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ABSTRACT

Homomorphic encryption is a very useful gradient protection technique used in privacy preserving
federated learning. However, existing encrypted federated learning systems need a trusted third party
to generate and distribute key pairs to connected participants, making them unsuited for federated
learning and vulnerable to security risks. Moreover, encrypting all model parameters is computation-
ally intensive, especially for large machine learning models such as deep neural networks. In order
to mitigate these issues, we develop a practical, computationally efficient encryption based protocol
for federated deep learning, where the key pairs are collaboratively generated without the help of a
third party. By quantization of the model parameters on the clients and an approximated aggregation
on the server, the proposed method avoids encryption and decryption of the entire model. In addition,
a threshold based secret sharing technique is designed so that no one can hold the global private key
for decryption, while aggregated ciphertexts can be successfully decrypted by a threshold number of
clients even if some clients are offline. Our experimental results confirm that the proposed method
significantly reduces the communication costs and computational complexity compared to existing
encrypted federated learning without compromising the performance and security.

Keywords Federated learning, · deep learning, · homomorphic encryption, · distributed key generation, · quantization

1 Introduction

Federated learning (FL) [1] enables different clients to collaboratively train a global model by sending local model
parameters or gradients to a sever, instead of the raw data. Compared to traditional centralized learning, FL cannot only
address the problem of isolated data island, but also play an important role in privacy preservation. Consequently, FL
has been deployed in an increasing number of applications in mobile platforms, healthcare, and industrial engineering,
among many others [2, 3].

However, FL consumes a considerable amount of communication resources. Model parameters or gradients need to
be downloaded and uploaded frequently between the server and clients in each communication round, resulting in a
longer operational stage especially for those large and complex models such as deep convolutional neural networks [4].
Much research work has been proposed to reduce the communication costs in the context of FL, including layer-
wise asynchronous model update [5], reduction of the model complexity [6], optimal client sampling [7], and model
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quantization [8,9] based on the trained ternary compression [10]. It has been empirically and theoretically shown that
using quantization in FL does not cause severe model performance degradation [8,11,12], and under certain conditions,
quantization can even reduce weight divergence [9].

Although FL can preserve data privacy to a certain degree, recent studies [13–17] have shown that local data informa-
tion can still be breached through the model gradients uploaded from each client. Under the assumption that the server
is honest-but-curious, differential privacy (DP) [18] and homomorphic encryption (HE) [19] have been introduced into
FL as additional privacy-preserving mechanisms. DP injects Gaussian [20] or Laplacian [13] noise into each uploaded
model gradients [21, 22], which is cost-effective and light-weighted. But the added noise has a negative impact on the
model performance and cannot deal with data reconstruction attacks upon the model gradients [15].

HE is originally applied to outsourced data for privacy-preserving computation and supports direct ciphertext cal-
culations. It can be roughly divided into partial homomorphic, somewhat homomorphic and fully homomorphic
encryptions [19]. Among them, additive HE [23] can be seen as a partial HE that provides an efficient protection on
gradients and enables gradient aggregation in FL, in which only the addition operation is involved. In an HE-based
FL, each client encrypts its model gradients before uploading to the central server, where all encryptions can be di-
rectly aggregated. Phong et al. [15] adopted learning with error (LWE) based HE and Paillier encryption in distributed
machine learning to safeguard communicated model parameters. But their method requires that all clients are honest,
which is a very strong assumption and unrealistic for many real-world applications. Later, Truex et al. [24] performed
threshold Paillier encryption [25] to construct a more practical system, which is more robust to malicious clients in the
FL context.

Similar ideas that use HE in FL have also been presented in [26, 27], which, however, incur a considerable increase in
communication costs. More recently, Zhang et al. [28] proposed a batchcrypt scheme for batch gradients encoding and
encryption without increasing the communication costs, but this method consumes huge amount of local computational
resources.

Using HE and DP [24,29,30] together in FL has become a popular research topic nowadays, which can defend against
attacks upon the shared global model on the server side. Nevertheless, DP protection in this framework has limited
effect against inference attacks from the client side, since local data has been already “masked" by HE.

Existing HE-based FL systems have the following two major drawbacks. First, most methods require a trusted third
party (TTP) to generate and distribute key pairs, increasing topological complexity and attack surfaces of FL systems.
Second, existing HE-based FL designs do not scale well to deep learning models containing a large number of param-
eters, because encryption and decryption of all trainable parameters are computationally prohibitive and uploading the
entire encrypted model consumes a huge amount of communication resources.

To address the above challenges, this work aims to propose a practical and efficient privacy-preserving federated deep
learning framework on the basis of additive ElGamal encryption [31] and ternary quantization of the local model
parameters, DAEQ-FL for short. The main contributions of the work are:

• We propose, for the first time, an efficient threshold encryption system with federated key generation and
model quantization for federated deep learning systems. As a result, the number of model parameters to be
encrypted and the communication costs for uploading the local models are considerably reduced, and an extra
TTP is no longer required.

• An approximate model aggregation method is developed for the server to separately aggregate the uploaded
ciphertexts and the quantized gradients, making it possible to download the aggregated ciphertexts to T
(threshold value) qualified clients only for distributed partial decryption. Thus, the proposed approximate
aggregation can further dramatically reduce the computational and communication cost for threshold decryp-
tion.

• Extensive empirical experiments are performed to compare the proposed method to threshold Paillier [24]
with respect to the learning performance, communication cost, computation time and security. Our results
confirm that even encoded with 10 bits, the proposed method can significantly decrease the computation time
and communication cost with no or negligible performance degradation.

The remainder of the paper is structured as follows. Section II introduces the preliminaries of federated learning, deep
neural network models, and the ElGamal encryption system. Details of the proposed methods, including federated
key generation, encryption and decryption, ternary quantization, and model aggregation are provided in Section III.
Experimental results and discussions are given in Section IV. Finally, conclusion and future work are presented in
Section V.
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Figure 1: Flowchart of federated learning. θt are the global model parameters in the t-th communication round, nk is
the data size of client k, and K is the total number of clients. The global model parameters are randomly initialized at
the beginning of the training and will be updated by aggregating the uploaded local models in each round.

2 Preliminaries

2.1 Federated Learning

Unlike the centralized cloud model training that needs to collect raw data from different parties and store the data on
a server, FL [3] is able to distributively learn a shared global model without accessing any private data of the clients.
As shown in Fig. 1, at the t-th round of FL, K connected clients download the same global model θt from the server
and update it by training with their own data. After that, trained local models or gradients will be uploaded back to
the server for model aggregation. Therefore, the global model can be learned and updated while all the training data
remain on edge devices.

FL aims to optimize a distributed loss function ℓ(θ) as shown in Eq. (1),

min
θ

ℓ(θ) =
K∑

k=1

nk

n
Lk(θ), Lk(θ) =

1

nk

∑

i∈Pk

ℓi(θ, xi) (1)

where k is the index of K total clients, Lk(θ) is the loss function of the k-th local client, nk equals to the local data
size, and Pk is the set of data indexes whose size is nk, i.e., nk = |Pk|. Note that the training data xi on each client k
may not satisfy the independent and identically distributed assumption, i.e., non-IID.

Although the data on the clients do not need to be shared, FL is still subject to security risks, since the model gradients
naturally contain information of the training data. It has been theoretically proved in [15] that only a portion of the
gradients may lead to the leakage of private information of the local data. If we assume the cost function to be a
quadratic function, the corresponding gradients can be calculated in Eq. (2).

J(θ, x)
def
= (hθ(x) − y)2

gk =
∂J(θ, x)

∂θ
= 2(hθ(x)− y)σ

′

(

d∑

i=1

xiwi + b) · xk

(2)

where gk and xk are the k-th feature of gradient g ∈ Rd and the input data x ∈ Rd, respectively. Since the product

2(hθ(x) − y)σ
′

(
∑d

i=1 xiwi + b) is a real scalar number, the gradient is in fact proportional to the input data. As a
result, uploading model gradients cannot completely prevent local data from being revealed and enhanced protection
techniques are required for secure FL systems.

2.2 Deep Learning

Deep learning has been deployed in the fields of computer vision, speech recognition and many other areas [32–36].
The word "deep" means that neural network (NN) models, such as convolutional neural networks (CNNs) [37] and
recurrent neural networks (RNNs) [38], used in deep learning always contain multiple hidden layers.

For a typical supervised learning [39], the training purpose is to minimize the expected distance between a desired
signal y (e.g., a label in classification) and a predicted value ŷ, which is often represented by a so-called loss function
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ℓ(y, ŷ) as shown in Eq. (3), where θ is the trainable model parameters we want to optimize.

min
θ

ℓ(θ) =
1

N

∑

i

ℓ(y, ŷ|θ, xi) xi ∈ {x1, x2..., xN} (3)

The stochastic gradient descent (SGD) algorithm is the most widely used optimization method that calculates the
partial derivatives of the loss function (3) with respect to each model parameter in θ. The model parameters will be
updated by subtracting scaled calculated gradients as shown in Eq. (4),

gt = ∇θℓ(θ, x)

θt+1 = θt − ηgt
(4)

where η is the learning rate and gt is the expected gradient over data samples x at the t-th iteration. The model update
based on SGD in (4) is repeatedly performed until the model parameters converge.

DNNs often contain a large number of layers and training very deep models on big datasets is extremely time-
consuming. Therefore, DNNs will incur excessive communication and computation costs when they are adopted
in FL.

2.3 Homomorphic Encryption and Secret Sharing

HE is the most widely used data protection technology in secure machine learning as it supports algebraic operations
including addition and multiplication on ciphertexts. An encryption method is called partially HE if it supports addition
or multiplication operation, and fully HE if it supports an infinite number of addition and multiplication operations.
Without loss of security and correctness, additive HE fulfills that multiple parties encrypt message Ci = Encpk(mi)
and decrypt

∑n
i=1 mi = Decsk(

∏n
i=1 Ci) using public key and secret key, respectively.

Among those well-studied HE techniques, ElGamal [31] is a multiplicative mechanism while Paillier [23] provides
additive operations, which are based on discrete logarithm and composite degree residuosity classes, respectively. The
former needs 256-bit key length to achieve the 128 bit security level, whereas the latter costs 3072 bits [40], implying
that ElGamal is a computationally more efficient encryption and decryption method [41]. However, additional Cramer
transformation [42] needs to be applied to ElGamal encryption so as to extend it to support additive operations.

Conventional HE is not well suited for distributed learning systems such as FL systems, since the ciphertexts on the
server can be easily inferred, as long as one client uploads its private key to the server. In order to mitigate this issue,
Adi Shamir [43] proposed Shamir Secret Sharing (SSS) which splits a secret into n different shares. Consequently, T -
out-of-n shares are needed to recover the secret. Based on SSS and Diffie–Hellman (DH) security definition (Appendix
A), Feldman proposed verifiable secret sharing (VSS) [44], which adds a verification process during sending shares.

But Feldman VSS only allows trusted clients to share secrets and it will fail to generate correct key pairs if there are
adversaries in the system. To address this limit, Perdersen [45] proposed a novel VSS that is able to detect and exclude
adversarial clients. On the basis of the above two VSS methods, Gennaro et al. [46] introduced a secure distributed
key generation (DKG) for discrete logarithm based crytosystems.

We propose a federated key generation (FKG) based on DKG for model parameter encryption in FL and the details of
FKG will be given in Section III.

3 Our Proposed System

A key component for the proposed system is federated key generation (FKG) that generates keys for all participating
clients of the FL system without a TTP. To this end, additive discrete logarithm based encryption is adopted to achieve
secure model aggregation. In addition, a fixed point encoding method is implemented to encode the plaintext. In order
to decrease computational and communication resources, ternary gradient quantization and approximate model aggre-
gation are further introduced. In the following, we elaborate each of our main components and present a description
of the proposed overall DAEQ-FL system. Finally, a brief discussion is given to compare our DAEQ-FL with existing
encryption based FL systems.

3.1 Federated Key Generation

The proposed FKG is a variant of DKG [46], which is based on Pedersen VSS and Feldman VSS that can verify key
shares in a secure way for successful key generations. The main steps of FKG are described in Algorithm 1.
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Algorithm 1 Federated Key Generation. G is a cyclic group, p and q are large prime numbers, g is a generator, y ∈ G,
N is the number of total clients, C is the fraction of clients participating the current round, i is the client index, and T
is the threshold value.
1: Server distributes public parameters < p, q, g, y >
2: for Each FL round t = 1, 2, ... do
3: n = C ∗N
4: Select threshold value T > n/2
5: Client i ∈ {1, · · · , n} perform Pedersen VSS
6: Collect the number of complaints cpti for client i
7: for Client i ∈ {1, · · · , n} do
8: if cpti > T then
9: Mark client i as disqualified

10: else
11: Client i uploads fi(j) and
12: if Eq. (6) is satisfied then
13: Mark client i as qualified (QUAL)
14: else
15: Mark client i as disqualified
16: end if
17: Mark client i as QUAL ⊲ T ≤ |QUAL| ≤ n
18: end if
19: end for
20: Client i ∈ QUAL perform Feldman VSS
21: Collect complained client index in O,
22: for Each client i ∈ O do ⊲ |O| < T
23: Set counter = 0
24: for Each client j ∈ QUAL but j /∈ m do

25: Client j uploads fj(i) and f
′

j (i)
26: if Eq. (7) is satisfied then
27: counter = counter + 1
28: end if
29: if counter ≥ T then
30: Break
31: end if
32: end for
33: Retrieve fi(z) and Ai0 ⊲ Ai0 = gai0 (mod p)
34: end for
35: Generate global public key h =

∏
i∈QUAL

Ai0 = gx

36: end for

Assume that the server in DAEQ-FL is honest-but-curious, and there are at least T -out-of-n (T > n/2) honest clients.
Before key pair generation, the server needs to generate and distribute four public parameters p, q, g and y, where q is
the prime order of cyclic group G, p is a large prime number satisfying p− 1 = rq, r is a positive integer, g and y are
two different random elements in G.

For Pedersen VSS executed in line 5 of Algorithm 1, each participating client i in the t-th round generates two random

polynomials fi(z) and f
′

i (z) over Z∗
q of order T − 1 as shown in Eq. (5).

fi(z) = ai0 + ai1x + ...+ aiT−1x
T−1 (mod q)

f
′

i (z) = bi0 + bi1x + ...+ biT−1x
T−1 (mod q)

(5)

Let zi = ai0 = fi(0) be the locally stored private key. Client i broadcasts Cik = gaikybik (mod p) and sends shares

sij = fi(j), s
′

ij = f
′

i (j) to client j (j ∈ n), then client j verifies the received shares by Pedersen commitment:

gsijys
′

ij =

T−1∏

k=0

(Cik)
jk (mod p) (6)

Due to the hiding and binding properties of Pedersen commitment [45], it is impossible for adversaries, if any, to guess

the real aik and bik through Cik or to find another a pair of sij and s
′

ij that can satisfy Eq. (6). In addition, based on
our previous security assumption and the principle of SSS, it is infeasible to reconstruct the private keys of any honest
clients even if the system contains n− T malicious clients.
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Each client sends a complaint of client i to the server if any shares sij and s
′

ij received from client i do not satisfy
Eq. (6). Once the server receives more than T complaints against client i (line 6 in Algorithm 1), this client will
be immediately disqualified. Besides, as long as client i is complained by any client j, where j ∈ {1, · · · , n}, the

corresponding shares sij and s
′

ij are required to upload to the central server for Pedersen commitment (Eq. (6))
verification. If any verification fails, client i would be marked as disqualified.

However, Pedersen VSS cannot guarantee correct global public key generation, since malicious clients can still corrupt
the generation process by broadcasting fake Ai0 (line 33 in Algorithm 1). Therefore, Feldman VSS is used in addition
to Pedersen VSS to ensure that all the QUAL clients broadcast correct Ai0 for in the proposed FKG.

Similarly, to implement Feldman VSS (line 20 in Algorithm 1), each client j (j ∈ QUAL) broadcasts Aik = gaik

(mod p) and verifies Eq. (7).

gsij =

T−1∏

k=0

(Aik)
jk (mod p) (7)

If shares of client i satisfy Eq. (6) but not Eq. (7), client j will send a complaint to server. Then the server requires
t QUAL clients to upload their shares fi(j), j ∈ t to retrieve the random polynomial fi(z) of client i by Lagrange
interpolation function [47] as show in Eq. (8).

λj =
∏

k 6=j

z − k

j − k
, k ∈ T, j ∈ QUAL

fi(z) =
∑

j∈QUAL

λjfi(j)
(8)

Finally, the server can generate the global public key through broadcasting Ai0 from all QUAL clients in Eq. (9),
where x is in fact the global private key. And then, the public key h will be shared to all QUAL clients.

hi = Ai0 = gzi (mod p)

h =
∏

i∈QUAL

hi = g
∑

i∈QUAL zi = gx (mod p) (9)

3.2 Additive Discrete Logarithm Based Encryption

To be fully compatible with FKG, which is adapted from DKG to the FL environment, additive discrete logarithm
based encryption is employed based on ElGamal encryption [31].

The original ElGamal encryption works as follows:

• Parameters generation: Generate three parameters p, q and g, where q is the prime order of a cyclic group G,
p is a large prime number satisfying q|p− 1, and g is a generator of G.

• Key generation: Select a random number x, x ∈ Zq as the secret key, and then compute h = gx (mod p) to
be the public key.

• Encryption: To encrypt a message m ∈ Z
∗
p, choose a random number r ∈ Z

∗
q as a ephemeral key, calculate

two ciphertexts as < c1 = gr (mod p), c2 = mhr (mod p) >.

• Decryption: The plaintext message m can only be decrypted if the private key x is available by computing
Eq. (10)

c2
cx1

=
mhr

(gr)x
=

mgxr

grx
(mod p) ≡ m (10)

Therefore, the original ElGamal is a multiplicative HE satisfying: Enc(m1) ∗ Enc(m2) = Enc(m1 ∗ m2), because
m1h

r1 ∗ m2h
r2 = m1m2h

r1+r2 (mod p). Since model aggregation on the server in FL performs the addition
operation, we can apply Cramer transformation [42] on ElGamal encryption by simply converting the plaintext m into

m
′

= gm (mod p). Consequently, the original ElGamal encryption becomes a discrete logarithm based additive HE,
as shown in Eq. (11).

Enc(m1) ∗ Enc(m2) = gm1hr1 ∗ gm2hr2

= gm1+m2hr1+r2 (mod p)
(11)

Note that the specific security analysis is described in Appendix B.
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3.3 Fixed Point Encoding Method

Note that HE can be applied to integers only, however, model parameters or gradients are normally real numbers.
Therefore, the real-values model parameters must be encoded before encryption.

The encoding method used in this work is straightforward, as shown in Eq. (12), where grad is a real number gradient,
b is the encoding bit length, q is the above mentioned prime order of G and m is the encoded integer number.

intmax = int(q/3)

m̂ = round(grad ∗ 2b), m̂ ≤ intmax

Encode(grad) = m̂ (mod q) = m

Decode(m) =

{
m ∗ 2−b, m ≤ intmax

(m− q) ∗ 2−b, m > q − intmax

(12)

intmax is the maximum positive encoding number defined by the server, which is one-third of q. If m > q− intmax (m̂
is negative), it should subtract q before multiplying 2−b, because m̂ (mod q) = q + m̂, m̂ < 0. Since the bit length
of intmax is always set to be much larger than the encoding bit b, sufficient value space can be reserved for encoding
number summations (additive HE).

3.4 Brute Force and Log Recovery

Using Cramer transformation needs to recover the desired m from m
′

to solve the so-called discrete logarithm hard
problem after decryption. Here, we propose two techniques, namely brute force and log recovery, to solve this problem.

Brute force recovery simply tries different m from 0 to q − 1, and the correct m is found only if m
′

= gm (mod p).
Thus, a maximum of q trials are needed to solve DLHP in the worst case. Fortunately, the absolute values of all the
model gradients in DNNs are always less than 0.1, and therefore, they can be encoded with a b bit-length fixed point
integer number. It takes about 2b times to find the correct m if m̂ is positive. Note that the quantization method we
employ can guarantee that m̂ is positive, which will be introduced later.

The log method consumes almost no additional recovery time by calculating logg(g
m) = m directly. However, this

only works when gm < p. In order to ensure the best encoding precision (the encoded m should be as large as
possible), we minimize g to g0 = 2. And the encoded number m must be less than the bit length of a large prime
number p, which means the encoding precision is restricted by the security level. Besides, the security level will not
be reduced by selecting a small fixed g0.

Both the brute force and log recovery are described in Algorithm 2

Algorithm 2 Plaintext Recovery. q is a prime order of the cyclic group G, p is a large prime number satisfying p− 1|q,
g is a random element in G, m is the message to be recovered, intmax is the maximum positive encoded number.

1: Brute Force Recovery:
2: g0 = g

3: Given decrypted plaintext m
′

= gm0 (mod p), m ≤ intmax

4: for j from 0 to q − 1 do

5: if gj0 (mod p) == m
′

then
6: m = j
7: Break
8: else
9: Continue

10: end if
11: end for
12: Return m
13:
14: Log Recovery:
15: g0 = 2

16: Given decrypted plaintext m
′

= gm0 (mod p), gm0 ≤ p
17: m = logg0

(gm0 )
18: Return m

7



3.5 Ternary Gradient Quantization

Encrypting and decrypting all elements of the model gradients have several shortcomings. First, performing encryp-
tion on local clients is computationally extremely expensive, causing a big barrier for real world applications, since
usually the distributed edge devices do not have abundant computational resources. Second, uploading model gradi-
ents in terms of ciphertext incurs a large amount of communication costs. Finally, the first two issues will become
computationally prohibitive when the model is large and complex, e.g., DNNs.

In order to tackle the above challenges, we introduce ternary gradient quantization (TernGrad) [48] to drastically
reduce computational and communication costs for encryption of DNNs. TernGrad compresses the original model
gradients into ternary precision gradients with values ∈ {−1, 0, 1} as described in Eq. (13),

g̃t = st · sign(gt) · bt

st = max(abs(gt))
(13)

where gt is the full precision model gradients at the t-th iteration, g̃t is the quantized gradients, st (a scalar larger than
0) is the maximum absolute element among gt, and the sign function transfers gt into binary precision with values
∈ {−1, 1}. Finally, bt is a binary tensor whose elements follow the Bernoulli distribution [49].

Pr(btk = 1|gt) = |gtk|/st

Pr(btk = 0|gt) = 1− |gtk|/st
(14)

where btk and gtk is the k-th element of bt and gt, respectively, and the product of sign(gt) and btk is a ternary tensor
({−1, 0, 1}) representing the model training direction. According to Eq. (4), the full precision model parameters in
TernGrad is updated as shown in Eq. (15).

θt+1 = θt − η(st · sign(gt) · bt) (15)

Since st is a random variable depending on input xt and the model weights θt, Eq. (14) can be re-written into Eq. (16).

Pr(btk = 1|xt, θt) = |gtk|/st

Pr(btk = 0|xt, θt) = 1− |gtk|/st
(16)

The unbiasedness of the ternary gradients can be proved as shown in Eq. (17).

E(st · sign(gt) · bt) = E(st · sign(gt) · E(bt|xt))

= E(gt)
(17)

The TernGrad algorithm is adopted in the proposed DAEQ-FL to significantly reduce the computational cost for
encryption on local devices and the communication costs for passing the encrypted model parameters between the
clients and the server. Before performing encryption on the local clients, the model gradients are decomposed into two
parts: one is the positive scalar st and the other is the ternary model gradients sign(gt) · bt). And only one scalar st in
each layer of the model needs to be encrypted, thereby dramatically decreasing the computation costs and encryption
time.

The ternary gradients do not need to be encrypted, because adversaries, if any, can only derive parts of gradients
sign information from them. And separately uploading encrypted st and ternary gradients makes the total amount of
uploads 16 times smaller than the original scenarios. Another advantage is that it can make brute force recovery much
faster, since the scalar st can never be negative, namely, the encoded m in Eq. (12).

3.6 Approximate Model Aggregation

For model aggregation on the server, the received encrypted st (t-th round in FL) should multiply its corresponding
ternary gradients before weighted averaging (Eq. (18)).

gi(t,tern) = sign(git) · b
i
t

Enc(gglobal
t ) =

∑

i

ni

n
(Enc(sit) ∗ g

i
(t,tern))

(18)

Decryption of the aggregated global gradients Enc(gglobal
t ) requires to traverse each single ciphertext, which is ex-

tremely time-consuming, making it less practical even if the server often possess abundant computation resources.
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Figure 2: Encryption with TernGrad and model aggregation approximation. The Enc(sglobal
t ) is aggregated over the

uploaded Enc(sit) from the participating clients.

Therefore, this work proposes an approximate aggregation method (Fig. 2) so as to reduce the decryption time. The
basic idea is to separately aggregate the encrypted scalar and related ternary gradients, as shown in Eq. (19).

Enc(sglobal
t ) =

∏

i

Enc(sit ∗
ni

n
) = Enc(

∑

i

sit ∗
ni

n
)

gglobal

(t,tern) =
∑

i

gi(t,tern)

(19)

where i is the client index, ni is the local data size and n is the global data size. And Enc(gglobal
t ) = Enc(sglobal

t )∗gglobal

(t,tern),

if s1t = s2t = ... = snt . However, this condition is hard to satisfy and the bias gglobal
t − sglobal

t ∗ gglobal

(t,tern) is difficult to

estimate due to the random property of SGD. In reality, each client’s local scalar satisfies s1t ≈ s2t ≈ ... ≈ snt , and the
our experimental results also empirically confirm that this approximation bias is acceptable and even negligible.

Note that a small implementation trick used here is to do weighted averaging upon st before encryption, which helps
reduce the differences between sit and avoid overflow of the encrypted gradients during model aggregations on the
server.

To update the global model, only one ciphertext Enc(s
global
t ) of each layer needs to be decrypted, which will be

multiplied by the global ternary gradients afterwards as shown in Eq. (20)

sglobal
t = Dec(Enc(sglobal

t ))

θglobal
t+1 = θglobal

t − ηsglobal
t ∗ gglobal

(t,tern)

(20)

3.7 Overall Framework: DAEQ-FL

The overall framework, distributed additive ElGamal encryption and quantization for privacy-preserving federated
deep learning, DAEQ-FL for short, is depicted in Algorithm 3. Note that in DAEQ, federated key generation should
be performed at the beginning of each communication round before model training to generate different key pairs for
preventing possible collusion between a client and the server.

Note that the server can determine the threshold value T based on the number of participating clients n in each FL
round (T > n/2). If the number of QUAL clients are less than T , the disqualified clients will be kicked out of the
system and then the process is aborted and FKG is restarted. After FKG, each QUAL client i downloads the global
model parameters θt and the public key pk for local training. Then the model gradients, obtained by subtracting the
received global model θt from the local updated model θit, are converted into a real-valued coefficient sit and a ternary
matrix ∆θi(t,tern) before performing ElGamal encryption. Two ciphertexts ci(t,1) and ci(t,2) together with a ternary

gradient ∆θi(t,tern) are then uploaded to the server for model aggregation as described in Section 3.6.

For decryption (Fig. 3), only two aggregated ciphertexts need to be downloaded to T QUAL clients for partial de-
cryption and T partial decrypted ciphertexts pdi are uploaded back to the server (line 16-20 in Algorithm 3). The

server can easily get the plaintext gTmt

0 by multiplying all received ciphertexts pdi. sji is a share fj(i) (introduced in

Algorithm 1) from client j to client i, λi =
∏

j 6=i
j

j−i
is the Lagrange coefficient and x =

∑
j∈QUAL zj is the global

private key. According to the property of SSS, at least T (threshold value) different fi(j), j ∈ T shares are needed to

9



Algorithm 3 DAEQ-FL. p, q, g, y are key parameters introduced in Algorithm 1, pk is the global public key, Qual
are qualified clients, N is the total number of clients, C is the fraction of connected clients, E is the number of local
epochs, B is the local batch data, θt is the global model parameters at the t-th FL round, T is the threshold value, and
η is the learning rate.

1: Server:
2: Generate and distribute p, q, g, y and global model parameters θ0
3: for each FL round t = 1, 2, ... do
4: Select n = C ×N clients, C ∈ (0, 1)
5: Select T > n/2
6: Generate pk by FKG among n clients in Algorithm 1
7: for each client i ∈ Qual in parallel do
8: Download θt
9: Do local Training

10: Upload ci(t,1), c
i
(t,2) and ∆θi(t,tern)

11: end for
12: c(t,1) =

∏
i
ci(t,1) (mod p)

13: c(t,2) =
∏

i
ci(t,2) (mod p)

14: ∆θ(t,tern) =
∑

i
∆θi(t,tern)

15: Randomly select T Qual clients
16: for each client j ∈ T in parallel do
17: Download c(t,1) and c(t,2)
18: Do Partial Decryption
19: end for
20: gTmt

0 =
∏

j∈T
pdj = gTmt

0 g(x−
∑

j λjxi)T (mod p)
21: Recover Tmt by Algorithm 2
22: θt+1 = θt −∆θ(t,tern) ∗ Tmt/T
23: end for
24:
25: Client i:
26: // Training:
27: θit = θt
28: for each iteration from 1 to E do
29: for batch b ∈ B do
30: θit = θit − η∇Li(θ

i
t, b)

31: end for
32: end for
33: ∆θit = θit − θt
34: Quantize ∆θit into sit and ∆θi(t,tern) in Eq. (13) and (18)

35: Encode mi
t = round(sit ∗Dk/D ∗ 2l) (mod q) in Eq. (12)

36: Encrypt ci(t,1) = gri (mod p), ci(t,2) = g
mi

t
0 pkri (mod p)

37: Return ci(t,1), c
i
(t,2) and ∆θi(t,tern) to server

38: // Partial Decryption:

39: xi =
∑

j sji = fj(i), i, j ∈ QUAL ⊲ fj(i) in Algorithm 1

40: Partial decrypt pdi = c(t,2)/c
λixiT

(t,1) (mod p), ri ∈ Z
∗

q

41: Return pdi

… … … … 

… … 

… 

Figure 3: The encrypted s
global
t is downloaded to T qualified clients for partial decryption, and then the partial decrypted

ciphertexts are uploaded back to the server to retrieve the final plaintext.
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Table 1: Comparison of encryption based privacy preserving FL systems

Proposed systems
Threat model

Encryption scheme Without TTP Threshold Based
Server Client

Phong et al. [15] honest but curious honest Paillier, LWE % %

Truex et al. [24] honest but curious majority honest Paillier % "

Xu et al. [51] honest but curious majority honest functional encryption % %

Batchcrypt [28] honest but curious honest Paillier " %

DAEQ-FL(our system) honest but curious majority honest ElGamal " "

retrieve the local private key zi. The reason why x−
∑

i λixi = 0 is proved below:

∑

i∈T

λixi =
∑

i∈T

λi

∑

j∈QUAL

fj(i)

=
∑

j∈QUAL

∑

i∈T

λifj(i)

=
∑

j∈QUAL

zj = x

(21)

One of the advantages of DAEQ-FL is that no parties within the FL system, including the server, can know the global
private key x, which significantly enhances system security level. In addition, the extra communication resources are
negligible, and only three ciphertexts c(t,1), c(t,2) and pdi are transmitted between the server and each client i with the
help of the TernGrad algorithm. Finally, DAEQ-FL is robust to possible disconnection of individual clients, since the
ciphertext can be successfully decrypted so long as a minimum of T QUAL clients upload their pdi.

3.8 Discussion

We list the general differences between our proposed system and four popular existing approaches in Table 1. From the
table we can see that our DAEQ-FL has remarkable superiority, being a threshold based encryption system without an
extra TTP and tolerating the existence of malicious clients. We here note that Truex et al. [50] also proposed a threshold
based Paillier encryption system in FL, but it still requires a TTP for key generation. Some quantization technique
is introduced in [28] for efficient encoding and encryption, but it is totally different from our ternary quantization
methods.

4 Experimental Results

In this section, we first introduce all experimental settings, followed by the encryption cost and time consumption.
Finally, the results of model performances will be discussed.

4.1 Simulation Settings

In our simulations, we use CNN for MNIST [52] digit number classifications, ResNet for CIFAR10 [53] image classi-
fications and stacked LSTM [54] for Shakespeare [55] next word prediction task. All three datasets are non-iid among
different clients.

MNIST is a 28x28 grey scale digit number image dataset containing 60,000 training images and 10,000 testing images
with 10 different kinds of label classes (0∼9). All the clients’ training data are distributed according to their label
classes and most clients contain only two kinds of digits for non-iid partition.

CIFAR10 contains 10 different kinds of 50,000 training and 10,000 testing 32x32x3 images. Similar to MNIST, the
whole training data are horizontally sampled and each client owns five different kinds of object images.

The Shakespeare dataset is built from the whole work of Wailliams Shakespeare. It has in total 4,226,073 samples with
1129 role players and the data samples of each role player represent the dataset on each client. Additionally, 90% of
the user’s data are randomly divided as the training data and the rest are testing data. This dataset is naturally non-iid
and unbalanced, with some clients having few lines and others a large number of lines. In order to reduce the training

11



Table 2: Communication costs of one connected client for both encryption and partial decryption with 128-bit security
level, # of ciphertexts means the number of transmitted ciphertexts for encryption and decryption, respectively.

Models Enc Uploads (MB) Dec Downloads (MB) Dec Uploads (MB) # of Ciphertexts

CNN (DAEQ-FL) 0.3876+0.0059 0.0059 0.0029 16+24
ResNet (DAEQ-FL) 2.6618+0.0161 0.0161 0.0081 44+66
LSTM (DAEQ-FL) 0.1955+0.0066 0.0066 0.0033 18+27

CNN (Paillier) 595.4099 595.4099 595.4099 1625866+3251732
ResNet (Paillier) 4088.5115 4088.5115 4088.5115 11164362+22328724
LSTM (Paillier) 300.2637 300.2637 300.2637 819920+1639840

time, we follow the method used in [56] to randomly select 5% of the total users and remove those containing less
than 64 samples.

Note that we do not apply any data augmentation techniques [57, 58] to boost the final global model performances to
reduce local computational complexity, since the main purpose of this work is not to achieve the state of the art model
performances in FL; instead, we aim to present a distributed encryption method for better privacy preservation in FL
without considerably increasing the computational and communication costs.

A CNN model is adopted to train on MNIST in the FL framework, which contains two 3x3 convolution layers with 32
and 64 filter channels, respectively, followed by a 2x2 max pooling layer. And then, a hidden layer with 128 neurons is
fully connected to the flattened output of the max pooling layer. Thus, the whole CNN model has 1,625,866 learnable
parameters.

CIFAR10 dataset is to be learned by a ResNet model. The input images firstly pass through a 3x3 convolutional layer
with 64 channels, followed by a batch normalization layer [59] with the Relu [60] activation function. Its output is
connected to four sequentially connected block layers with 64, 128, 256, 512 filter channels, respectively. Each block
layer contains two residual blocks containing two convolutional layers, each followed by a batch normalization layer
and a shortcut connection. All the trainable parameters of the batch normalization layers are disabled, because they
are observed to perform poorly with small batch sizes and non-iid data [59,61]. The full ResNet model has 11,164,362
trainable parameters.

The Shakespeare dataset is trained by a stacked LSTM model which contains two LSTM layers, each with 256 neurons.
Since we use the module cudnnLSTM of Tensorflow [62] , the layer bias is twice as large as the original LSTM layer.
Thus, the full model contains 819,920 parameters.

In the experiments training the CNN and ResNet for image classification, the FL system consists of a total of 20
clients, each containing 3000 and 2500 data samples for MNIST and CIFAR10, respectively. All the testing images
are evenly and randomly distributed on all the clients. The total number of communication rounds is set to be 200 and
all the clients are connected to the server in each round. In the experiments for language modeling using the LSTM,
we randomly sample 5% of the entire role players (36 role users containing at least 64 samples) in Shakespeare dataset.
In each round of FL learning, only 10 out of the 36 clients are randomly chosen to participate, following the settings
in [56]. The total number of communication rounds is set to be 100. Besides, the test accuracy of the global model is
examined on local data only. Both correct predictions and test data size of connected clients are sent to the server to
get the global test accuracy (note the server does not contain any test data).

The key size and group size of the distributed additive ElGamal encryption are set to 256 and 3072, respectively, to
offer a 128-bit security level. Besides, the bit length for encoding is chosen to be from 2 to 15. The log recovery is
used when the encoding bit length ranges from 2 to 10, whiles the brute force recovery method is adopted when the
bit length is larger than 10.

We use the standard SGD algorithm for all model training. For the CNN models, the number of local epochs is set
to 2, the batch size is 50, and the learning rate is 0.1 with a decay rate of 0.995 over the FL rounds. We do not use
any momentum for training the CNNs, while the momentum is set to be 0.5 for the ResNet. For the LSTM, the local
epoch is set to 1, the batch size is 10, and the learning rate is 0.5 with a decay rate of 0.995.

4.2 Encryption Cost and Brute Force Recovery Time

At first, we compare the communication costs between the proposed DAEQ-FL and a threshold based Paillier method
in terms of encryption and recovery costs.
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Table 3: Runtime for encryption and decryption of one number using ElGamal and Paillier

Algorithm Enc Time (s) Dec Time (s)

ElGamal 0.0029 0.0015
Paillier 0.0501 0.0141
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Figure 4: Brute force recovery time with different encoding bit lengths for different learning models.

We experiment with three different models (CNN, ResNet and LSTM) in our DAEQ-FL system and compare them
with the Paillier-based variants. As shown in Table 2, the communication cost of our system is dramatically less
than those Paillier-based systems. The best case has been achieved in the LSTM, where each client consumes only
0.212MB of communication costs in one round, whereas the Pillier system takes 900.7911MB, which is about 4249x of
our system. For training the CNN and ResNet, the proposed DEAQ-FL costs 0.4023MB and 2.7021MB, respectively,
which accounts for approximately 0.023% and 0.022% of the Paillier based variants.

Next, we compare the runtime of the ElGamal encryption used in our system and the conventional Paillier method
under the same security level. The runtimes of the two encryption methods for encrypting and decrypting one number
are listed in Table 3, where both the key size of Paillier and the group size of ElGamal are 3072.

From the results in Table 3, we can observe that ElGamal is approximately 17 times and 10 times faster than Paillier for
encryption and decryption, respectively. However, since the Cramer transformation needs extra brute force recovery
time, in the following, we explore the brute force recovery time corresponding to different encoding bit lengths for
CNN, ResNet18 and stacked LSTM, respectively. The comparative results are plotted in Fig. 4.

Because the larger the encoding bit length is, the more time the brute force recovery will consume. Here, we ex-
periment with the encoding bit length starting from 15 bits to 2 bits. The results clearly show that the difference
in computation times goes bigger with rising of encoding bit. Specifically, CNN, ResNet and LSTM spend at most
18.0467s, 42.2203s and 55.2088s on recovery, respectively.

The CNN and ResNet show similar recovery time profile over the communication rounds. Their brute force recovery
time are very large in the beginning, and quickly drop over the communication rounds. This is attributed to the fact
that the gradients of the model parameters of the SGD decrease quickly as the global model parameters converge. It is
surprisingly to see that the recovery time for the ResNet becomes almost zero, which is smaller than that of the CNN
after approx. 100 communication rounds. This means the model gradients of the ResNet become very small at the end
of federated model training.

By contrast, the recovery time of the LSTM does not drop to zero and keeps fluctuating at a relatively high level,
especially for the 15-bit length encoding. There are two reasons for the above observations. First, training of the
LSTM involves large gradients of recurrent connections, and those values are determined by the length of sequence.
Second, the setting of the FL environment for the LSTM is very different from that of the CNN and ResNet, where
only ten clients randomly participate global model aggregation in one communication round.

Table 4 presents the time consumption of the brute force recovery for 15-bit encoding length. From Fig. 5(a) we
can find that the average brute force recovery time accounts for a great proportion of the total elapsed time in each
communication round, especially for the LSTM.

Therefore, we can use the log recovery instead of the brute force recovery when the encoding bit length is smaller than
or equal to 10 so that the recovery time and the encryption time become negligible (Fig. 5(b)). Since the group size
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Table 4: Brute force recovery time for 15 encoding bit length

Models Max (s) Min (s) Avg (s)

CNN 18.0467 1.0717 1.9786
ResNet 42.2203 0.0474 2.6491
LSTM 55.2088 12.6166 23.8876
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Figure 5: Ratio of consumed time for model training, encryption and decryption, and brute force recovery for the
15-bit encoding length (a), and for the log recovery for the 10-bit encoding length (b) in one communication round.

of p is 3072 bit and g0 is 2, the log recovery is not recommended when the plaintext message is larger than 3072 bit
(11-bit encoding length). In order to avoid overflow, the maximum encoding bit length is set to be 10 in our simulations
and the global performance drop caused by a low encoding bit length will be discussed in the next section.

4.3 Learning Performance

In this section, we empirically examine influence of the TernGrad quantization, approximate aggregation and encoding
length on the learning performance of the proposed DAEQ-FL system. Fig. 6 shows the test accuracy of the three
models with or without encryption operations. For non encryption cases, ‘Original’ represents standard FL, ‘Tern-
Grad’ means only quantization is used and ‘TernGrad+Approx’ uses both quantization and approximated aggregation
technique. And for encryption cases, brute force recovery is used for 15 encoding bit length cases and log recovery is
adopted for 10 bit length scenarios.

From these results, we can see that the test accuracy of the models of the original FL and four variants of the DEAG-FL
have achieved almost the same performance (in particular the CNN, with 98.97% test accuracy). These results indicate
that both the quantization and approximated aggregation have negligible impact on the test performance of the global
model. Besides, neither the quantization or encryption has considerably slowed down the convergence speed over
the communication rounds. It also can be seen that, the CNN and ResNet converge around the 25th round, while the
LSTM is convergent around the 50th round.

More specifically, when the CNN trained on the MNIST dataset, the model performance does not degrade when the
encoding bit length is decreased to 10. However, For the ResNet trained on CIFAR10, the test accuracy of the global
model is reduce to 74.96% by using 10-bit encoding, which is approximately 1% lower than models without using
encryption. The test accuracy of the LSTM models fluctuates between around 48% and 52%, regardless whether
quantization or encryption are used or not. This can be due to the same reasons as discussed above.

Now we take a closer look at the learning performance of the global model of the proposed DAEQ-FL when the
encoding bit length further decreases. The results for all models are shown in Fig. 7. It can be noticed that the
convergence speed of the CNN and ResNet starts to decrease when the encoding bit length is smaller than 9. Besides,
the model performance reduces dramatically when the encoding length is reduced to 7 bits or lower for CNN and to 8
bits or lower for the ResNet, respectively.
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Figure 6: The test accuracy of the global model for CNN, ResNet and LSTM in five different settings.

Reduction of the encoding bit length does not cause clear model degradation for the LSTM until when only 2 bits
are used for encoding and the accuracy is reduced to 43.15%. Nevertheless, we can still observe a slight drop in
the convergence speed in the beginning of the communication rounds. The possible reason for this is that the model
gradients of LSTM are large.

Overall, both TernGrad quantization and the approximate global model aggregation have little impact on the model
performance, so long as the encoding bit length is not less than eight. Therefore, the proposed DEAQ-FL using
the log recovery and an encoding length of 9 or 10 can achieve 128 bit security level with negligible degradation in
performance and little increase in computational and communication costs for the CNN, ResNet and LSTM on the
corresponding datasets studied in this work.

5 Conclusion and Future Work

In this paper, we propose a privacy-preserving solution that makes use of distributed key generation and additive ElGa-
mal encryption to protect gradients in the federated learning framework. To reduce computational and communication
costs, we also introduce ternary quantization of the local models and approximate aggregation of the global model,
making our solution practical in complex machine learning models, such as deep neural networks, in the context of
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Figure 7: The test accuracy of the global model with different encoding lengths.

gradient encryption. The proposed DAEQ-FL system does not rely on a TTP for key pair generations, which enables
the system to tolerate a certain number of malicious clients.

DEAQ-FL can adopt the computationally efficient log recovery when the encoding bit length is less than eleven, and
there is no noticeable learning performance degradation when ten bits are used for encoding (note only about 1%
accuracy loss for ResNet compared to the results without doing any encryption on the Shakespeare dataset). However,
the model learning performance starts to clearly deteriorate when the encoding length is less than eight. Thus, brute
force recovery must be adopted when the encoding length is larger than eleven. Although a large encoding length can
enhance the coding precision, the amount of recovery time will considerably increase. According to our experimental
results, the global models trained with a maximum of fifteen bits can perform comparably to the non-encrypted FL,
while the recovery time is still acceptable. Since the model gradients tend to decrease to zero during training, the brute
force recovery time is expected to become much smaller as the global model converges.

Although the proposed method shows highly promising performance for encrypted federated deep learning, it may
need to balance a tradeoff between model performance and computation time needed for plaintext recovery when a
small model (e.g., a logistic regression) is adopted. This is mainly because a smaller model will require a much longer
encoding length (e.g., more than fifteen), making the brute force based recovery intractable. Therefore, our future
work will be dedicated to the development of a distributed additive homomorphic encryption without recovery that
can be used in federated learning systems.
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A Security definitions

Definition 1 (Discrete Logarithm Hard Problem - DLHP) Discrete Logarithm is considered to be hard if

Pr[DLogG,A(α) = 1] ≤ negl(α)

Definition 2 (Computational Diffle-Hellman - CDH) CDH is considered to be hard if

Pr[A(g, ga, gb) = (gab)] ≤ negl(α)

Definition 3 (Decisional Diffie-Hellman - DDH) DDH is considered to be hard if

|Pr[A(g, ga, gb, gc) = 1]− Pr[A(g, ga, gb, gab) = 1]|

≤ negl(α)

Definition 4 Indistinguishability - Chosen plaintext attacks (IND - CPA)

Consider a following game between an adversaryA and a challenger:

Set up: Challenger generates public parameters < g, p, q >, public key h and secret key s, then sends public parame-
ters and pk to the A.

Challenge: A chooses two plaintexts m0, m1 with same length, then sends them to the challenger. Challenger
randomly selects b ∈ {0, 1}, encrypts mb

C = Enc(pk,mb)

and sends challenge ciphertext C to A. Finally, A would compute b
′

.

A scheme is security against CPA if the advantage

AdvCPA
A (α) =

∣∣∣∣Pr(b = b
′

)−
1

2

∣∣∣∣

is negligible.

B Security analysis

• Parameters generation: server runs a polynomial-time G(1α) to generate public parameters < G, g, p, q >,
where g is a generator of G which is a cyclic group with prime order q, p is a large prime number satisfying
q|p − 1, y is a random element in G and α corresponding to security level is bit length of q. Given a
polynomial-time algorithm A and a negligible function negl, the security of key generation and encryption
are based on following definitions.

• Key generation: x
$
←− Zq , h = gx (mod p).

• Encryption: gm ∈ Z∗
p, r

$
←− Z∗

q , < c1 = gr (mod p), c2 = gm · hr (mod p) >.

• Decryption: c2
cx
1

= mhr

(gr)x = gm·gxr

grx = gm (mod p)

Additive ElGamal is CPA-secure against chosen ciphertext attacks if the advantage of A is negligible in α satisfying
as follows:

AdvCPA
A (α) =

∣∣∣∣Pr(b = b
′

)−
1

2

∣∣∣∣

Proof. Ciphertexts under additive ElGamal:

C = (c1, c2) = (gr, gmb · hr) = gmb+x·r

A computes:

C
′

= C · g
m

−1

b
′ = gx·r iff b = b

′
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Besides, A wants to determine whether C
′

is DH agreement. A could "win" this game with a probability:

AdvElG
A (α) = ||Pr[A(g, gx, gr, gx·r+mb−m

b
′ ) = 1]

− Pr[A(g, gx, gr, gx·r) = 1]| −
1

2
|

≤ negl(α)

Theorem 1 The exponential ElGamal and distribute key generation are CPA-secure and correctness-satisfying accord-
ing to [42] and [46].
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