and

in the meantime, human features can obtain the fusion of the part features to

form the overall information.

The final mask predictions are obtained by a linear combination of proto-

types, which is implemented as a sigmoid of a single matrix multiplication:

M = σ(PFT ) (1)

where P is the matrix of prototypes, F is the matrix of mask coefficients, and

σ is the sigmoid operation. The output space of M is S2 ×H ×W .

3.5. NTHP learning

3.5.1. Label assignment

There are five levels of outputs with various resolutions that concentrate on

objects of different sizes in the FPN of our structure. We assign the highest

level to humans and the rest to parts. Besides, low levels have high resolutions

and are responsible for small objects, thus requiring more grids. We show more

details in Table 1. “Scale” means root mean square of the area of the minimum

bounding box of the object.

In the head after each FPN level, there are S×S grids. A grid (i, j) is

activated if it falls into the center region of any ground-truth mask, and 1) its

category label is the class of the corresponding ground truth, 2) its mask label is

the binary mask of the corresponding ground truth. Given a ground-truth mask,

we calculate its mass center (cx,cy), width w, height h, then the center region

is controlled by constant scale factors ε:(cx,cy,εw,εh), we set ε=0.2 following

SOLO [33]. For each ground truth, there are no more than 9 grids activated. If

the number of grids exceeds, the nine closest to the center point are used.

11



Table 1: Label assignment

Pyramid F1 F2 F3 F4 F5

Object Part Part Part Part Human

Grids (S) 40 36 24 16 20

Scale <96 48∼192 96∼384 ≥192 -

3.5.2. Loss function

We use the following training loss function:

L = Lcp + λLmp + Lch + λLmh (2)

where Lcp is Focal loss [40] for the category classification for parts, Lmp is Dice

Loss [41] for the mask prediction for parts, Lch is Focal loss [40] for the category

classification for humans and Lmh is Dice Loss [41] for the mask prediction for

humans. λ is set to 3 in experiments. Note that we calculate classification loss

for each grid but mask loss only for grids that have instance labels.

3.6. Grouping strategy in inference time

Our structure obtains four types of information, categories of part instances,

masks of part instances, categories of human instances, and masks of human

instances. In inference time, we need to group the parts based on humans. We

propose the following steps:

Figure 5: Grouping strategy in inference time. & means the “and” operation.

(1) Assign the category with the highest classification score to the corresponding

part mask. Pick kpart part masks with the highest category scores. We
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predefine two thresholds, npart for the max number of instances in an image

(to decrease the memory cost), spart for the minimum score value. kpart can

be calculated by:

kpart = min(num(scorepart > spart), npart) (3)

where num means the number of masks that meets the criteria, and score

means the mask score, who is the product of the category score and the

segmentation score. We use npart=200, spart=1/3.

(2) Pick khuman human masks whose scores are bigger than shuman and apply

matrix NMS [34] to select the best ones. We use shuman=0.1 in experiments.

(3) For each selected part instance, calculate its overlapping ratio rpart towards

every human instance:

rpart =
area(intersection(part, human))

area(part)
(4)

We show its pseudocode in Algorithm 1

(4) For each human instance, first pick the part instances whose overlapping

ratio rpart is bigger than rhuman, then assign every pixel with the category

label using the selected part instances sorted by scores, finally use the ‘and’

operation between the human and the combination of the selected part

instance masks to get the final result. rhuman =2/3 in experiments. We use

the product of the class-agnostic human-level mask score and the mean of

category scores of pixels within the human mask as our final score.

scoreparsing = scorehuman ∗ mean(scorepixel) (5)

where scoreparsing is the final score for human parsing, scorehuman is the

human-level instance score, and scorepixel is the category scores of pixels

within the human mask.

The process is illustrated in Figure 5
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Algorithm 1 Pseudocode of computing overlapping ratio rpart
# mm: matrix multiplication

# num h: number of masks for humans

# num p: number of masks for parts

# h masks: binary masks for humans (num h×h×w)

# p masks: binary masks for parts (num p×h×w)

h masks = h masks.reshape(num h, h*w)

p masks = p masks.reshape(num p, h*w)

inter matrix = mm(h masks, p masks.permute(1,0))

part matrix = p masks.sum((-2,-1)).unsqueeze(0).expand(num h,num p)

ratio = inter matrix/part matrix

4. Experiments

We conduct comprehensive experiments and compare our method with state-

of-the-art methods on the MHP v2.0 [20] and PASCAL-Person-Part [21] datasets.

4.1. Datasets

4.1.1. MHP v2.0 dataset

The MHP v2.0 [20] dataset is the most challenging dataset for multi-human

parsing. It contains 15,403 training images, 5,000 validation images with 59

part classes. Each image contains 2-26 persons, with 3 on average. It has

the maximum number of classes in multi-human parsing to the best of our

knowledge.

4.1.2. PASCAL-Person-Part dataset

The PASCAL-Person-Part [21] dataset contains 1,716 images for training

and 1,817 for testing. The annotations include six human parts: Head, Torso,

Upper arms, Lower arms, Upper legs, and Lower legs. Each image contains 2.2

persons on average.

4.2. Experimental settings

4.2.1. Implementation details

We implement the NTHP based on Pytorch end-to-end on a server with 2

NVIDIA GeForce GTX 1080Ti GPUs. A mini-batch involves 6 images. We
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use Group Normalization (GN) [13] with group size 32. The shorter side of the

image scales randomly from [544, 864] pixels, and the longer side is set to 1333

pixels. The inference is on a single scale of 1333 pixels for the longer side and

800 pixels for the shorter side. All models are trained with ResNet50 [42] as

backbone. As for the MHP dataset [20], we trained for 12 epochs with an initial

learning rate of 0.001 per GPU per image, which is decreased by 10 at the 9th

and again at the 11th epoch. Weight decay is 0.0001 and momentum is 0.9.

Values of experiments with longer learning schedule are 36, 0.001, 10, 27, 33,

0.0001 and 0.9. As for the PASCAL-Person-Part [21] dataset, we train for 54

epochs and decrease the learning rate at the 45th and the 51th epoch. Other

settings are the same as the MHP dataset.

4.2.2. Evaluation metric

We use separate evaluation metrics for the MHP v2.0 dataset [20] and the

PASCAL-Person-Part dataset [21] for a fair comparison with other networks.

To evaluate our network on the MHP dataset [20], we use the metric named

Average Precision based on Part (AP p) which uses an average of part-level pixel

IoU of different semantic part categories within a person instance to determine

if one instance is a true positive and Percentage of Correctly Parsed Body Parts

(PCP ) which is the ratio between the correctly parsed categories and the total

number of categories within a person. We use AP p with an IOU threshold of 0.5

(AP p
50), the average of AP p with IOU thresholds ranging from 0.1 to 0.9 with a

step size of 0.1 (AP p
vol), and PCP with an IOU threshold of 0.5 (PCP50). All

these metrics are proposed by [15] to evaluate the network performance on the

MHP dataset.

As for the PASCAL-Person-Part dataset, we use Mean Average Precision

(AP r) first proposed for evaluating instance segmentation results by SDS [43]

and is used by nearly all methods to compare the performance of instance-level

multi-human parsing result on the PASCAL-Person-Part dataset [21]. We use

AP r separately with IOU thresholds of 0.5, 0.6, 0.7, and AP r
vol as an average of

AP r with IOU thresholds ranging from 0.1 to 0.9 with a step size of 0.1.
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4.3. Experimental results

All our experiments are implemented on the MHP v2.0 dataset [20] with

ResNet50 [42] as the backbone and trained for 12 epochs.

4.3.1. Unified prototype generation structure

We conduct experiments on two settings of using 1) a unified collection

of prototypes for humans and parts, as shown in Figure 4, 2) two groups of

prototypes. As for the second set, we use the same structure as the first set but

duplicate it twice to deal with humans and parts separately. We show the result

in Table 2.

From Table 2, we can see that adopting a unified structure brings a better

result. Besides, the second setting costs more memory since it doubles the

feature pyramid fusion process.

Table 2: Unified vs. Separate prototype generation structures.

Prototypes AP p
50 AP p

vol PCP50

1) Unified 41.8 46.2 41.9

2) Separate 41.5 46.2 41.8

4.3.2. Not sharing weights between humans and parts

We also conduct a series of experiments on whether to share weights across

different levels between humans and parts on mask coefficient and category

branches.

We show the results in Table 3. We can see that not sharing weights between

them obtains the best results. For the category branch, we consider that this

is because the classes predicted between humans and parts are different so that

the network needs to learn diverse features. As for the mask coefficient branch,

the smallest unit predicted in prototypes is in part level, and sometimes humans

are fused by a combination of parts, thus requiring different features.
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Table 3: Share weights or not between humans and parts. Yes or no represents whether adding

deformable convolutions or not.

Mask coefficients Category AP p
50 AP p

vol PCP50

no no 41.8 46.2 41.9

yes no 41.3 46.1 41.6

yes yes 41.1 45.9 41.5

4.3.3. Prototype generation structure

We compare two choices of mask prototype generation structure, 1) feature

pyramid fusion proposed in [39] with Coordconv [35] as shown in Figure 4, 2)

the structure similar to the one used in YOLACT [31]. As for the second choice,

we use 4×convs (3×3) for feature extraction and one (1×1) for prediction after

the finest level of FPN with the final resolution 1/4 of the original image.

Our network utilizes the unique attribute of FPN [28], which concentrates

on small objects on lower levels but big ones on higher levels. The features

obtained by choice two are not enough to generate prototypes with a large

range of scales. On the contrary, choice one obtains detailed information and

semantic information simultaneously. As shown in Table 4, using the finest level

alone degrades the performance by a large margin.

Table 4: Prototype generation structure.

Generation choice AP p
50 AP p

vol PCP50

1) choice one 41.8 46.2 41.9

2) choice two 32.1 41.4 33.7

4.3.4. Other experiments

We find that adding deformable convolutions [44] in our network can obtain

considerable improvement. We add deformable convolutions [44] in the back-

bone and the prototype generation module. Besides, increasing iterations is a
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common method to improve the performance. We also try training our network

for 36 epochs. We show the results in Table 5.

Table 5: Other experiments on MHP v2.0. DCN means deformable convolutions. Yes or no

represents whether adding deformable convolutions or not.

Baseline DCN Epochs AP p
50 AP p

vol PCP50

ResNet50

no 12 41.8 46.2 41.9

yes 12 46.0 47.7 45.2

yes 36 51.1 49.5 49.9

4.4. Comparisons with the state-of-the-art methods

We compare NTHP with state-of-the-art methods on the MHP v2.0 [20] and

PASCAL-Person-Part [21] datasets.

We show the results on MHP v2.0 in Table 6. For a fair comparison with the

best previous method RP R-CNN [45], we use ResNet50 [42] as the backbone.

From Table 6, we can see that we outperform all state-of-the-art methods with

46.0 AP p
50, 47.7 AP p

vol, 45.2 PCP50 by training for only 12 epochs. Our best

results are obtained by training for 36 epochs with 51.1 AP p
50, 49.5 AP p

vol, 49.9

PCP50, with a margin of 5.8 points AP p
50, 2.7 points AP p

vol, and 6.1 points AP p
50

over the best previous entry. Note that we do not use flipping operation in train-

ing or any test-time augmentation on the MHP v2.0 dataset. We visualize good

or bad results in Figure 6. We contrast the part-level and human-level instance

segmentation results. And to demonstrate our classification performance, we

use the same color to represent instances with the same category in the second

and third lines.

We show the results on the PASCAL-Person-Part dataset [21] in Table 7.

On this dataset, we use the metric AP r for a fair comparison. All previous

methods use multi-scale and flip training. Besides, MNC [47] was pre-trained

on the Pascal VOC 2011/SBD dataset [49], and Holistic [48] and PGN [17]

was pre-trained on the Pascal VOC dataset [50]. PGN [17] further uses test-
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Table 6: Multi-human parsing results on the MHP v2.0 val set. ∗denotes longer learning

schedule.

Mehods Epochs AP p
50 AP p

vol PCP50

MH-Parser [15] - 17.9 36.0 26.9

Parsing R-CNN [16] 75 24.5 39.5 37.2

NAN [20] ∼80 25.1 41.7 32.2

M-CE2P [25] 150 34.5 42.7 43.8

SemaTree [46] 200 34.4 42.5 43.5

RP R-CNN [45] 150 45.3 46.8 43.8

NTHP (ours) 12 46.0 47.7 45.2

NTHP∗ (ours) 36 51.1 49.5 49.9

Table 7: Multi-human parsing results on the PASCAL-Person-Part test dataset. #denotes

using pretraining on other datasets. †denotes test-time augmentation.

Methods Epochs AP r
vol

IoU threshold

0.5 0.6 0.7

MNC#[47] ∼117 36.7 38.8 28.1 19.3

Holistic#[48] ∼100 38.4 40.6 30.4 19.1

PGN#†[17] ∼80 39.2 39.6 29.9 20.0

Unified#†[14] ∼600 43.1 48.1 38.3 25.7

NTHP (ours) 54 43.9 49.1 40.0 28.1

NTHP#(ours) 54 47.1 53.9 44.7 31.9
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time augmentation (multi-scale and flip strategy). Unified [14] employs the

same setting as PGN [17]. Unlike our experiments on the MHP v2.0 dataset

[20], we add flip operation in training due to the limited number of available

images. From Table 7, we can see that with a shallower backbone ResNet50

and less training epochs and without any pre-training or test-time augmentation

operation, our network outperform all state-of-the-art methods with 43.9 AP r
vol

and 49.1, 40.0, 28.1 AP r with IoU thresholds of 0.5, 0.6, 0.7. We also show our

result with pretraining on the MHP v2.0 dataset [20]. We obtain 47.1 AP r
vol

and 53.9, 44.7, 31.9 AP r with IoU thresholds of 0.5, 0.6, 0.7, separately with a

margin of 4, 5.8, 6.4, 6.2 points over the best previous entry. We also visualize

good or bad results in Figure 7.

5. Conclusions

In this work, we design a straightforward and simple framework for multi-

human parsing. Divergent from previous methods, we simultaneously conduct

two types of instance segmentation for humans and parts using the same struc-

ture based on our newly proposed notion of “indiscriminate objects with cate-

gories”. We also design a unified mask prediction module named UMPP which

first generates a collection of prototypes shared among humans and parts, then

makes a linear combination of them to get the binary masks. Besides, a simple

post-processing strategy is developed to get the final results in a mutually bene-

ficial way. We conduct extensive experiments on the challenging MHP v2.0 and

PASCAL-Person-Part datasets and outperform all state-of-the-art methods.
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Figure 6: Visualization of NTHP on the MHP v2.0 dataset. Pictures on the first line are

original images, pictures on the second, fourth, and sixth lines are predictions, and those on

the third, fifth, and last lines are ground truths.
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Figure 7: Visualization of NTHP on the PASCAL-Person-Part dataset. Pictures on the first

line are original images, pictures on the second, fourth, and sixth lines are predictions, and

those on the third, fifth, and last lines are ground truths.
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