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ABSTRACT

This paper presents an adaptive incremental nonlinear backstepping sliding-mode (INBSM) controller, 

for fault tolerant tracking control of a blended wing body (BWB) aircraft with unknown disturbances 

and actuator faults. The INBSM controller is based on a nonlinear dynamics model of the BWB aircraft. 

In addition, a radial basis function neural network disturbance observer (RBF-NNDO) is proposed to 

enhance the disturbance attenuation ability. A fault estimator is suggested to improve actuator fault 

tolerant control level. The closed-loop control system of the BWB aircraft is proved to be globally 

asymptotically stable using Lyapunov theory. Simulations of the combined NNDO-INBSM controller 

are presented and compared with both the INBSM design and an adaptive fuzzy controller. The results 

demonstrate an improved capability of the NNDO-INBSM control for the BWB aircraft to execute 

realistic attitude tracking missions, even in the presence of center of gravity movement, unknown 

disturbances, model uncertainties and actuator faults.

Keywords: Robust control of nonlinear system; neural network disturbance observer; incremental 

nonlinear backstepping control; incremental nonlinear dynamic inversion; stability augmentation 

control
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1. Introduction

The blended wing body aircraft is a creative airframe design which seamlessly combines a flying 

wing with a futuristic fuselage. It has potential advantages in lower carbon emissions, reduction of 

noise, higher speed, longer flight range, and broader internal volume [1, 2]. However, due to the flying 

wing configuration, the longitudinal stability of the BWB aircraft decreases as the angle of attack 

increases, even at small angles of attack. This is because the lift curve shows a nonlinear increase at 

small angles of attack because of flow separation [3,4], and the nonlinear change of pitching moment 

can easily make the BWB aircraft unstable due to the aerodynamic center moving forward. 

the pitch trim ability of the BWB aircraft is insufficient when climbing at low speed and high angle of 

attack. These make the BWB aircraft design and flight control very challenging [5]. 

Furthermore, because the pitch arm of the BWB aircraft is shorter than that of classical configurations, 

Qin and Vavalle initially studied the lift distribution of the BWB aircraft [6]. Castro studied the 

[7]. Rahman & Whidborne proposed an integration strategy of propulsion and flight control for the 

BWB aircraft [8]. Yann and Joël studied multi-control surface optimization for the BWB aircraft under 

time-invariant system and then used conventional linear control methods to design controllers. 

handling  quality  constraints  [9].  However,  most  of  these  modelled  the  BWB  aircraft  as  a  linear 

control stability augmentation and flying qualities of a BWB aircraft designed by Cranfield University 

To improve the control performance of an aircraft with nonlinear models, many nonlinear control 

methods have been studied, backstepping and feedback linearization are two common methods [10]. 

Liu and Sang proposed both backstepping and sliding mode backstepping control to realize trajectory 

tracking control of stratospheric airships [11-15]. Bacon and Ostroff expanded dynamic inversion into 

an  incremental  form  by  introducing  an  angular  acceleration  feedback  [16].  Incremental  nonlinear 
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flight under certain uncertainties and structural faults [17]. Smeur, Chu et al. used an adaptive 

incremental nonlinear dynamic inversion to control the attitude of a miniature unmanned aerial vehicle 

(UAV) [18]. Recently Lu and Kampen proposed a fault tolerant trajectory tracking control based on 

INDI to deal with actuator faults [19], and Wang and Kampen proposed a combination of sliding mode 

control and incremental aerodynamic dynamic inversion, so that the gain of the sliding mode controller 

control is another form of incremental nonlinear control which brings the implicitness of sensor-based 

using immersion and invariance to control an F-16 aircraft [22]. Lu and Kampen studied the robustness 

problem of attitude control by using INBS [23]. Wang and Chen used a command-filtered incremental 

backstepping controller to realize a small UAV attitude control and improved the plant robustness [24].

architectures with Lyapunov-based control design [21]. Ali, Chu et al. proposed an adaptive INBS 

could  be  reduced  while  making  up  for  the  remaining  perturbations  [20].  Incremental  backstepping 

sensor-based control method that does not rely on accurate aircraft model, and it can realize aircraft’s 

dynamic inversion (INDI), a method in which the dynamics are written in an incremental form, is a 

Since aircraft are subjected to unknown disturbances such as wind and turbulence, a nonlinear 

disturbance observer-based control (DOBC) approach is introduced here to enhance the disturbance 

disturbance observer and a neural network disturbance observer have been developed and applied to 

and disturbances are all handled [29]. 

capacities, can be employed for robust control by combining with backstepping, thus model uncertainty 

position  systems  and  UAVs  [27-28].  Meanwhile,  neural  networks,  with  strong  approximation 

is designed to estimate external disturbances and then compensate for them [26]. Recently a fuzzy 

applied to the nonlinear systems with unknown disturbances for three decades [25], where an observer 

attenuation  capability  of  the  INBSM  control.  The  disturbance  observer-based  technique  has  been 
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for a BWB aircraft with unknown disturbances, model uncertainties and actuator faults. The main 

dynamics and unobservable disturbances are compensated by using a robust adaptive RBF-NN. The 

INBSM method is used to realize robustness attitude tracking control. The NNDO observer is designed 

for aerodynamic coefficient uncertainty and unknown environmental disturbances, and the fault 

estimator is proposed for the actuator fault tolerant control. 

proposed for the attitude tracking. An NNDO based approach is applied to enhance its disturbance 

attenuation  capability  and  provide  robustness  against  model  uncertainties.  The  uncertainties  of  the 

verified when the system has uncertainties or time delays. A novel RBF NNDO enhanced INBSM is 

stability margins by using INBSM control and adaptive fuzzy control will be proved and numerically 

gravity (CG) position on the BWB aircraft stability is analyzed. The stability enhancement or large 

characteristics  for  the  BWB  aircraft  with  nonlinear  motions  is  studied.  The  influence  of  center  of 

contributions are listed as follows. The stability augmentation system to improve dynamic stability 

Zheng [29], this paper mainly concerns the stability augmentation system and attitude tracking control 

unknown wind and faults, and by the work of Castro [7], Acquatella and Chu [21], Chen [25] and 

Motivated  by  the  weak  static  stability  of  blended  wing  body  aircraft  that  make  it  sensitive  to 

This paper is organized as follows. Section 2 gives the nonlinear dynamics model of the BWB 

aircraft and presents the stability augmentation and attitude tracking problem. Section 3 proposes a 

nonlinear NNDO-INBSM control design, and stability is analyzed for the associated closed-loop 

tracking error system. Simulations and performances of three scenarios with the NNDO-INBSM 

control method are demonstrated in Section 4. Section 5 gives some conclusions.

2. Dynamics modeling and problem formulation

2.1 Dynamics modeling of the BWB aircraft
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Fig.1 The BWB aircraft platform and geometry 

The BWB aircraft is shown Fig.1. It is a flying-wing configuration with 50.8m length and 80m wing 

span, and has fifteen flaps. Flap 1 and Flap 15 are rudders, which are not in the wing plane. Flap 12 and 

body moving in air. The dynamics model is established as follows 

Flap 4 are elevon-ailerons, while Flaps 2 –14 are the elevators. The aircraft is considered as a rigid 
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where T denotes thrust, , , , , , are aerodynamic force coefficients and moment xC yC zC lC mC nC

coefficients as referred in [7, 8], subscripts a and δ denote aerodynamic terms of surfaces without 

control and of control surfaces respectively. V= [u v w]T is the body-fixed velocity, the position in the 

is the aircraft inertial moment attitude, m is the mass of the BWB aircraft, and 

flat earth axes is ξ = [x y z]T, ω= [p q r] T is the body-fixed rotational rare, η=[φ θ ψ] T is the aircraft 
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Now consider the attitude motion of the BWB aircraft. Denote  as the state vector,  1 2=Tx x x

where , , the attitude motion model of the BWB aircraft can be rewritten as follows [17],1 =x 2 =x 

                                                                1 2( ) ( )t tx J x

                             

  (3a)

(3b) 2 2 2( )t G x f u
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where denotes dynamic pressure, S is reference area of the wing, b and  are wing span and mean q c

aerodynamic chord length of the wing, , and denote aerodynamic derivative coefficients 
alC  emC  rnC 

of the aileron, elevator and rudder respectively. The transformation matrix J is

                 

        (6)
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where |θ| < π/2 is assumed to avoid the singularity of the matrix because θ = ±π/2 is not likely to be 

encountered during practical operation of the aircraft, s( ) and c( ) denote the sine and cosine functions 

respectively. 

Disturbances widely exist and act on the BWB aircraft, which adversely affect the performance and 

stability of the flight control system. The disturbance includes modelling errors caused by the 

uncertainty as well as the disturbances from the external environment. Since the disturbance is 

system design. So the model uncertainty and external disturbance  are introduced 

difficultly  measured  by  sensors,  then  disturbance  rejection  becomes  one  challenge  of  the  control 

=
TT T

V   D D D
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meeting with |D| < DU, where DU is a real value, and the system of (3) can be modified in an affine 

form,

                            (7)2 2 2( ) dt G g
   x f u D

where denotes the attitude disturbance vector, assume Dω is bounded, .3
 D  1( )dg



x I

2.2 The attitude tracking control problem

Consider the BWB aircraft models of (3) and (7). Let  be a given, sufficiently 3( ) : [0, )d t   

). The control smooth, time-varying reference attitude with bounded time-derivatives of (d (t) ， ( )d t

task is to design a nonlinear controller such that the closed-loop system meets following requirements:

aircraft moves aftwards;

1) Stability of the closed-loop system is enhanced when the center of gravity (CG) of the BWB 

2) The attitude tracking error dynamics of the BWB aircraft are globally asymptotically stable under 

specified model uncertainty, external disturbances and actuator faults.

3 NNDO-INBSM augmentation control design 

This section gives an overview of the NNDO-INBSM control for the BWB aircraft. The proposed 

controller structure is shown in Fig.2, which includes an augmentation control, a NN disturbance 

observer, an incremental backstepping sliding mode control, a fault estimator and the BWB aircraft 

observe the observable disturbances; the unobservable disturbances can be approximated by the neural 

network. The stable filter and command filter are applied to suppress high frequency signal inputs. The 

controller design is presented in detail in the next section.

dynamics model. The INBSM controller is there to realize the attitude tracking, and the NNDO to 
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Fig.2 Block of the NNDO-INBSM controller for the BWB aircraft 

3.1 Neural-Network Disturbance Observer Design

Since the tracking control system for (7) has the unknown bounded disturbance Dω, a neural-network 

disturbance observer is designed to improve the tracking precision [25, 30], 

        (8) 2 2
ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) + ( )

ˆ ˆ( ) ( ) ( )

T
d dw t l x g x w t l x g x p x f x G u W h x

D t w t p x

 



     

  



where is the internal state of the nonlinear observer,  is the estimation of , is the 3ŵ  D̂ D Ŵ

estimation of the best weight vector of the RBF neural network, is the basis function as in (14),  h x

and p(x) is the nonlinear function to be designed. 

The advantages of the RBF-NNDO are that not only unknown disturbances can be estimated, but 

also model uncertainties can be approximated by the radial basis function neural network, thus the 
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disturbance attenuation ability is greatly enhanced. The NNDO gain l(x) is determined by

                                  (9)( )( )= p xl x
x




It has been shown in [25] that the NNDO asymptotically estimates the disturbance if the observer gain 

l(x) is chosen such that the following error plant (10) is asymptotically stable.

( )ˆ ˆ ˆ ( ) dp xd D D D w t
dt            

 2 2
( )ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d

dp xl x g x w t l x g x p x f x G x u
dt 

    

 ˆ( ) ( )l x D l x D  

                                                                  (10)( ) dl x g d
  

where denotes the unobservable part of the overall disturbance Dω.ˆ=d D D  

  Remark 1 The design of a disturbance observer (8) essentially is to choose an appropriate gain l(x) 

and associated p(x) such that the convergence of estimation error dω is guaranteed. It is possible to 

choose l(x) as a constant matrix such that all the eigenvalues of matrix – have negative real ( ) dl x g


parts. Multiplying l(x) with the aircraft state x yields p(x) = l(x) x. 

It has been shown that the estimation  of the NNDO approaches the disturbance Dω(t) ˆ ( )D t

stable for all [25]. Hence the disturbance compensator can be designed as

exponentially, if the observer gain l(x) is chosen such that the error system (10) is global exponentially 

nx 

                                                           (11) 1
2

ˆ
d du G g D

 
 

By using the proposed nonlinear disturbance observer, the disturbance Dω has been reduced and 

the system (7) can be transformed as follows: 

                 2 2 2( ) ( ) ( ) + +INBS d dx t f x G x u u g D
  

                  (12)2 2= ( ) ( ) ( ) ( )INBS df x G x u t g d t
  

Usually suppose that the unobservable disturbance dω varies slowly relative to the observer 
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dynamics, i.e. , so this will produce conservative control, to break this assumption and reduce 0d 

this conservativeness, in this paper a neural network is used to approximate this disturbance as follows

                 (13) *
2 2 2( ) ( ) ( ) ( ) ( )T

INBSx t f x G x u t W h x     

where W* denotes the optimal weight matrix of the RBF-NN, ε is approximation error, which can be 

arbitrarily small variable by regulating the weight and nodes of the RBF-NN, so we assume that 

, . The output of the neural network is  , is the basis function which | |  0    ( )
T

jh x h x     h x

can be selected as following Gaussian function 

                         (14)
2

2( ) exp
2

j
j

j

x c
h x

b

  
 
 

where is the centre value of neural net j, bj is the width value of the Gaussian function of net j, j is jc

the node number of the hidden layer. The disturbance term of is approximated byd t


.* ( )T
NNy W h x   

The faults of the aircraft actuators can be modeled as [31]

                   (15) ( ) ( ) ( ( )) ( ) ( )a a a at t t t t   u u I ρ f u

that is, 

               (16)( )= ( ) ( ) ( ( )) ( )c a a a at t t t t  u u ρ u I ρ f

where is the actual control output, is the synthesized control ,1 ,2 ,, , , m
a a a a mu u u    u m u

output, the diagonal matrix denotes the operational effectiveness of the  ,1 ,2 ,diag , , ,a a a a m   ρ

actuators, I is m ×m identity matrix, the fault vector denotes stuck, or ,1 ,2 ,, , , m
a a a a mf f f    f

floating value of the actuators. Since fault compensation mainly relies on the INBS control, so 

and substituting Eq.(16) into Eq.(13) yields( ) ( )INBS at tu u

          (17)*
2 2 2 2( ) ( ) ( ) ( ( )) ( ) ( )T

a a at t G t G t t W h x       x f ρ u I ρ f
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3.2. Backstepping stability augmentation and attitude control

This section is to design the backstepping controller, and the objective is to make the closed-loop 

system stability augmentation and the attitude output η converge to the desired value vector ηd. 

A command filter is used to meet magnitude and rate constraints of the input signal. The command 

filter can be obtained by using a second-order lower pass filter as follows

                       (18)
2

0 2 2

( )( )
( ) 2

nr
r

r n n n

X sG s
X s s s


  

 
 

where denotes the filter damping ratio, ωn denotes the filter nature frequency. To reduce the filter n

error , the filter frequency ωn is the bandwidth of , which is generally less than that of 0
r r re x x 0 ( )rX s

Gr(s), and then ωn can be selected.

position of the aircraft moves aftwards, the stability of the BWB aircraft decreases. To implement 

augmentation control, usually the angle of attack (AOA, α) and pith rate (q) are selected as the 

feedback signal of AOA is sometime replaced by normal load or unused, see Fig.2, where AOA and 

pitch rate can be obtained from AOA sensor and angular rate gyros. Similarly side-slip angle and yaw 

feedback signals to implement pitch-axis stability[32], but the BWB aircraft is sensitive for AOA, the 

Due to mass and passenger changes, the position of CG of the BWB aircraft changes. When the CG 

is enhanced by the inner loop stability augmentation control. 

rate are feedback for the lateral dynamics stability augmentation. So stability of the closed-loop system 

, or                     (19)lon
aug qK K q u = lon

aug qK qu =

with derivative under unknown Now  the  control  objective  is to  track a  reference  signal 1 =r dx  1rx

disturbances dω. Thus the tracking error vectors of the attitudes are defined as 

                          (20)1 1 1

2 2 2

r

r

 







z x x
z x x
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where is the reference or desired trajectory and is the output of a command filter. 1rx 2rx

Now consider the kinematics model (3) and the dynamics model (12). The attitude controller is 

derived in two steps.

Step 1 (Backstepping for the variation of z1). 

Consider the Lyapunov function V1, which is required to be positive definite around the desired 

position as follows:

.                                 (21)1 1 1
1
2

TV  z z

To make the derivative function negative definite, a virtual control is defined as 1 1V z 

                            
(22) 1

1 1 1 1 1rG c x z

where , and then1 = ( )G J 

               (23)   1
1 1 1 1 1 1 1 1 1 1

1

0T T T
r r

V G c
z


      


z x x z x z z  

where c1 > 0 is often chosen as a diagonal matrix to simplify the design, i.e., c1 = diag(c11, c12, c13), and 

c1i (i = 1, 2, 3) are positive constant.

  However, instead of directly applying this virtual control α1, a new signal is defined as0
2rx

                            (24)0
2 1 2r x  

where ζ2 will be designed in step 2. The command signal  is filtered to produce the reference 0
2rx

signal  and its derivative . It can be implemented to enforce magnitude and rate limits through 2rx 2rx

this command filter. By design of the second order command filter (18), the signal  is  0
2, 2,r rx x

bounded and small.

The effect of filtering on the tracking error z1 is estimated by the following stable linear filter

                         (25) 0
1 1 1 1 2, 2,r rc G    x x 
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where c1 is as in (23). To remove the effect of filtering the stabilizing functions from the tracking error, 

the compensated tracking error is defined as

, (i=1,2)                           (26)i i i z z 

Re-select the first Lyapunov function V1 as a quadratic function of the compensated tracking error,

                                     
(27)1 1 1

1
2

TV   z z

whose derivative is

1 1 1
TV    z z

 1 1 1 1
T

r    z x x 

             (28)  0
1 1 2 1 1 1 1 2 2( )T

r r rG c G     z x x x x 

Substituting Eqs.(22) and (24) into Eq.(28) yields

    1 1 1 2 1 2 1 1 1 1
T T

rV G c    z z z x    

   1 1 1 1 1 1 2 1 1 1+T T
r rc G c z      z x z z x

                        (29)1 1 2 1 1 1
T TG c    z z z z

Now a SMC control is introduced to improve system adaptiveness, the sliding surface s is designed 

as  

 ,                             (30)1 1 2s   z z

where λ1 is the control gains to be determined.

The well-known characteristics of SMC are attraction and invariance, which means the condition for 

the state to reach the sliding mode surface s in finite time tr and remain it, i.e., 

                                                                    (31)0,ss  rt t
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                              (32)0,s s  rt t

For the sliding mode surface of Eq.(30), the reachability condition is designed as 

,                             (33)= sgn( )s s s  

so their corresponding attraction and invariance for the SMC are as follows

                                                                (34)= | |Tss s s s  

where , and ς are sliding mode surface parameters with > 0, and ς > 0. 

Step 2 (Calculate the INBSM control)

The effect of filtering the command signal on the tracking error z2 is estimated by the following 

stable linear filter

                       (35) 0
2 2 2 2 INBSINBSc G     u u

where G2 is as in (5), c2 is the filter gain to be determined, is the incremental backstepping sliding 0
INBS

u

mode control to be designed, and is the filtered output of .INBSu 0
INBS

u

Now consider that the unobservable disturbance of dω , it can be approximated by the neural network. 

(36)

Construct the second candidate Lyapunov function as 

V2  V1 
1
2 

sT s  1
2 

(1/ W )W 
TW ,

                       

where is estimation error of the weight function W meeting , γw is a positive constant that W * ˆ=W W W

determines the convergence speed of the NN approximation. Differentiating (36) yields

  .                (37)2 1 1 1 1 1 2 (1/ )T T T T
WV c G s s W W           z z z z

Substituting (20), (23),(29), (35) into (37) yields

2 1 1 1 1 1 2
ˆ(1/ )T T T T

WV c G s s W W          z z z z

 1 1 1 1 1 2 1 1 2
ˆ(1/ )T T T T

Wc G s W W              z z z z z z
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     0
1 1 1 1 1 2 1 1 1 1 2 2 2 2 2 2 2

ˆ(1/ )
INBS

T T T T T
INBS d r INBS Wc G c G G g c G W W

                    z z z z s z z f u d x u u 

 (38)  0 *
1 1 1 1 1 2 1 1 1 1 2 2 2 2 2 2 2

ˆ+ ( ) (1/ )
INBS

T T T T T T
r Wc G c G G W h c W W                   z z z z s z z f u x z z

form) is designed as follows to make (38) semi-negative definite,

By using the sliding surface (30) and reaching law (33), a desired control input (in non-incremental 

,      (39)    0 1
2 1 1 1 1 2 2 2 2 1 1 2 2

ˆ( ) sgn( )
INBS

T T T
rG c G c G W h               u z z z z z f x s s

Since

,                             (40)T Ts d d s  
1 1 2 2 1 1=T T TG G   z z z z

Substituting (39) and (40) into (38) yields

             (41)   2 1 1 1 1 1 2
ˆ| | (1/ )T T T T T T

WV c G W h W W                z z z z s s s s

Choose the update law of the NN weight function as:

                            (42)ˆ ( )T
WW h x s

and substitute (42) into (41) yields 

             (43) 2 1 1 1 1 1 2 | |T T T TV c G            z z z z s s s s

Define Q as a positive definite symmetric matrix

                      (44)
2

1 1 1 1

1 1

1
2

0.5 n

c G
Q

G

   
 

  

 


 

 

 I

where In denotes the n× n unit matrix. Let , this then yields
T

12 1 2
T TZ     z z

2
12 12 1 1 1 1 1 1 1 1 2 1 1 2 2 22T T T T T TZ QZ c G               z z z z z z z z z z 

   1 1 1 1 1 2 1 1 2 1 1 2
TT Tc G           z z z z z z z z 

 .                              1 1 1 1 1 2
T T Tc G      z z z z s s

(45)

Substituting (45) into (43) yields

 .                    2 12 12 | |T TV Z QZ      s s
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(46)

Using (44), it is obtained that

2
1 1 1 1

1 1

0.5
0.5 n

c G
Q

G
  

   

 
 

 
 I

.                    (47)1 1 1 1 1( ) / 4Tc G G G   

If the following condition is satisfied,

,                     (48)1 1 1 1 1( ) / 4Tc G G G  

(from Eq.(14)),then , then , and if then Q is positive definite. Since | |  | |T T T    s s s 0  

we have 

,                 (49)  | |   s | | | |<0T   s s

and then . So| | 0T   s s

.               (50)2 12 12 | | 0T TV Z QZ       s s

Therefore, the closed-loop system is stable by Lyapunov theory. 

Remark 3 In order to effectively eliminate the chattering phenomenon of reachability condition (33) 

in the sliding mode control, a continuous function is used to define practical sliding surface dynamics 

using a “tanh” function,

,                     (51)= tanh( / )s s s   

where  is sliding surface boundary layer parameters used to retain continuity of control as motion 

trajectories cross the sliding surface and prevent chattering. High frequency chattering of the control is 

prevented by using the boundary layer.

3.3 Incremental nonlinear backstepping attitude tracking control 

It can clear that NDI control law depends on accurate knowledge of the aerodynamic model 

contained in both Ma and Mc, and depends on the model uncertainties and disturbances; if the 
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disturbance information is unknown, it does not reject the disturbances. So an incremental 

backstepping control design is proposed to achieve a more flexible and augmented design. According 

to Fig.2, the composite controller input of the tracking system is

                       (52)0c INBSM aug d f  u u u u u

where are are compensation control inputs of disturbances and faults, respectively, du fu

.0 0= +INBSM INBSMu u

To obtain an incremental Backstepping control , for simplicity, we start from Step 2 of the INBSMu

backstepping design procedure in Section 3.2, assuming that the outer subsystem’s stabilizing control 

law are already obtained and stepped back up to the dynamic equation in consider. 

For the BWB aircraft, the model (12) of the attitude dynamics can be represented as follows

                     (53)    c= + +a dg d
 

     I I M M

where , ,  is as in (5). T
a la ma naqS bC cC bCM  T

a e r     c 
M

Now we depart from the error dynamics equation by using Eqs (24) and (26), 

                         (54)2 2 2 2 2 1= ( , )rz          x x x

that is,

                         (55)2 1 2 2 1= ( , )= ( )+G ( ) ( , )dz x x g d
             f

where may represent a kinematics variable or a state stepped back from the outer subsystems, 

, according to the filter (18), the signal  is bounded  1
1 1 1 1 1 1( , )= ( , )+G c            0

2, 2,r rx x

and small, so  can be approximated by . As , , for 1 1   1
2 ( )= ax    f I M I  1

2 c=G


I M

flight control law design, the goal is to stabilize the complete system described by the following 

augmented equation 

            (56)    1 1 1
2 c 1= + ( , )a dz g d

 
            I M I I M I
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Applying backstepping to Eq.(55), the actuator input of the BWB aircraft is

            (57)    1 1
c 2 1= ( , )a dK z

              
M I I M I

where the control gain is  and the damping term is , which is used to reject the 0K  1 ˆ T
d W h  I

unobservable disturbances and model uncertainty. The robustness of such a backstepping design is 

improved by introducing its incremental counterpart, using the implicit approach with the recursive 

control law

                   (58)  1
0 c 2 0 1= + ( , ) dK z

            
M I

According to the backstepping control law (39) and considering the approximate dynamics around the 

current reference state for the dynamics , the backstepping control (39) can be rewritten 0 2+G    

in incremental form, 

.     (59)    1
2 1 1 1 1 2 2 2 2 1 1 0 2

ˆ= ( ) sgn( )T T T
rG c G c G W h                  z z z z z x s s

The output  represents the current estimated angular acceleration, which is measured by 0

differentiating the angular rates. The approximation function from the to derivative  is0 0

.                           (60)
2

2 2( )
2

n

n n

s
H s

s s


 


 

Theorem 3.1 There exists a composite controller of and with a disturbance observer of INBSMu du

(8) that guarantees the closed-loop system of (7) meeting desired performances of (a) and (b), if the 

positive-definition control gain of Kω meets Eq.(57), the observer gain l(x) is appropriately determined 

such that all the eigenvalues of matrix – have negative real part, and the positive-definition ( ) dl x g


filter gain matrices of c1 and c2 meet Eqs (25) and (35), the sliding mode control (30) and (34) satisfy 

that Q and λ1 is positive definite, and > 0, , and update law of the NN weight function of  0  

(42) meets γW >0.

Proof. 
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If there exist a positive-definition control gains of Kω meets Eqs.(57) and (59), then the control 

input of the INBSM controller  is obtained, so the INBSM controller of (57) and (59) can 0INBSMu

meet Eq.(39), which guarantees the candidate Lyapunov function , , yield the result. ■2 0V  2 0V 

Remark 4 It suffices to consider the new , noticing that we are replacing the accurate 
02 2 0f x   

knowledge of f2 by a measurement (or an estimate) instead [21], and this trade-off results in a robustified 

backstepping control law which is not entirely dependent on the model. Comparing with Eq.(57), there 

does not exist an  term for (58), so it can be directly obtained.1

For the BWB aircraft, the elevator, aileron, rudder and engine actuator dynamics can be simplified as 

1st order models,  

                              (61)( ) i

i

i

T
G s

s T








where are the actuator time constants., , ,i a e r p    
i

T

Finally, consider fault of the system Eq.(17), two faults of actuator bias and loss of effectiveness are 

considered, and then the fault model of (16) can be rewritten as

                           (62)( ) ( )a a ft t u u u

where . f a a u I f

Theorem 3.2 There exists a composite controller of (52) with a disturbance observer (8) and a fault 

estimator (65) that guarantees the closed-loop system (7) meets desired performances of (a) and (b), if 

the positive-definition control gain of Kω meets Eq.(57), the observer gain l(x) is appropriately 

determined such that all the eigenvalues of matrix – have negative real part, and the ( ) dl x g


positive-definition filter gain matrices of c1 and c2 meet Eqs (25) and (35), the sliding mode control (30) 

and (34) satisfy that Q and λ1 is positive definite, and > 0, , and update law of the NN  0  

weight function of (42) meets γW >0, positive definite weight matrix Pf and γf make Eq.(65) be 
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convergent.

Proof 

Based on Theorem 3.1, the second augmented closed-loop Lyapunov function of (29) is changed for 

(63)

backstepping as follows when actuator faults occur 

V2  V1 
1
2 

sT s  1
2 

(1/ W )W 
TW + 

2
1

d 

uT
f Pf

1u f 
             

where is the fault estimation error, and Pf is a positive definite weight matrix. ˆf f f u u u

Substituting (50) into the following derivative of V2 yields

                 (64)1
2 12 12 | |T T T

f f fV Z QZ         s s + u P u

The fault estimator is designed as:

                        (65)2 2ˆ ˆT
f f f fG   u P z u

which yields

 1 1 ˆT T
f f f f f f f

     u P u u P u u 1 1 1
2 2 ˆT T T T

f f f f f f f f f fG        u P P z u P u u P u

                            (66)1 1
2 2 ˆT T T T

f f f f f f f fG       u z P u u P u u

Since ,  and  denote upper bounds of the actuator max max|| || ,|| ||f fu u      u u
maxu maxu

position and rotating rate, then [33] 

 1 1ˆ =T T
f f f f f f f f f     P u u P u u + u

                (67) 1 1
max max

1
2

T T
f f f f f f u u     P u u P

     (68)   1 1 1 1 1
max max

1 1+ +
2 2

T T T T T
f f f f f f f f f f fu u u u              P u u P u u P P u u P

Substitute (67), (68) into (66) yields

                     (69)1
2 2

T T T
f f f f G c     u P u u z

where ,(1,1,1)f diagP (1,1,1)f diag 
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.                (70)   max max max max

1 +
2 2

f T T T T
f f f f

f f

c u u u u


        u u u u
P P

As fault estimation error is a small variant for the fault estimator (65) [33], thus finally yieldsfu

                  (71)2 12 12 | |T TV Z QZ c      s s

Let ck = min{2|Q|,–γf+1}, and if , then0  

                            (72)2 2kV c V c  

According to LaSalle-Yoshizawa Lemma [34] and reference [33], the closed-loop system tracking error 

will exponentially converge, and 

                        (73) 2 2 ( ) / /kc t
k kV V c c e c c  0

Hence

                      
,  ,                      (74)12 12 2

1
2

TZ Z V 12
2

k

cZ
c



that is, the desired tracking error will exponentially converge to the set

,                           (75)1 2
2+

k

c
c

 z z

and

, .   ■   (76)1 1 1 x z  1 1 z  2 2 2 2 2    x z z 

According to Fig.2, the algorithm flow chart of the proposed NNDO-INBSM control is as follows,

Step 1 Calculate error signals

0
2 21 1 2 1

1 0
1 2 2 1 2

, ,, ,
.(20) ;   .(22) ;   (25), (35) ;

,, ,
INBS

r r

INBSr r r

Eq Eq Eqs



  

     
     

     
η x xη z z z
u ux x z x η




1 2 1 1

1 2 2 2

,
.(26) ;   .(30) ;

,
Eq Eq

 

   
  
   

 
 

z z z z
s

z z 

Step 2 Calculate NNDO and disturbance estimation  by Eqs (8), (11), and (14);D̂

Step 3 Calculate the augmentation control by Eq.(19)augu
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Step 4 Calculate the incremental BSMC control  with NNs compensation by Eq.(59).INBSu

Step 5 Calculate the fault estimation  by Eq.(65)ˆ fu

Step 6 Calculate the total control input uc by Eq.(52)

Step 7 repeat step1 to step6 until all tracking tasks are complemented.

4. Simulation and analysis

The considered model is a 50.8m length, 80m wing span BWB aircraft [7, 8], the aerodynamics 

coefficient parameters are as in Ref.[7], and the structure parameters of the BWB aircraft are listed in 

Table 1. 

Table 1 Parameters for the studied BWB aircraft

Parameter Value Unit Coefficient Value Unit

m 3.7×105 kg Tδa 15 sec
S 841.7 m2 Tδe 15 sec
c 12.31 m Tδr 15 sec
b 80 m Tδp 1 sec

xG, 30.4 m zG 0 m
Ixx 4.703×107 kg·m2 Iyy 2.507×107 kg·m2

Izz 9.973×107 kg·m2 Ixz 0.0 kg·m2

 

The aircraft flight is at 20000ft (6096m) altitude and 375kts (191.9m/s) speed, the trim state

,  T
e e

x u w q h x v p r y  

= [191.92 18.31 1.31 0.095 6096 1.18e-16 2.52e-20 -1.40e-25 -1.09e-25 5.93e-23 0 0]T, unit: [u v 

w] (m/s), [p q r] (rad/s), [x y h] (m), [φ,θ,ψ](rad).

  = [−0.11 0.33 5.59e-22 1.28e−21]T,  unit: [δa δe δr] (rad). 
T

e e p a r e
u       

The position range for the actuators are δe [−0.35, 0.26] (rad), δp [0, 1], δa [−0.65, 0.65] (rad), δr  

[−0.38, 0.38] (rad). The initial position is set to = [0, 0, −6096m] T, with initial body velocity V0 =  0

[192 m/s, 0, 0] T, initial attitude η0 = [0, 5.5 ◦, 0] T, and initial angular velocity ω0= [0, 0, 0] T. For the 
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command filter (18), the damping ratio is selected as =0.9, and natural frequency is selected as ωn = n

10 rad/s to avoid large maneuver inputs.

Scenario I: Stability augmentation control with different center of gravity

According to stability requirement of the BWB aircraft [7, 8], center of gravity (CG) can move along 

the longitudinal axis in the range of 29.4m ~34.4m, see Fig.1. To illustrate the proposed method in 

stability augmentation, the controller parameters are designed as follows:

                      c1 = diag([0.1, 0.3, 0.3]),  c2 = diag([1 1/3 0.4]),                  (77)

and the augment stability control gains

                                Kα = 0.01,   Kq = 0.3, 

the RBF NN parameters are set as 

γW= 10, c = [-1 0 1; -1 0 1 ; -1 0 1 ; -1 0 1 ; -1 0 1 ; -1 0 1]; bj= 0.002; h(0)=[0.01,0.01,0.01]T;

the siding mode control parameters are designed as

λ1 = 0.1*diag([1, 1, 1]), = 0.1*diag([1, 1, 1]), ς = diag([1.0 1.2 1.0]), φ = 0.4，

where c1 and c2 are in Eq.(25) and Eq.(35), Kα and Kβ are selected to satisfy the requirements in Section 

3 after several design iterations. A doublet command is predefined as the desired attitude to verify the 

tracking performance of the NNDO-INBSM. An INDI proposed by Lu and Kampen [19] is used to 

compare the proposed controller performances, where control gains are designed as 

Kη= diag( [0.4 0.4 0.4]),  Kω= diag( [22.5 45 1.125]),              (78)

The simulation results are shown in Figs 3-6.
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Meanwhile, the tracking responses by using INBSM design are faster than those by using INBS control, 

this shows the sliding mode control has better adaptive capability. The control inputs of the INBSM 

design are shown in Fig.5.

is added, the tracking responses for the Euler angles are stable and converge to steady values, this is 

those of the aftward CG position. When the CG position move backwards to xCG = 34.4m, which is 

outside the range of the limitation, see Fig.1, the responses of pitch and yaw motion begin to oscillate 

and become unstable without augmentation control, see Fig.4. When the stability augmentation control 

because the stability augmentation improves the system damping rate and frequency of pitch motion. 

From Figs 3 and 4, it can be seen that the responses of the forward CG position converge faster than 
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Fig.5. Control inputs of INBSM control under different CG positions

because the more aftward the CG position, the more the aircraft is unstable, and it needs more elevator 

From Fig.5 it can be seen that the further back the CG position, the bigger the elevator inputs. This is 
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input to balance pitch moment of aerodynamic forces, where the pitch moment arm of |xAC− xCG| is 

bigger (AC denotes aerodynamic center). 

Scenario II: Attitude tracking control

Case 1: Unknown disturbances inputs.

 In this scenario suppose that there is the unknown disturbance vector Dω acting on the BWB 

aircraft, given by 

  Dω(t) = ×[0.025 −0.025 0.015] T.                                    (79)I

The gains of the disturbance observer (8) are designed as 

                           l(x) = diag([.25, .00022, .0105]).                      (80)

To illustrate the proposed method in attitude control, an INBS control proposed by Acquatella [21] and 

an adaptive fuzzy control referred as in Ref.[35]- Ref.[37] are used to compare, and the controller 

parameters of the INBS control are designed as Scenario I. For the adaptive fuzzy control, the fuzzy 

sets are defined as NL, NS, ZO, PS, and PL, which denote negative large, negative small, zero, 

positive small, positive large, and their center points are selected as − , − , 0, , , 
6


12


12


6


respectively. The fuzzy membership functions are chosen as

(i = 1,2,…,5, j = 1,2,…,n)， (81)
2

, ( ) exp ( 1)
6 12 24Fi j jx x i  

               

Assume function , are unknown, The following fuzzy logic systems are used to 2 ( )f x 2 ( )g x

approximate them,

                           , ,                (82)2̂
ˆ ˆˆ ˆ( | ) ( )T

f ff x x   2
ˆ ˆˆ ˆ ˆ( | ) ( )T
g gg x x  

where  is the estimation of the state x, that is, . The fuzzy basis functionsx̂ T T=Tx    

,                           (83)
 

,

,
1

( )
( )

( )

n
j i j j

i N
n
j i j j

i

x
x

x












, .               (84)2̂
ˆ ˆ( | ) ( )T

d f f df x x   2
ˆ ˆˆ ( | ) ( )T

d g g dg x x  
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 For each channel of roll, pitch and yaw, select the vector , such that the following 2

1

2
1

k
K

k
   

    
  

equation holds , where , , P is a symmetric positive TA P PA Q   2

1

0
1

k
A

k
 

   
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0 10

Q  
  

 

definite matrix. The adaptive laws are , , , ,1= ( )T
f e Pb x  

2= ( )T
g e Pb x u   = de x x 1 =10

,b= [0 1]T, the fuzzy control output as the input of the inner loop of 2 =1  F 2 1
2

1 ˆ
ˆ

T
ru f K x

g
    e

angular rate for nonlinear dynamic inversion control, so the adaptive fuzzy control for the outer loop 

of attitudes with a nonlinear dynamic inversion control for the inner loop of angular rate is 

implemented. The parameters of the nonlinear dynamic inversion control are the same as Eq.(78). The 

simulation results are shown in Figs 6-8. 

 Fig.6. Attitude tracking responses under unknown disturbances

this is because adaptive fuzzy control requires more control inputs. Meanwhile, there are larger 

control responses have larger overshoots and errors than those of the INBS and NNDO-INBSM design, 

From Fig.6, it can be seen that the three methods can track the desired attitudes, but the adaptive fuzzy 
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overshoots of INBSM control than those of NNDO-INBSM control in pitch, roll and yaw motions, this 

and 8.

responses smooth. The disturbances have been observed via disturbance observers as shown in Figs 7 

shows NNDO-INBSM can compensate for the observable disturbances or input changes and make their 

Fig.7. Observable disturbance estimation
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Fig.8. Unobservable disturbance approximation

From Fig.7 it can be seen that roll moment disturbance can be precisely estimated, but yaw and pitch 

moments have some errors during transition due to the disturbance estimation varying with the 

associated states, as p(x) = l(x) x in Remark 1, and their steady values converge to the true ones. Fig.8 

shows that there are large steady errors of INBSM compared with those of NNDO-INBSM, which 

demonstrates that NNDO-INBSM can reduce the observable disturbances. 

Case 2: Model parameter uncertainties with unknown disturbances

This scenario considers model parameter uncertainty due to aerodynamic derivatives varying 

accordingly with angle of attack (AOA) and side-slip angle. Hence the aerodynamic coefficients Cx are 

set with 20% uncertainties ,where △  denotes the perturbation value. Here the parameter =0.2 xC C

uncertainty and external disturbances are considered simultaneously. The nonlinear disturbance 

observer gain is selected as l(x) = diag([.13, .0032, .0331]). The simulation results are shown in Fig. 9.
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Fig.9. Attitude angle tracking responses under model uncertainty and unknown disturbances 

From Fig.9, it can be seen that the adaptive fuzzy control responses also have larger overshoots and 

errors  than  those  of  INBSM  and  NNDO-INBSM  design  due  to  the  INBSM  introducing  the  x2r 

feedback and more inputs required for the adaptive fuzzy control. Compared to INBSM, the 

NNDO-INBSM responses have lower overshoots, which shows that the NNDO-INBSM design has 

better capability under transient inputs. 

Scenario III: actuator faults with model uncertainties and disturbances

This scenario considers actuator faults due to damages and loss of effectiveness. The actuator faults 

are set as follows

                             (i=e, a, r),                            (85)0(1 )
ii f i    

where  fi 
 0.1 is the loss effectiveness factor of each actuator, the faults of the elevator, aileron and 

and disturbances are also considered as for Scenario II. The nonlinear disturbance observer gain is 

rudder occur at times of 50s, 80s, and 120s and remain until the end. Model parameter uncertainties 
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selected as l(x) = diag([.25, .005, .01]), the fault estimation estimator parameters are chosen as Pf = 

diag([1, 1, 60]), γf = diag([0.2, 0.02, 0.2]). The simulation results are shown in Figs 10-14.

Fig.10. Attitude angle tracking responses under faults and model uncertainties

Fig.11. Angular rate responses under faults and model uncertainties
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From Figs 10 and 11, it can be seen that the output tracking responses begin oscillating after the 

actuator faults at 50 and 80sec. The INBSM responses have quicker convergence in roll, pitch and yaw 

NNDO-INBSM control have smaller overshoots and steady tracking errors, which show that the 

NNDO-INBSM design has better compensation capability for actuator faults and model uncertainties 

through the nonlinear disturbance observer. It is noticeable that there will be larger tracking error in 

both roll and yaw motions if the disturbances cannot be accurately estimated because the feedback 

capability. The steady tracking errors for the INBSM and NNDO-INBSM designs are smaller than 

those  of  adaptive  fuzzy  control.  Compared  with  the  INBSM  control,  the  tracking  responses  of  the 

motions than the responses of the adaptive fuzzy control, this shows the INBS design has strong FTC 

2rx

will amplify the disturbances or the fault inputs. 

The disturbances have been observed via disturbance observers as seen in Figs 12 and 13 where it 

can be seen that observable roll disturbances can be tracked well while those of pitch and yaw motions 

have more estimation error in the transient process, this results from state varying and actuator faults, 

but all observable disturbance estimations converge to their true values even for actuator faults. Fig.13 

shows that there are large estimation values of INBSM method compared with those of NNDO-INBSM 

control, which demonstrates that the NNDO-INBSM design can reduce the observable disturbances.
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Fig.12. Observable disturbance estimation under faults and model uncertainties

Fig.13. Unobservable disturbance approximation under faults and model uncertainties 

The actuator fault estimation and actuator output responses are shown in Fig.14 and Fig.15, from which 

it can be seen that the actuator angles have been accurately estimated using the fault estimator of (65), 
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and the NNDO-INBSM has larger inputs than those of INBSM when commands change or there are 

input faults. This is because NNDO-INBSM adds a disturbance compensator ud of (11) and makes the 

output tracking responses smoother and quicker. Meanwhile, the adaptive fuzzy control inputs are 

bigger than the INBSM and NNDO-INBSM design, this shows that adaptive fuzzy control requires 

faults occur, see Fig.15. 

more control inputs, which makes the actuator saturate more easily when unknown disturbances and 

Fig.14. Actuator fault estimation 
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Fig.15. Actuator responses under faults and model uncertainties

5. Conclusion

In this paper we propose the NNDO-INBSM approach for the control of the BWB aircraft. Based on 

a 3-DOF nonlinear model, an attitude tracking controller is designed. The developed controller 

INDI methods with stability augmentation system. Furthermore, an NNDO is introduced to estimate 

the observable disturbances. Stability analysis shows that the closed-loop attitude tracking error 

dynamics is asymptotically stable. Three scenarios of the different CG position, unknown disturbances, 

control robustness. Compared with adaptive fuzzy control and INBSM controllers, the 

NNDO-INBSM achieves better attitude tracking performances even though the BWB aircraft is 

actuator faults. Therefore, the effectiveness and availability of the NNDO-INBSM design are 

affected  by  a  varying  CG  position,  parametric  uncertainties,  external  bounded  disturbances  and 

model uncertainties and actuator faults have been simulated and show the proposed NNDO-INBSM 

stabilizes the attitude and angular rate and enhances the stability of the BWB aircraft via the INBS and 
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demonstrated. Results from the nonlinear simulations confirm that the performance and robustness 

objectives are achieved. The methodology can be extended to trajectory control. 
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