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Abstract

Skin cancer is one of the most threatening diseases worldwide. However, diag-
nosing skin cancer correctly is challenging. Recently, deep learning algorithms
have emerged to achieve excellent performance on various tasks. Particularly,
they have been applied to the skin disease diagnosis tasks. In this paper, we
present a review on deep learning methods and their applications in skin disease
diagnosis. We first present a brief introduction to skin diseases and image acqui-
sition methods in dermatology, and list several publicly available skin datasets
for training and testing algorithms. Then, we introduce the conception of deep
learning and review popular deep learning architectures. Thereafter, popular
deep learning frameworks facilitating the implementation of deep learning algo-
rithms and performance evaluation metrics are presented. As an important part
of this article, we then review the literature involving deep learning methods
for skin disease diagnosis from several aspects according to the specific tasks.
Additionally, we discuss the challenges faced in the area and suggest possible
future research directions. The major purpose of this article is to provide a con-
ceptual and systematically review of the recent works on skin disease diagnosis
with deep learning. Given the popularity of deep learning, there remains great
challenges in the area, as well as opportunities that we can explore in the future.

Keywords: Skin disease diagnosis, Deep learning, Convolutional neural
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1. Introduction

Skin disease is one of the most common diseases among people worldwide.
There are various types of skin diseases, such as basal cell carcinoma (BCC),
melanoma, intraepithelial carcinoma, and squamous cell carcinoma (SCC) [1].
Particularly, skin cancer has been the most common cancer in United States
and researches showed that one-fifth of Americans will suffer from a skin cancer
during their lifetime E, ] Melanoma is reported as the most fatal skin cancer
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Figure 1: Several examples of different types of skin diseases. These images come from the
Dermofit Image Library [1d].

with a mortality rate of 1.62% among other skin cancers @] According to the
American Cancer Society’s estimates for melanoma in the United States for
2020, there will be about 100, 350 new cases of melanoma and 6, 850 people are
expected to die of melanoma ﬂﬂ] On the other hand, BCC is the most common
skin cancer, and although not usually fatal, it places large burdens on health
care services ﬂa] Fortunately, early diagnosis and treatment of skin cancer can
improve the five-year survival rate by around 14% ﬂ]

However, diagnosing a skin disease correctly is challenging since a variety of
visual clues, such as the individual lesional morphology, the body site distribu-
tion, color, scaling and arrangement of lesions, should be utilized to facilitate
the diagnosis. When the individual components are analyzed separately, the
diagnosis process can be complex ﬂé] For instance, there are four major clin-
ical diagnosis methods for melanoma: ABCD rules, pattern analysis, Menzies
method and 7-Point Checklist. Often only experienced physicians can achieve
good diagnosis accuracy with these methods ﬂﬂ] The histopathological exami-
nation on the biopsy sampled from a suspicious lesion is the gold standard for
skin disease diagnosis. Several examples of different types of skin diseases are
demonstrated in Fig. [l Developing an effective method that can automatically
discriminate skin cancer from non-cancer and differentiate skin cancer types
would therefore be beneficial as an initial screening tool.

Differentiating a skin disease with dermoscopy images may be inaccurate or
irreproducible since it depends on the experience of dermatologists. In practice,
the diagnostic accuracy of melanoma from the dermoscopy images by an inex-
perienced specialist is between 75% to 84% [7]. One limitation of the diagnosis
performed by human experts is that it heavily depends on subjective judgment
and varies largely among different experts. By contrast, a computer aided di-
agnostic (CAD) system is more objective. By utilizing handcrafted features,
traditional CAD systems for skin disease classification can achieve excellent
performance in certain skin disease diagnosis tasks , , ] However, these
systems usually focus on limited types of skin diseases, such as melanoma and
BCC. Therefore, they are typically unable to be generalized to perform diag-
nosis over broader classes of skin diseases. The reason is that the handcrafted
features are not suitable for a universal skin disease diagnosis. On one hand,



handcrafted features are usually specifically extracted for limited types of skin
diseases. They can hardly be adapted to other types of skin diseases. One
the other hand, due to the diversity of skin diseases, human-crafted features
cannot be effective for every kind of skin disease [§]. Feature learning can be
one solution to this problem, which eliminates the need of feature engineering
and extracts effective features automatically [14]. Many feature learning meth-
ods have been proposed in the past few years |15, [16, [17]. However, most of
them were applied on dermoscopy or histopathology images processing tasks
and mainly focused on the detection of mitosis and indicator of cancer [1§].

Recently, deep learning methods have become popular in feature learning
and achieved excellent performances in various tasks, including image classi-
fication [19, 120], segmentation [21, 22], object detection |23, 124] and localiza-
tion [25, 26]. A variety of researches [9, 23, 12, 27, 25] showed that the deep
learning methods were able to surpass humans in many computer vision tasks.
One thing behind the success of deep learning is its ability to learn seman-
tic features automatically from large-scale datasets. In particular, there have
been many works on applying deep learning methods to skin disease diagno-
sis |27, 128, 129, 130, 131]. For example, Esteva et al. [27] proposed a universal skin
disease classification system based on a pretrained convolutional neural network
(CNN). The top-1 and top-3 classification accuracies they achieved were 60.0%
and 80.3% respectively, which significantly outperformed the performances of
human specialists. Deep neural networks can deal with the large variations in-
cluded in the images of skin diseases through learning effective features with
multiple layers. Despite these technological advances, however, lack of available
huge volume of labeled clinical data has limited the wide application of deep
learning in skin disease diagnosis.

In this paper, we present a comprehensive review of the recent works on
deep learning for skin disease diagnosis. We first give a brief introduction to
skin diseases. Through literature research, we then introduce common data ac-
quisition methods and list several commonly used and publicly available skin
disease datasets for training and testing deep learning models. Thereafter, we
describe the basic conception of deep learning and present the popular deep
learning architectures. Accordingly, prevalent deep learning frameworks are de-
scribed and compared. To make it clear that how to evaluate a deep learning
method, we introduce the evaluation metrics according to different tasks. We
then draw on the literature of applications of deep learning in skin disease diag-
nosis and introduce the content according to different tasks. Through analyzing
the reviewed literature, we present the challenges remained in the area of skin
disease diagnosis with deep learning and provide guidelines to deal with these
challenges in the future. Considering the lack of in-depth comprehension of skin
diseases and deep learning by broader communities, this paper could provide
the understanding of the major concepts related to skin disease and deep learn-
ing at an appropriate level. It should be noted that the goal of the review is
not to exhaust the literature in the field. Instead, we summarize the related
representative works published before/in the year 2019 and provide suggestions
to deal with current challenges faced in the field by referring recent works until



the year 2020.

Compared with previous related works, the contributions in this paper can be
summarized as follows. First, we systematically introduce the recent advances in
skin disease diagnosis with deep learning from several aspects, including the skin
disease and public datasets, concepts of deep learning and popular architectures,
applications of deep learning in skin disease diagnosis tasks. Though there have
been papers that reviewed works on skin disease diagnosis, some of them [32]
focused on traditional machine learning and deep learning only occupied a small
section of them. Alternatively, others [33] only discussed specific skin diseases
diagnosis task (e.g., classification) and the presented deep learning methods were
out of date. By contrast, this paper provides a systematic survey of the field
of skin disease diagnosis focusing on recent applications of deep learning. With
this article, one could obtain an intuitive understanding of the essential concepts
of the field of skin disease diagnosis with deep learning. Second, we present
discussions about the challenges faced in the field and suggest several possible
directions to deal with these issues. These can be taken into consideration by
ones who are willing to work further in this field in the future.

The remainder of the paper is structured as follows. Section 2 briefly in-
troduces the skin disease and Section 3 touches upon the common skin image
acquisition methods and available public skin disease datasets for training and
testing deep learning models. In section 4, we introduce the conception of deep
learning and popular architectures. Section 5 briefly introduces the common
deep learning frameworks and evaluation metrics for testing the effectiveness of
an algorithm are presented in section 6. After that, we investigate the applica-
tions of deep learning methods in skin disease diagnosis according to the types
of tasks in section 7. Then we highlight the challenges in the area of skin disease
diagnosis with deep learning and suggest future directions dealing with these
challenges in section 8. Finally, we conclude the article in Section 9.

2. Skin disease

Skin is the largest immense organ of the human body, consisting of epidermis,
dermis and hypodermis. The skin has three main functions: auspice, sensation
and thermoregulation, providing an excellent aegis against aggression of the
environment. Stratum corneum is the top layer of the epidermis and optically
neutral protective layer with varying thickness. The stratum corneum consists of
keratinocytes that produce keratin responsible for benefiting the skin to protect
the body. The incident of light on the skin is scattered due to the stratum
corneum. The epidermis includes melanocytes in its basal layer. Particularly,
melanocytes make the skin generate pigment called as melanin, which provides
the tan or brown color of the skin. Melanocytes act as a filter and protect the
skin from harmful ultraviolet (UV) sunrays by generating more melanin. The
extent of absorption of UV rays depends on the concentration of melanocytes.
However, the unusual growth of melanocytes causes melanoma. The dermis is
located at the middle layer of the skin, consisting of collagen fibers, sensors,



receptors, blood vessels and nerve ends. It provides elasticity and vigor to the
skin [32].

Deoxyribonucleic acid (DNA) consists of molecules called nucleotides. A nu-
cleotide comprises of a phosphate and a sugar group along with a nitrogen base.
The order of nitrogen bases in the DNA sequence forms the genes. Genes decide
the formation, multiplication, division and death of cells. Oncogenes are respon-
sible for the multiplication and division of cells. Protective genes are known as
tumor suppressor genes. Usually, they inhibit cell growth by monitoring how
expeditiously cells divide into incipient cells, rehabilitating mismatched DNA
and controlling when a cell dies. The uncontrollability of a cell occurs due to
the mutation of the tumor suppressor genes, eventually forming a mass called
tumor (cancer). UV rays can damage the DNA, which causes the melanocytes
to produce melanin at a high abnormal rate. Appropriate amount of UV rays
benefits the skin to form vitamin D, but excess will cause pigmented skin le-
sions [34]. Particularly, the malignant tumor occurred due to abnormal growth
of the melanocytes is called as melanoma [35].

There are three major types of skin cancers, i.e., malignant melanoma (MM),
squamous cell carcinoma, and basal cell carcinoma. In particular, the latter two
are developed from basal and squamous keratinocytes and also known as ker-
atinocyte carcinoma (KC). They are the most commonly occurring skin cancers
in men and women, with over 4.3 million cases of BCC and 1 million cases
of SCC diagnosed each year in the United States, although these numbers are
likely to be underestimated [36]. However, MM, an aggressive malignancy of
melanocytes, is a less common but far more deadly skin cancer. It often starts
as minuscule, with a gradual change in size and color. The color of melanin
essentially depends on its localization in the skin. The color ebony is due to
melanin located in the stratum corneum. Light to dark brown, gray to gray-
blue and steel-blue are observed in the upper epidermis, papillary dermis and
reticular dermis respectively. In case of benign lesions, the exorbitant melanin
deposit presents in the epidermis. Melanin presence in the dermis is the most
consequential designation of melanoma causing prominent vicissitude in skin
coloration. There are several other designations for melanoma, including thick-
ened collagen fibers in addition to pale lesion areas with a large blood supply
at the periphery. The gross morphologic features additionally include shape,
size, coloration, border and symmetry of the pigmented lesion. Biopsy and
histology are required to perform explicit diagnosis in case the ocular approxi-
mation corroborates a suspicion of skin cancer [37]. According to microscopic
characterizations of the lesion, there are four major categories of melanoma,
i.e., superficial spreading melanoma (SSM), nodular melanoma (NM), lentigo
malignant melanoma (LMM) and acral lentiginous melanoma (ALM).

3. Image acquisition and datasets

3.1. Image acquisition
Dermatology is termed as a visual specialty wherein most diagnosis can be
performed by visual inspection of the skin. Equipment-aided visual inspec-



tion is important for dermatologists since it can provide crucial information for
precise early diagnosis of skin diseases. Subtle features of skin diseases need
further magnification such that experienced dermatologists can visualize them
clearly [38]. In some cases, a skin biopsy is needed which provides the opportu-
nity for a microscopic visual examination of the lesion in question. Lots of image
acquisition approaches were developed to facilitate dermatologists to overcome
problems caused by apperception of minuscule sized skin lesions.

Dermoscopy, one of the most widely used image acquisition methods in der-
matology, is a non-invasive imaging technique that allows the visualization of
skin surface by the light magnifying device and immersion fluid [39]. Statistics
shows that dermoscopy has improved the diagnosis performance of malignant
cases by 50% [40]. Kolhaus was the first one to start skin surface microscopy
in 1663 to inspect minuscule vessels in nail folds [41]. The term dermatoscopy
was coined by Johann Saphier, a German dermatologist, in 1920 and then der-
matoscopy is employed for skin lesion evaluation [42]. Dermoscopy additonally
kenned as epiluminescence microscopy (ELM) is a non-invasive method that can
be utilized in vivo evaluation of colors and microstructure of the epidermis. The
dermo-epidermal junction and papillary dermis cannot be observed by unclad
ocular techniques [43]. These structures form the histopathological features that
determine the level of malignancy and indicate whether the lesion is necessary to
be biopsied [44]. The basic principal of dermoscopy is transillumination of the
skin lesion. The stratum corneum is optically neutral. Due to the incidence of
visible radiation on the surface of skin, reflection occurs at the stratum corneum
air interface [45]. Oily skin enables light to pass through it; therefore, linkage
fluids applied on the surface of the skin make it possible to magnify the skin
and access to deeper layers of the skin structures [46]. However, the scope of
observable structures is restricted compared with other techniques, presenting
a potentially subjective diagnosis precision. It was shown that the diagnosis
precision depended on the experience of dermatologists [47]. Dermoscopy is
utilized by most of the dermatologists in order to reduce patient concern and
present early diagnosis.

In vivo, the confocal laser scanning microscopy (CLSM), a novel image acqui-
sition equipment, enables the study of skin morphology in legitimate period at a
resolution equal to that of the traditional microscopes [48]. In CSLM, a focused
laser beam is used to enlighten a solid point inside the skin and the reflection
of light starting there is measured. Gray-scale image is obtained by examining
the territory paralleling to the skin surface. According to the review [49], a
sensitivity of 88% and specificity of 71% were obtained with CSLM. However,
the confocal magnifying lens in CSLM involves high cost (up to $50,000 to
$100, 000).

Optical coherence tomography (OCT) is a high-determination non-obtrusive
imaging approach that has been utilized in restorative examinations. The sen-
sitivity and specificity vary between 79% to 94% and 85% to 96%, respec-
tively [50]. The diagnosis performed with OCT is less precise than that of
clinical diagnosis. However, a higher precision can be obtained for distinguish-
ing lesions from the normal skin.



The utilization of a skin imaging contrivance is referred as spectrophoto-
metric or spectral intracutaneous analysis (SIA) of skin lesions. The SIA scope
can improve the performance of practicing clinicians in the early diagnosis of
the deadly disease. A study has reported that SIA scope presented the same
sensitivity and specificity as these of dermatoscopy performed by skilled der-
matologists [51]. The interpretation of these images is laborious due to the
involution of the optical processes involved.

Ultrasound imaging [52] is an important tool for skin disease diagnosis. It
provides information in terms of patterns associated with lymph nodes and
depth extent of the underlying tissues respectively, which is very useful when
treating inflammatory diseases such as scleroderma or psoriasis.

Magnetic resonance imaging (MRI) [53] has also been widely utilized in the
examination of pigmented skin lesions. The application of MRI to dermatology
has become practice with the use of specialized surface coils that allow higher
resolution imaging than standard MRI coils. The application of MRI in der-
matology can provide a detailed picture of a tumor and its depth of invasion in
relation to adjacent anatomic structures as well as delineate pathways of tumor
invasion [54]. For instance, MRI has been used to differentially evaluate malig-
nant melanoma tumors and subcutaneous and pigmented skin of nodular and
superficial spreading melanoma [55].

With the development of machine learning, there have been many works
using images obtained by digit cameras or smart phones for skin disease di-
agnosis [56, 157]. Though the quality of these images are not as high as these
obtained with professional equipments, such as dermatoscopies, excellent diag-
nosis performance can also be achieved with advanced image processing and
analysis methods.

Apart from the above methods, there are a few other imaging acquisition
approaches, including Mole Max, Mole Analyzer, real time Raman spectroscopy,
electrical impedance spectroscopy, fiber diffraction, and thermal imaging. Due
to the limited space, we omit the detailed introduction of these methods here
and the readers may refer to related literature if interested.

3.2. Datasets

High-quality data has always been the primary requirement of learning re-
liable algorithms. Particularly, training a deep neural network requires large
amount of labeled data. Therefore, high-quality skin disease data with reliable
diagnosis labels is significant for the development of advanced algorithms. Three
major types of modalities are utilized for skin disease diagnosis, i.e., clinical im-
ages, dermoscopy images and pathological images. Specifically, clinical images
of skin lesions are usually captured with mobile cameras for remote examina-
tion and taken as medical records for patients [58]. Dermoscopy images are
obtained with high-resolution digital single-lens reflex (DSLR) or smart phone
camera attachments. Pathological images, captured by scanning tissue slides
with microscopes and digitalized as images, are served as a gold standard for
skin disease diagnosis. Recently, many public datasets for skin disease diagnosis



tasks have started to emerge. There exists growing trend in the research com-
munity to list these datasets for reference. In the following, we present several
publicly available datasets for skin disease.

The publicly available PH2 datasetl] of dermoscopy images was built by
Mendonca et. al. in 2003, including 80 common nevi, 80 atypical nevi, and
40 melanomas [59]. The dermoscopy images were obtained at the Dermatology
Service of Hospital Pedro Hispano (Matosinhos, Portugal) under the same con-
ditions through Tuebinger Mole Analyzer system using a magnification of 20x.
They are 8-bit RGB color images with a resolution of 768 x 560 pixels. The
dataset includes medical annotation of all the images, namely medical segmen-
tation of lesions, clinical and histological diagnoses and the assessment of several
dermoscopic criteria (i.e., colors, pigment network, dots/globules, streaks, re-
gression areas, blue-whitish veil). Since the dataset includes comprehensive
metadata, it is often utilized as a benchmark dataset for evaluating algorithms
for melanoma diagnosis.

Liao [60] built a skin disease dataset for universal skin disease classification
from two different resources: Dermnet and OLE. Dermnet is one of the largest
publicly available photo dermatology sources [61]. It contains more than 23, 000
images of skin diseases with various skin conditions and the images are organized
in a two-level taxonomy. Specifically, the bottom-level includes images of more
than 600 kind of skin diseases in a fine-grained granularity and the top-level
includes images of 23 kind of skin diseases. Each class of the top-level includes
a subcollection of the bottom-level. OLE dataset includes more than 1,300
images of skin diseases from the New York State Department of Health. The
images can be categorized into 19 classes and each class can be mapped to one
of the bottom-level class of the Dermnet dataset. In light of this, Liao [60]
labeled the 19 classes of images from OLE with their top-level counterparts
from Dermnet. It should be noted that the images from the above two datasets
contain watermarks. To utilize the two datasets, Liao performed two different
experiments. One was to train and test CNN models on the Dermnet dataset
only, while the other was to train CNN models on the Dermnet dataset and test
them on the OLE dataset.

The International Skin Imaging Collaboration (ISIC) aggregated a large-
scale publicly available dataset of dermoscopy images [62]. The dataset contains
more than 20,000 images from leading clinical centers internationally, acquired
from various devices used at each center. The ISIC dataset was first released for
the public benchmark challenge on dermoscopy image analysis in 2016 [63, 64].
The goal of the challenge was to provide a dataset to promote the development
of automated melanoma diagnosis algorithms in terms of segmentation, dermo-
scopic features detection and classification. In 2017, the ISIC hosted the second
term of the challenge with an extended dataset. The extended dataset pro-
vides 2,000 images for training, with masks for segmentation, superpixel masks
for dermoscopic feature extraction and annotations for classification [65]. The

Thttp://www.fc.up.pt/addi/



images are categorized into three classes, i.e., melanoma, seborrheic keratosis
and nevus. Melanoma is malignant skin tumor while the other two are the be-
nign skin tumors derived from diverse cells. Additionally, the ISIC provides a
validation set with extra 150 images for evaluation.

The HAM10000 (Human Against Machine with 10,000 training images)
dataset released by Tschandl et. al. includes dermoscopy images from diverse
populations acquired and stored by different modalities [66]. The dataset is
publicly available through the ISIC archive and consists of 10,015 dermoscopy
images, which are utilized as a training set for testing machine learning algo-
rithms. Cases include a representative collection of all important diagnostic
categories in the realm of pigmented lesions. The diagnoses of all melanomas
were verified through histopathological evaluation of biopsies, while the diag-
noses of nevi were made by either histopathological examination (24%), expert
consensus (54%) or another diagnosis method, such as a series of images that
showed no temporal changes (22%).

The Interactive Atlas of Dermoscopy (IAD) [67] is a multimedia project for
medical education based on a CD-ROM dataset and the dataset includes 2, 000
dermoscopy images and 800 context images, i.e. non-dermoscopy regular photos.
Images in the dataset are labeled as either a melanoma or benign lesion based
on pathology report.

The MED-NODE datasetf] consists of 70 melanoma and 100 naevus images
from the digital image archive of the Department of Dermatology of the Uni-
versity Medical Center Groningen (UMCG). It is used for the development and
testing of the MED-NODE system for skin cancer detection from macroscopy
images [67].

Dermnet is the largest independent photo dermatology source dedicated to
online medical education through articles, photos and videos [61]. Dermnet
provides information on a wide variety of skin conditions through innovative
media. It contains over 23,000 images of skin diseases. Images can be enlarged
via a click and located by browsing image categories or using a search engine.
The images and videos are available without charge, and users can purchase and
license high-resolution copies of images for publishing purposes.

The Dermofit Image Library is a collection of 1,300 focal high-quality skin
lesion images collected under standardized conditions with internal color stan-
dards |10]. The lesions span across ten different classes, including actinic ker-
atosis, basal cell carcinoma, melanocytic nevus, seborrhoeic keratosis, squamous
cell carcinoma, intraepithelial carcinoma, pyogenic granuloma, haemangioma,
dermatofibroma, and malignant melanoma. Each image has a gold standard di-
agnosis based on expert opinions (including dermatologists and dermatopathol-
ogists). Images consist of a snapshot of the lesion surrounded by some normal
skin. A binary segmentation mask that denotes the lesion area is included with
each lesion.

The Hallym dataset consists of 152 basal cell carcinoma images obtained

2http://www.cs.rug.nl/imaging/databases/melanoma_naevi/



from 106 patients treated between 2010 and 2016 at Dongtan Sacred Heart
Hospital, Hallym University, and Sanggye Paik Hospital, Inje University [68].

AtlasDerm contains 10,129 images of all kinds of dermatology diseases.
Samuel Freire da Silva, M.D. created it in homage to The Master And Pro-
fessor Delso Bringel Calheiros [69).

Danderm contains more than 3,000 clinical images of common skin diseases.
This atlas of clinical dermatology is based on photographs taken by Niels K.
Veien in a private practice of dermatology [70].

Derm101 is an online and mobile resourcdd for physicians and healthcare
professionals to learn the diagnosis and treatment of dermatologic diseases [71].
The resource includes online textbooks, interactive quizzes, peer-reviewed open
access dermatology journals, a dermatologic surgery video library, case studies,
thousands of clinical photographs and photomicrographs of skin diseases, and
mobile applications.

7-point criteria evaluation datasetd includes over 2,000 dermoscopy and clin-
ical images of skin lesions, with 7-point checklist criteria and disease diagnosis
annotated [72]. Additionally, derm?ptﬁ, a Python module, serves as a starting
point to use the dataset. It preprocesses the dataset and converts the data into
a more accessible format.

The SD-198 datasetf is a publicly available clinical skin disease image dataset.
It was built by Sun et al. and includes 6,584 images from 198 classes, varying
in terms of scale, color, shape and structure |73].

DermlIS.net is the largest dermatology information service available on the
internet. It offers elaborate image atlases (DOIA and PeDOIA) complete with
diagnoses and differential diagnoses, case reports and additional information on
almost all skin diseases [74].

MoleMapE is a dataset that contains 102,451 images with 25 skin conditions,
including 22 benign categories and 3 cancerous categories. In particular, the
cancerous categories include melanoma (pink melanoma, normal melanoma and
lentigo melanoma), basal cell carcinoma and squamous cell carcinoma [75]. Each
lesion has two images: a close-up image taken at a distance of 10 cm from the
lesion (called the macro) and a dermoscopy image of the lesion (called the micro).
Images were selected according to four criterion: 1) each image has a disease
specific diagnosis (e.g., blue nevus); 2) there are at least 100 images with the
same diagnosis; 3) the image quality is acceptable (e.g., with good contrast); 4)
the lesion occupies most of the image without much surrounding tissues.

Asan dataset [68] was collected from the Department of Dermatology at
Asan Medical Center. It contains 17,125 clinical images of 12 types of skin
diseases found in Asian people. In particular, the Asan Test dataset containing
1,276 images is available to be downloaded for research.

3www.derm101.com

4http://derm.cs.sfu.ca

Shttps://github.com/jeremykawahara/derm7pt
6https://drive.google.com /file/d/1Y gnKz3hnzD3umEYHAgd29n2Awed V1Jmg/view
"http://molemap.co.nz
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Table 1: List of public datasets for skin disease.

Dataset No. of images Type of skin disease

PH2 dataset [59] 200 Common nevi, melanomas, atypical
nevi

[60] > 3,600 19 classes

ISIC [62] > 20,000 Melanoma, seborrheic keratosis, be-
nign nevi

HAM10000 [66] 10,015 Important diagnostic categories of
pigmented lesions

IAD [67] 2,000 Melanoma and benign lesion

MED-NODE dataset [67] 170 Melanoma and nevi

Dermnet [61]] 23,000 All kinds of skin diseases

Dermofit Image Library [10] 1,300 10 different classes

Hallym dataset [68] 152 Basal cell carcinoma

AtlasDerm [69] 10,129 All kinds of skin diseases

Danderm [7(] 3,000 Common skin diseases

Derm101 [71]] Thousands All kinds of skin diseases

7-point  criteria  evaluation > 2,000 Melanoma and non-melanoma

dataset [72]

SD-198 dataset [73] 6,584 198 classes

DermlIS [74] Thousands All kinds of skin diseases

MoleMap [71] 102, 451 22 benign categories and 3 cancerous
categories

Asan dataset [6§] 17,125 12 types of skin diseases found in
Asian people

The Cancer Genome Atlas [76] 2, 860 Common skin diseases

The Cancer Genome Atlas [76] is one of the largest collections of pathological
skin lesion slides that contains 2,860 cases. The atlas is publicly available to be
downloaded for research.

The above publicly available datasets for skin diseases are listed in Table [Tl
This may not an exhaustive list for skin disease diagnosis and readers could
research the internet for that purpose if interested. From the description of the
above skin datasets we can observe that these datasets are usually small in terms
of the samples and patients. Compared to the datasets for general computer
vision tasks, where datasets typically contain a few hundred thousand and even
millions of labeled data, the data sizes for skin disease diagnosis tasks are too
small.

4. Deep learning

In the area of machine learning, people design models to enable computers to
solve problems by learning from experiences. The aim is to develop models that
can be trained to produce valuable results when fed with new data. Machine
learning models transform their input into output with statistical or data-driven
rules derived from large numbers of examples [77]. They are tuned with training
data to obtain accurate predictions. The ability of generalizing the learned
expertise to make correct predictions for new data is the main goal of the models.
The generalization ability of a model is estimated during the training process
with a separate validation dataset and utilized as feedback for further tuning.
Then the fully tuned model is evaluated on a testing dataset to investigate how
well the model makes predictions for new data.
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There are several types of machine learning models, which can be classi-
fied into three categories, i.e., supervised learning, semi-supervised learning and
unsupervised learning models, according to how the data is used for training a
model. In supervised learning, a model is trained with labeled or annotated data
and then used to make predictions for new, unseen data. It is called supervised
learning since the process of learning from the training data can be considered
as a teacher supervising the learning process. Most of machine learning models
adopt supervised learning. For instance, classifying skin lesions into classes of
“benign” or “malignant” is a task using supervised learning |78]. By contrast,
in unsupervised learning, the model is aimed to discover the underlying distri-
bution or structure in the data in order to learn more about the data without
guidance. Clustering [79] is a typical unsupervised learning model. Problems
where you have large amounts of data and only some of the data is labeled are
called semi-supervised learning problems [80]. These problems sit in between
both supervised learning and unsupervised learning. Actually, many real-world
machine learning problems, especially medical image processing, fall into this
type. It is because that labeling large amounts of data can be expensive or
time-consuming. By contrast, unlabeled data is more common and easy to
obtain.

Machine learning has a long history and can be split into many subareas.
Particularly, deep learning is a branch of machine learning and has been pop-
ular in the past few years. Previously, designing a machine learning algorithm
required domain information or human engineering to extract meaningful fea-
tures that can be a representation of data and input to an algorithm for pattern
recognition. However, a deep learning model consisting of multiple layers is
a kind of representation learning method that transforms the input raw data
into needed representation for pattern recognition without much human inter-
ference. The layers in a deep learning architecture are arranged sequentially
and composed of large numbers of predefined, nonlinear operations, such that
the output of one layer is input to the next layer to form more complex and ab-
stract representations. In this way, a deep learning architecture is able to learn
complex functions. With the ability of running on specialized computational
hardware, deep learning models adapt large-scale data and can be optimized
with more data continually. As a result, deep learning algorithms outperform
most of conventional machine learning algorithms in many problems. People
have witnessed the huge development of deep learning algorithms and their ex-
tensive applications in various tasks, such as object classification [20, 181, 182],
machine translation |83, I84] and speech recognition [85, [86, I87]. Particularly,
healthcare and medicine benefit a lot from the prevalence of deep learning due to
the huge volume of medical data |77, |88]. Three major factors have contributed
the success of deep learning for solving complex problems of modern society,
including: 1) availability of massive training data. With the ubiquitous digiti-
zation of information in recent world, public sufficiently large volumes of data
is available to train complex deep learning models; 2) availability of powerful
computational resources. Training complex deep learning models with massive
data requires immense computational power. Only the availability of powerful
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computational resources, especially the improvements in graphic processing unit
(GPU) performance and the development of methods to use the GPU for compu-
tation, in recent times fulfills such requirements; 3) availability of deep learning
frameworks. People in diverse research communities are more and more willing
to share their source codes on public platforms. Easy access to deep learning
algorithm implementations, such as GoogLeNet [89], ResNet [19], DenseNet [90]
and SENet [91], has accelerated the speed of applying deep learning to practical
tasks.

Commonly, deep learning models are trained in a supervised way, i.e., the
datasets for training contain data points (e.g., images of skin diseases) and
corresponding labels (e.g., “benign” or “malignant”) simultaneously. However,
data labels are limited for healthcare data since labeling large numbers of data
is expensive and difficult. Recently, semi-supervised and unsupervised learning
have attracted much attention to alleviate the issues caused by limited labeled
data. There have been many excellent reviews and surveys of deep learning [92,
93,194, 195] and interested readers can refer them for more details.

In the following, we briefly introduce the essential part of deep learning,
aiming to provide a useful guidance to the area of skin disease diagnosis that
are currently influenced by deep learning.

4.1. Neural networks

Neural networks are a type of learning algorithm that formulates the basis
of most deep learning algorithms. A neural network consists of neurons or units
with activation z and parameters © = {w, 8}, where w is a set of weights and
B a set of biases. The activation z is expressed as a linear combination of the
input @ to the neuron and parameters, followed with an element-wise nonlinear
activation function o(-):

z=o(wlx +b), (1)

where w € w is the weight and b € 3 is the bias. Typical activation functions for
neural networks include the sigmoid function and hyperbolic tangent function.
Particularly, the multi-layer perceptrons (MLPs) are the most well-known neural
networks, containing multiple layers of this kind of transformations:

f(2;0) =c(WE (WLt ..o(WO 4% ... 4 571 4 1), (2)

where W", n =1,2,---, L is a matrix consisting of rows w”, k =1,2,--- ,n,
which are associated with the k-th activation in the output, L indicates the total
number of layers and n. indicates the number of nodes at the n-th layer. The
layers between the input and output layers are often called as “hidden” layers.
When a neural network contains multiple layers, then we say it is a deep neural
network. Hence, we have the term “deep learning”.

Commonly, the activations of the final layer of a network are mapped to a
distribution over classes p(y|z; ©) via a softmax function [95):

ewd) Ta+bl

p(y|x; ©) = softmax(x; ©) = SO wETer (3)
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Figure 2: An example of a 4-layer MLPs.

where w’ indicates the weight that produces the output node corresponding to
class ¢. An example of a 4-layer MLPs is illustrated in Fig.

Currently, stochastic gradient descent (SGD) is the most popular method
used for tuning the parameters © for a specific dataset. In SGD, a mini-batch,
i.e., a small subset of the dataset, is utilized for the gradient update instead
of the whole dataset. Tuning the parameters is to minimize the negative log-

likelihood:
N

argming — Z 1og(p(yn|Tn; O)). (4)
n=1
Practically, one can design the loss function according to the specific tasks. For
example, the binary cross-entropy loss is used for two-class classification prob-
lems and the categorical cross-entropy loss for multi-class classification prob-
lems.

For a long time, people considered that deep neural networks (DNNs) were
hard to train. Major breakthrough was made in 2006 when researchers showed
that training DNNs layer-by-layer in an unsupervised way (pretraining), fol-
lowed with a supervised fine-tuning of the stacked layers, could obtain promis-
ing performance |96, 97, 196]. Particularly, the two popular networks trained in
such a manner are stacked autoencoders (SAEs) |98] and deep belief networks
(DBNs) [99]. However, such techniques are complicated and require many en-
gineering tricks to obtain satisfying performance.

Currently, most popular architectures are trained end-to-end in a supervised
way, which greatly simplifies the training processes. The most prevalent models
are convolutional neural networks (CNNs) [20] and recurrent neural networks
(RNNs) [100]. In particular, CNNs are extensively applied in the field of medical
image analysis [101, 1102, 103]. They are powerful tools for extracting features
from images and other structured data. Before it became possible to utilize
CNNs efficiently, features were typically obtained by handcrafted engineering
methods or less powerful traditional machine learning models. The features
learned from the data directly with CNNs show superior performance compared
with the handcrafted features. There are strong preferences about how CNNs
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Figure 3: An illustration of a typical CNN.

are constructed, which can benefit us to understand why they are so powerful.
Therefore, we give a brief introduction to the building blocks of CNNs in the
following.

4.2. Convolutional neural networks

One can utilize the feedforward neural networks discussed above to process
images. However, having connections between all the nodes in one layer and
all the nodes in the next layer is quite inefficient. A careful pruning of the
connections based on the structure of images can lead to better performance
with high efficiency. CNNs are special kind of neural networks that preserve
the spatial relationships in the data with very few connections between layers.
CNNs are able to extract meaningful representations from input data, which
are particularly appropriate for image-oriented problems. A CNN consists of
multiple layers of convolutions and activations, with pooling layers interspersed
between different convolution layers. It is trained via backpropagation and
SGD similar with the standard neural networks. Additionally, a CNN typically
includes fully-connected layers at the end of the architecture to produce the
output. A typical CNN is demonstrated in Fig.

4.2.1. Convolutional layers

In the convolutional layers, the output activations of the previous layer are
convolved with a set of filters represented with a tensor W ;, where j is the
filter number and ¢ is the layer number. Fig. @l demonstrates a 2D convolution
operation. The operation involves moving a small window of size 3 x 3 over a 2D
grid (e.g., an image or a feature map) in a left-to-right and up-to-down order.
At each step, the corresponding elements of the window and grid are multiplied
and summed up to obtain a scalar value. With all the obtained values, another
2D grid is produced, referred as feature map in a CNN. By having each filter
share the same weights across the whole input domain, much less number of
weights is needed. The motivation of the weight-sharing mechanism is that the
features appearing in one part of the image are likely to appear in other parts
as well [104]. For example, if you have a filter that can detect vertical lines,
then it can be utilized to detect lines wherever they appear. Applying all the
convolutional filters to all locations of the input results in a set of feature maps.
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Figure 4: An illustration of a 2D convolution operation.

4.2.2. Activation layers

The outputs from convolutional layers are fed into a nonlinear activation
function, which makes it possible for the neural network to approximate almost
any nonlinear functions [105]. It should be noted that a multi-layer neural
network constructed with linear activation functions can only approximate linear
functions. The most common activation function is rectified linear units (ReL.U),
which is defined as ReLU(z) = max(0, z). There have many variants of ReLU,
such as leaky ReLU (LeakyReLU) |106] and parametric ReLU (PReLU) [107].
The outputs of the activation functions are new tensors and we call them feature
maps.

4.2.3. Pooling layers

The feature maps output by the activation layers are then typically pooled
in the pooling layers. The pooling operations are performed on a small region
(e.g., a square region) of the input feature maps and only one single value is
obtained with certain scheme. The common schemes utilized to compute the
value are max function (max pooling) and average function (average pooling).
A small shift in the input image will lead to small changes in the activation
maps; however, the pooling operation enables the CNNs to have the translation
invariance property. Another way to obtain the same downsampling effect as
the pooling operation is to perform convolution with a stride larger than one
pixel. Researches have shown that removing pooling layer could simplify the
networks without sacrificing performances [108].

Besides the above building blocks, other important elements in many CNNs
include dropout and batch normalization. Dropout [109] is a simple but pow-
erful tool to boost the performance of CNNs. Averaging the performance of
several models in an ensemble one tends to obtain better performance than any
of the single model. Dropout performs similar averaging operation based on the
stochastic sampling of neural networks. With dropout, one randomly removes
neurons in the networks during training process, ending up utilizing slightly
different networks for each batch of the training data. As a result, the weights
of the networks are tuned based on optimizing multiple different variants of
the original networks. Batch normalization is often placed after the activation
layers and produces normalized feature maps by subtracting the mean and di-
viding with the standard deviation for each training batch [110]. With batch
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normalization, the networks are forced to keep their activations being zero mean
and unit standard deviation, which works as a network regularization. In this
way, the networks training process can be speeded up and less dependent on the
careful parameter initialization.

When designing new and more advanced CNN architectures, these compo-
nents are combined together in a more complicated way and other ingredients
can be added as well. To construct a specific CNN architecture for a practical
task, there are a few factors to be considered, including understanding the tasks
to be solved and the requirements to be satisfied, finding out how to prepro-
cess the data before input to a network, and making full use of the available
budget of computation. In the early days of modern deep learning, people de-
signed networks simply with the combination of the above building blocks, such
as LeNet [111] and AlexNet [20]. Later, the architectures of networks became
more and more complex in a way that they were built based on the ideas and
insights of previous models. Table 2] and Bl demonstrate a few popular deep net-
work architectures, hoping to show how the building blocks can be combined to
create networks with excellent performances. These DNNs are typically imple-
mented in one or more of a small number of deep learning frameworks that are
introduced in detail in the next section. Thanks to the software development
platform, such as GitHub, the implementation of large numbers of DNNs with
the main deep learning frameworks have been made publicly accessible, which
makes it easier for people to reproduce or reuse these models.

5. Deep learning frameworks

With the prevalence of deep learning, there are several open source deep
learning frameworks aiming to simplify the implementation of complex and
large-scale deep learning models. Deep learning frameworks provide building
blocks for designing, training and validating DNNs with high-level program-
ming interfaces. Thus, people can implement complex models like CNNs con-
veniently. In the following, we present a brief introduction to popular deep
learning frameworks.

TensorFlow |125] was developed by researchers and engineers from the Google
Brain team. It is by far the most popular software library in the field of deep
learning (though others are catching up quickly). One of the biggest reasons ac-
counting for the popularity of TensorFlow is that it supports multiple program-
ming languages, such as Python, C4+4 and R, to build deep learning models.
It is handy for creating and experimenting with deep learning architectures. In
addition, its formulation is convenient for data (such as inputting graphs, SQL
tables, and images) integration. Moreover, it provides proper documentations
and walkthroughs for guidance. The flexible architecture of TensorFlow makes
it easy for people to run their deep learning models on one or more CPUs and
GPUs. It is backed by Google, which guarantees that it will stay around for a
while. Therefore, it makes sense to invest time and resources to use it.

Keras |126] is written with Python and can run on top of TensorFlow (as well
as CNTK and Theano). The interface of TensorFlow can be a little challenging
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Table 2: A few popular deep network architectures (part 1).

Architecture Year

Reference

Description

LeNet

AlexNet

VGG-nets

GoogLeNet

ResNet

ResNext

DenseNet

1990

2012

2014

2015

2016

2017

2017

1]

(20]

[113]

(89]

[19]

(115]
[90]

Proposed by Yann LeCun to solve the task of handwritten digit recog-
nition. Since then, the basic architecture of CNN has been fixed:
convolutional layer, pooling layer and fully-connected layer.
Considered as one of the most influential works in the field of computer
vision since it has spurred many more papers utilizing CNN and GPUs
to accelerate deep learning [112]. The building blocks of the network
include convolutional layers, ReLU activation function, max-pooling
and dropout regularization. In addition, the authors split the com-
putations on multiple GPUs to make training faster. It won the 2012
ILSVRC competition by a huge margin.

Proposed by the Visual Geometry Group (VGG) of the Oxford Univer-
sity and won the first place for the localization task and the second
place for the classification task in the 2014 ImageNet competition.
VGG-nets can be seen as a deeper version of AlexNet. They adopt a
pretraining method for network initialization: train a small network
first and ensure that this part of the network is stable, and then go
deeper gradually based on this.

Defeated VGG-nets in the classification task of 2014 ImageNet com-
petition and won the championship. Different from networks like
AlexNet, VGG-nets which rely solely on deepening networks to im-
prove performance, GoogLeNet presents a novel network structure
whiling deepens the network (22 layers). A inception structure re-
places the traditional operations of convolution and activation. This
idea was first proposed by the Network in Network [114]. In the in-
ception structure, multiple filters of diverse sizes are performed to the
input and the corresponding results are concatenated. This multi-
scale processing enables the network to extract features at different
scales efficiently.

Introduces the residual module, which makes it easier to train much
deeper networks. The residual module consists of a standard pathway
and a skip connection, providing options to the network to simply copy
the activations from one residual module to the next module. In this
way, information can be preserved when data goes through the layers.
Some features are best extracted with shallow networks, while oth-
ers are best extracted with deeper ones. Residual modules enable the
network to include both cases simultaneously, which performs simi-
larly as ensemble and increases the flexibility of the network. The
152-layer ResNet won the 2015 ILSVRC competition, and the authors
also successfully trained a version with 1,001 layers.

Built based on ResNet and GoogLeNet by incorporating inception
modules between skip connections.

A neural network with dense connections. In this network, there is a
direct connection between any two layers. That is to say, the input
of each layer is the union of the outputs of all previous layers, and
the feature map learned by the layer is also directly transmitted to
all layers afterwards. In this way, the network mitigates the problem
of gradient disappearance, enhances feature propagation, encourages
feature reuse, and greatly reduces the amount of parameters.
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Table 3: A few popular network architectures (part 2).

Architecture Year

Reference

Description

SENets

NASNet

GAN

U-net

Faster
R-CNN

Mask
R-CNN

2018

2018

2014

2015

2015

2017

[91]

(116]

[118]

[122]

(26]

[124]

Squeeze-and-Excitation (SE) network, which is built by introducing
SE modules into existing networks. The SE modules are trained to
weight the feature maps channel-wise. Consequently, the SENets are
able to model spatial and channel information separately, enhancing
the model capacity with negligible increase in computational costs.
A CNN architecture designed by AutoML which is a reinforcement
learning approach used for neural network architecture searching [117)].
A controller network proposes architectures aimed to perform at a
specific level for a specific task, and learns to propose better models by
trial and error. NASNet was built based on CIFAR-10 with relatively
modest computation requirements, outperforming all previous human-
designed networks in the ILSVRC competition.

Generative adversarial network (GAN) was proposed by Goodfellow
et al. in 2014 and developed rapidly in recent years. A GAN consists
of two networks that compete against each other. The generative net-
work G creates samples to make the discriminative network D think
they come from the training data rather than the generative network.
The two networks are trained alternatively, where G aims to maxi-
mize the probability that D makes a mistake while D aims to obtain
high classification accuracy. There have been a variety of variants
(DCGANS [119], CycleGAN [120], SAGAN [121] etc.) so far and they
developed into a subarea of machine learning.

A very popular and successful network for 2-D medical image segmen-
tation. Fed with an image, the network first downsamples the image
with a traditional CNN architecture and then upsamples the resulting
feature maps through a serial of transposed convolution operations to
the same size as the original input image. Additional, there have skip
connections between the downsampling and upsampling counterparts.
The faster region-based convolutional network was built based on the
previous Fast R-CNN [123] for object detection. The major contri-
bution of the method is to develop a region proposal network (RPN)
to further reduce the region proposal computation time. The region
proposal is nearly cost-free, and therefore the object detection system
can run at near real-time frame rates.

Extends Faster R-CNN by adding a branch for predicting an object
mask in parallel with the existing branch for bounding box recognition.
The method can generate a high-quality segmentation mask for each
instance while efficiently detect the objects in the image. Mask R-
CNN is simple to train and adds only a small overhead to Faster
R-CNN. It outperforms all previous, single-model entries on all three
tracks of the COCO suite of challenges.
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for new users since it is a low-level library, and therefore new users may find it
hard to understand certain implementations. By contrast, Keras is a high-level
API, developed with the aim of enabling fast experimentation. It is designed to
minimize the user actions and make it easy to understand models. However, this
strategy makes Keras a less configurable environment than low-level frameworks.
Even so, Keras is appropriate for deep learning beginners that are unable to
understand complex models properly. If you want to obtain results quickly,
Keras will automatically take care of the core tasks and produce outputs. It
runs seamlessly on multiple CPUs and GPUs.

PyTorch [127], released by Facebook, is a primary software tool for deep
learning after Tensorflow. It is a port to the Torch deep learning framework
that can be used for building DNNs and executing tensor computations. Torch
is a Lua-based framework while PyTorch runs on Python. PyTorch is a Python
package that offers Tensor computations. Tensors are multidimensional arrays
like ndarrays in numpy that can run on GPUs as well. PyTorch utilizes dy-
namic computation graphs. Autograd package of PyTorch builds computation
graphs from tensors and automatically computes gradients. Instead of prede-
fined graphs with specific functionalities, PyTorch offers us a framework to build
computation graphs as we go, and even change them during runtime. This is
valuable for situations where we do not know how much memory is needed for
creating a DNN. The process of training a neural network is simple and clear,
and PyTorch contains many pretrained models.

Caffe |128] is another popular open source deep learning framework designed
for image processing. It was developed by Yangqing Jia during his Ph.D. at
the University of California, Berkeley. First of all, it should be noted that its
support for recurrent networks and language modeling is not as great as the
above three frameworks. However, Caffe presents advantages in terms of the
speed of processing and learning from images. Caffe provides solid support for
multiple interfaces, including C, C++, Python, MATLAB as well as traditional
command line. Moreover, the Caffe Model Zoo framework allows us to utilize
pretrained networks, models and weights that can be used to solve deep learning
tasks.

Sonnet [129] is a deep learning framework built based on top of TensorFlow.
It is designed to construct neural networks with complex architectures by the
world-famous company DeepMind. The idea of Sonnet is to construct primary
Python objects corresponding to a specific part of the neural network. Further-
more, these objects are independently connected to computational TensorFlow
graphs. Separating the process of creating objects and associating them with
a graph simplify the design of high-level architectures. The main advantage of
Sonnet is that you can utilize it to reproduce the research demonstrated in the
papers of DeepMind. In summary, it is a flexible functional abstraction tool
that is absolutely a worthy opponent for TensorFlow and PyTorch.

MXNet is a highly scalable deep learning framework that can be applied on
a wide variety of devices [130]. Although it is not as popular as TensorFlow, the
growth of MXNet is likely to be boosted by becoming an Apache project. The
framework initially supports a large number of programming languages, such as
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C++, Python, R, Julia, JavaScript, Scala, Go and even Perl. The framework is
very efficient for parallel computing on multiple GPUs and machines. MXNet
has detailed documentation and is easy to use with the ability to choose between
imperative and symbolic programming styles, making it a great candidate for
both beginners and experienced engineers.

Besides the above six frameworks, there have other less popular but useful
deep learning frameworks, such as Microsoft Cognitive Toolkit, Gluon, Swift,
Chainer, DeepLearning4J, Theano, PaddlePaddle and ONNX. Due to the limi-
tation of space, we cannot detail them all here. If interested, readers may find
more related information by searching the internet. Note that all the frame-
works are built on top of NVIDIA’s CUDA platform and the cuDNN library,
and are open source and under active development.

6. Evaluation metrics

6.1. Segmentation tasks

For segmentation tasks, the most common evaluation metric is Intersection-
over-Union (IoU), also known as Jaccard Index. ToU is to measure the overlap
between the segmented area predicted by algorithms and that of the ground-

truth, i.e.,
Area of overlap

IoU = (5)
wherer Area of overlap indicates the overlap of the segmented area predicted
by algorithms and that of the ground-truth, and Area of union indicates the
union of the two items. The value of IoU ranges from 0 to 1 and higher value
means better performance of the algorithms.

Besides IoU, the following indices are utilized for evaluating a segmentation
algorithm as well.

Pixel-level accuracy:

Area of union

TP+TN

AC =
TP+ FP+TN+FN

(6)

where TP, TN, FP, FN denote true positive, true negative, false positive and
false negative at the pixel level, respectively. Pixel values above 128 are consid-
ered positive, and pixel values below 128 are considered negative.

Pixel-level sensitivity:

TP
F=_——
s TP+ FN (7)
Pixel-level specificity:

TN
SP = TN+ FP ()

Dice Coefficient: o p

DI =

2IT'P+ FN + FP (9)
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Figure 5: The taxonomy of literature review of skin disease diagnosis with deep learning.

6.2. Classification tasks

For classification tasks, common evaluation metrics include accuracy, sensi-
tivity and specificity, which are the same with those defined for segmentation
tasks. However, metrics are measured at the whole image level instead of the
pixel level. In addition, the area under the receiver operation characteristic
(ROC) curve (AUC) and precision are also common measurements.

The AUC measures how well a parameter can be distinguished between two
diverse groups and is computed by taking the integral of true positive rate
regarding the false positive rate:

1
AUC = / tor For )5 f o (10)
0
Precision is defined as the following:
TP
PREC = ——— 11
REC TP+ FP (11)

7. Skin disease diagnosis with deep learning

Given the popularity of deep learning, there have been numerous applications
of deep learning methods in the tasks of skin disease diagnosis. In this section,
we review the existing works in skin disease diagnosis that exploit the deep
learning technology. From a machine learning perspective, we first introduce
the common data preprocessing and augmentation methods utilized in deep
learning and then present the review of existing literature on applications of
deep learning in skin disease diagnosis according to the type of tasks. The
taxonomy of the literature review of this section is illustrated in Fig.

7.1. Data preprocessing and augmentation
7.1.1. Data preprocessing

Data preprocessing plays an important role in skin disease diagnosis with
deep learning. Since there is a huge variation in image resolutions of skin dis-
ease datasets (e.g., ISIC, PH2 and AtlasDerm) and deep networks commonly
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receive inputs with certain square sizes (e.g., 224 x 224 and 512 x 512), it is
necessary to crop or resize the images from these datasets to adapt them to
deep learning networks. It should be noted that resizing and cropping images
directly into required sizes might introduce object distortion or substantial in-
formation loss [131, [132]. Feasible methods to resolve this issue is to resize
images along the shortest side to a uniform scale while maintaining the aspect
ratio. Typically, images are normalized by subtracting the mean value and then
divided by the standard deviation, which are calculated over the whole training
subset, before fed into a deep learning network. There have works [133, 132]
reported that subtracting a uniform mean value does not well normalize the
illumination of individual images since the lighting, skin tones and viewpoints
of skin disease images may vary greatly across a dataset. To address this issue,
Yu et al. [132] normalized each image by subtracting it with channel-wise mean
intensity values calculated over the individual image. The experimental results
in their paper showed that simply subtracting a uniform mean pixel value will
decrease the performance of a deep network. In addition, for more accurate seg-
mentation and classification, hair or other unrelated stuffs should be removed
from skin images with algorithms including thresholding methods [134, 135],
morphological methods [136], and deep learning algorithms [122, 21|, [22].

7.1.2. Data augmentation

As is known that large numbers of data are usually required for training a
deep learning network to avoid overfitting and achieve excellent performances.
Unfortunately, many applications, such as skin disease diagnosis, can hardly
have access to massive labeled training data. In fact, limited data are common
in the field of medical image analysis due to the rarity of disease, patient pri-
vacy, the requirement of labeling by medical experts and the high cost to obtain
medical data |137]. To alleviate this issue, data augmentation, indicating artifi-
cially transforming original data with some appropriate methods to increase the
amount of available training data, are developed. With feasible data augmenta-
tion, one can enhance the size and quality of the available training data. With
additional data, deep learning architectures are able to learn more significant
properties, such as rotation and translation invariance.

Popular data augmentation methods include geometric transformations (e.g.,
flip, crop, translation, and rotation), color space augmentations, kernel fil-
ters, mixing images, random erasing, feature space augmentation, adversar-
ial training, generative adversarial networks, neural style transfer, and meta-
learning [137]. For example, Al-Masni et al. [138] augmented training data by
rotating all of the 4,000 dermoscopy images with angles of 0°, 90°, 180° and
270°. In this way, overfitting was reduced and robustness of deep networks was
improved. Yu et al. [132] rotated each image by angles of 0°, 90° and 180°,
and then performed random pixel translation (with a shift between —10 and 10
pixels) to the rotated images. Significant improvement was achieved with data
augmentation in their experiments on the ISIC skin dataset. Detailed discussion
on data augmentation is beyond the scope of this paper and readers may refer
to the work by Shorten et al. [137] for more information.
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Figure 6: The workflow of a typical skin disease segmentation task.

7.2. Applications of deep learning in skin disease diagnosis

7.2.1. Skin lesion segmentation

Segmentation aims to divide an image into distinct regions that contain pix-
els with similar attributes. Segmentation is significant for skin disease diagnosis
since it avails clinicians to perceive the boundaries of lesions. The success of
image analysis depends on the reliability of segmentation, whereas a precise
segmentation of an image is generally challenging. Manual boarder detection
considers the quandary caused by collision of tumors, wherein there is proximity
of lesions of more than one types. Therefore, higher caliber knowledge of lesion
features should be taken into account [139]. Particularly, the morphological
differences in appearance of skin lesions bring more difficulties to skin diseases
segmentation. The foremost reason is that a relatively poor contrast between
the mundane and skin lesion exists. Other reasons that make the segmentation
difficult include variations in skin tones, presence of artifacts such as hair, ink,
air bubbles, ruler marks, non-uniform lighting, physical location of lesions and
lesion variations in respect to color, texture, shape, size and location in the
image [140, 132]. These factors should be considered when designing a segmenta-
tion algorithm for skin disease images. Generally, effective image preprocessing
should be adopted to eliminate the impact of these factors before images are
input to segmentation algorithms [60, [141]. In the past few years, deep learn-
ing has been extensively applied to image segmentations for skin diseases and
achieved promising performance [142, 143, [144, 121, [145]. The workflow of a
typical skin disease segmentation task is illustrated in Fig.

Fully convolutional neural network with an encoder-decoder architecture
(e.g., fully convolutional network (FCN) [146] and SegNet [21]) was one of the
earliest deep learning models proposed for semantic image segmentation. Par-
ticularly, deep learning models based on FCN have been used for skin lesion
segmentation. For instance, Attia et al. [147] proposed a network combining a
FCN with a long short term memory (LSTM) [14&] to perform segmentation
for melanoma images. The method did not require any preprocessing to the
input images and achieved state-of-the-art performances with an average seg-
mentation accuracy of 0.98 and Jaccard index of 0.93 on the ISIC dataset. The
authors found that the hybrid method utilizing RNN and CNN simultaneously
was able to outperform methods that rely on CNN only. Bi et al. |[149] proposed
a FCN based method to automatically segment skin lesions from dermoscopy
images. Specifically, multiple embedded FCN stages were proposed to learn im-
portant visual characteristics of skin lesions and these features were combined
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together to segment the skin lesion accurately. Goyal et al. |150] proposed
a multi-class segmentation method based on FCN for benign nevi, melanoma
and seborrhoeic keratoses images. The authors tested the method on the ISIC
dataset and obtained dice coefficient indices of 55.7%, 65.3%, and 78.5% for
the 3 classes respectively. Phillips et al. |[151] proposed a novel multi-stride
FCN architecture for segmentation of prognostic tissue structures in cutaneous
melanoma using whole slide images. The weights of the proposed multi-stride
network were initiated with multiple networks pretrained on the PascalVOC
segmentation dataset and fine-tuned on the whole slide images. Results showed
that the proposed approach had the possibility to achieve a level of accuracy
required to manually perform the Breslow thickness measurement.

The well-known neural network, U-net [122], was proposed for medical im-
age segmentation in 2015. The network was constructed based on FCN, and its
architecture has been modified and extended to many works that yielded better
segmentation results [152,153]. Naturally, there have been several works apply-
ing U-net to the task of skin lesion segmentation. Chang et al. |[141] implemented
U-net to segment dermoscopy images of melanoma. Then both the segmented
images and original dermoscopy images were input to a deep network consisting
of two Inception V3 networks for skin lesion classification. Experimental results
showed that both the segmentation and classification models achieved excellent
performances on the ISIC dataset. Lin et al. [154] compared two methods, i.e.,
U-net and a C-Means based approach, for skin lesion segmentation. When eval-
uated on the ISIC dataset, U-net and C-Means based approach achieved 77%
and 61% Dice coefficient indices respectively. The results showed that U-net
achieved a significantly better performance compared to the clustering method.

Based on the previous two important architectures, a series of deep learn-
ing models were developed for skin lesion segmentation. Yuan [143] proposed
a framework based on deep fully convolutional-deconvolutional neural networks
to automatically segment skin lesions in dermoscopy images. The method was
tested on the ISIC dataset and took the first place with an average Jaccard
index of 0.784 on the validation dataset. Later, Yuan et al. [155] extended their
previous work [143] by proposing a deeper network architecture with smaller
kernels to enhance its discriminant capacity. Moreover, color information from
multiple color spaces was included to facilitate network training. When eval-
uated on the ISIC dataset, the method achieved an average Jaccard index of
0.765, which took the first place in the challenge then. Codella et al. [28] pro-
posed a fully-convolutional U-Net structure with joint RGB and HSV channel
inputs for skin lesion segmentation. Experimental results showed that the pro-
posed method obtained competitive segmentation performance to state-of-the-
art, and presented agreement with the groundtruth that was within the range
of human experts. Al-Masni et al. [138] developed a skin lesion segmentation
method via deep full resolution convolutional networks. The method was able
to directly learn full resolution result of each input image without the need of
preprocessing or postprocessing operations. The method achieved an average
Jaccard index of 77.11% and overall segmentation accuracy of 94.03% on the
ISIC dataset, and 84.79% and 95.08% on the PH2 dataset, respectively. Ji
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et al. [156] proposed a skin image segmentation method based on salient ob-
ject detection. The proposed method modified the original U-net by adding
a hybrid convolution module to skip connections between the down-sampling
and up-sampling stages. Besides, the method employed a deeply supervised
structure at each stage of up-sampling to learn from the output features and
ground truth. Finally, the multi-path outputs were integrated to obtain better
performance. Canalini [157] proposed a novel strategy to perform skin lesion
segmentation. They explored multiple pretrained models to initialize a feature
extractor without the need of employing biases-inducing datasets. An encoder-
decoder segmentation architecture was employed to take advantage of each pre-
trained feature extractor. In addition, GANs were used to generate both the
skin lesion images and corresponding segmentation masks, serving as additional
training data. Tschandl et. al. |[158] trained VGG and ResNet networks on
images from the HAM10000 dataset |66] and then transferred corresponding
layers as encoders into the LinkNet model [159]. The model with transferred
information was further trained for a binary segmentation task on the official
ISIC 2017 challenge dataset [62]. Experimental results showed that the model
with fine-tuned weights achieved a higher Jaccard index than that obtained by
the network with random initializations on the ISIC 2017 dataset.

Considering the excellent performance of ResNet [19] and DenseNet [90]
in image classification tasks, people incorporated the idea of residual block or
dense block into existing image segmentation architectures to design effective
deep networks for skin lesion segmentation. For example, Yu et al. [142] claimed
that they were the first to apply very deep CNNs to automated melanoma recog-
nition. They first constructed a fully convolutional residual network (FCRN)
which incorporated multi-scale feature representations for skin lesion segmen-
tation. Then the trained FCRN was utilized to extract patches with lesion
regions from skin images and the patches were used to train a very deep resid-
ual network for melanoma classification. The proposed framework ranked the
first in classification competition and the second in segmentation competition
on the ISIC dataset. Li et al. [160] proposed a dense deconvolutional network
for skin lesion segmentation based on residual learning. The network consisted
of dense deconvolutional layers, chained residual pooling, and hierarchical su-
pervision. The method can be trained in an end-to-end manner without the
need of prior knowledge or complicated postprocessing procedures and obtained
0.866%, 0.765%, and 0.939%, of Dice coefficient, Jaccard index, and accuracy,
respectively, on the ISIC dataset. Li et al. |161] proposed a dense deconvo-
lutional network for skin lesion segmentation based on encoding and decoding
modules. The proposed network consisted of convolution units, dense deconvo-
lutional layers (DDL) and chained residual pooling blocks. Specifically, DDL
was adopted to restore the original high resolution input via upsampling, while
the chained residual pooling was for fusing multi-level features. In addition,
hierarchical supervision was enforced to capture low-level detailed boundary
information.

Recently, GANs [118] have achieved great success in image generation and
image style transfer tasks. The idea of adversarial training was adopted by peo-
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ple for constructing effective semantical segmentation networks and achieved
promising results [162]. In particular, there have been a few works utilizing
GANs for skin disease image segmentation [163,1164, 165,/166]. Udrea et al. [167]
proposed a deep network based on GANSs for segmentation of both pigmented
and skin colored lesions in images acquired with mobile devices. The network
was trained and tested on a large set of images acquired with a smart phone
camera and achieved a segmentation accuracy of 91.4%. Peng et al. [145] pre-
sented a segmentation architecture based on adversarial networks. Specifically,
the architecture employed a segmentation network based on U-net as generator
and a network consisting of certain number of convolutional layers as discrim-
inator. The method was tested on the PH2 and ISIC datasets, achieving an
average segmentation accuracy of 0.97 and dice coefficient of 0.94. Sarker et
al. [168] proposed a lightweight and efficient GAN model (called MobileGAN)
for skin lesion segmentation. The MobileGAN combined 1-D non-bottleneck
factorization networks with position and channel attention modules in a GAN
model. With only 2.35 million parameters, the MobileGAN still obtained com-
parable performance with an accuracy of 97.61% on the ISIC dataset. Singh et
al. [169] presented a skin lesion segmentation method based on a modified con-
ditional GAN (cGAN). They introduced a new block (called factorized channel
attention, FCA) into the encoder of cGAN, which exploited both channel at-
tention mechanism and residual 1-D kernel factorized convolution. In addition,
multi-scale input strategy was utilized to encourage the development of filters
that were scale-variant.

Besides designing novel architectures, people also considered developing ef-
fective deep learning models for skin lesion segmentation from other aspects.
For example, Jafari et al. [170] proposed a deep CNN architecture to segment
the lesion regions of skin images taken by digital cameras. Local and global
patches were utilized simultaneously such that the CNN architecture was able
to capture the global and local information of images. Experimental results
on the Dermquest dataset showed that the proposed method obtained a high
accuracy of 98.5% and sensitivity of 95.0%. Yuan et al. |[143] proposed a new
loss function for a deep network to adapt it to a skin lesion segmentation task.
Specifically, they designed a novel loss function based on the Jaccard distance
for a fully convolutional neural network and performed skin lesion segmentation
on dermoscopy images. CNNs for skin lesion segmentation commonly accept
low-resolution images as inputs to reduce computational cost and network pa-
rameters. This situation may lead to the loss of important information con-
tained in images. To resolve this issue and develop a resolution independent
method for skin lesion segmentation, Unver et al. [144] proposed a method by
combining the YOLO model and GrabCut algorithm for skin lesion segmen-
tation. Specifically, the YOLO model was first employed to locate the lesions
and image patches were extracted according to the location results. Then the
GrabCut algorithm was utilized to perform segmentation on the image patches.
Due to the small size of the labeled training dataset and large variations of
skin lesions, the generalization property of segmentation models is limited. To
address this issue, Cui et al. |L71] proposed an ensemble transductive learning
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Table 4: References of skin lesion segmentation with deep learning (part 1).
Reference Year Dataset No. of images Segmentation method

1170] 2016 Derm101 126 A CNN architecture consisting of two
subpaths, with one accounting for
global information and another for lo-
cal information.

2016 ISIC 1,250 Fully convolutional residual network.

2017 ISIC and PH2 1,279 and 200 Multistage fully convolutional net-
works with parallel integration.

[150] 2017 ISIC 2,750 A transfer learning approach which
uses both partial transfer learning and
full transfer learning to train FCNs for
multi-class semantic segmentation.

142

=
N
ko

[154] 2017 ISIC 2,000 U-Nets with a histogram equalization
based preprocessing step.
128] 2017 ISIC 1,279 An ensemble system combining tradi-

tional machine learning methods with
deep learning methods.

[147) 2017 ISIC 1,275 An architecture combining an auto-
encoder network with a four-layer re-
current network with four decoupled

directions.

[141] 2017 ISIC 2,000 A deep network similar as U-net.

[143] 2017 ISIC and PH2 1,279 and 200 A fully convolutional neural network
with a novel loss function defined
based on the Jaccard distance.

[155] 2017 ISIC 2,750 A convolutional-deconvolutional neu-
ral network.

[167] 2017 A proprietary 3,000 A GAN with U-net being the genera-

database tor.

[138] 2018 ISIC and PH2 2,750 and 200 A full resolution convolutional net-
work.

[156] 2018 From ISIC 2,600 Modified U-net with hybrid convolu-

and other tion modules and deeply supervised
sources structure.

1160] 2018 ISIC 2,900 A dense deconvolutional network
based on residual learning.

[161] 2018 ISIC 1,950 A dense deconvolutional network
based on encoding and decoding mod-
ules.

[157] 2019 ISIC 10,015 An encoder-decoder architecture with

multiple pretrained models as feature
extractors. In addition, GANs were
used to generate additional training
data.

strategy for skin lesion segmentation. By learning directly from both training
and testing sets, the proposed method can effectively reduce the subject-level
difference between training and testing sets. Thus, the generalization perfor-
mance of existing segmentation models can be improved. Soudani et al. [172]
proposed a segmentation method based on crowdsourcing and transfer learning
for skin lesion extraction. Specifically, they utilized two pretrained networks,
i.e., VGG-16 and ResNet-50, to extract features from the convolutional parts.
Then a classifier with an output layer composed of five nodes was built. In this
way, the proposed method was able to dynamically predict the most appropriate
segmentation technique for the detection of skin lesions in any input image.
For convenient reference, we list the aforementioned works on skin lesion
segmentation with deep learning methods in Table M and Table
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Table 5: References of skin lesion segmentation with deep learning (part 2).
Reference Year Dataset No. of images Segmentation method
Y 2019  ISIC and PH2 2750 and 200 Detect skin lesion location with the
YOLO model and segment images
with the GrabCut algorithm.

[158] 2019 HAM10000, Around 20,000 A LinkNet architecture with pre-
ISIC and PH2 trained ResNet as encoders.
[151]] 2019 TCGA 50 A multi-stride fully convolutional net-
work.
[145] 2019 ISIC and PH2 1,279 and 200 An architecture based on adversar-

ial networks with a segmentation net-
work based on U-net and a discrimi-
nation network linked by certain con-
volutional layers.

[168] 2019 ISIC 3,344 MobileGAN combining 1-D non-
bottleneck factorization networks
with position and channel attention

modules.

[169] 2019 ISBI 2016, 1,279, 2,750 A modified ¢cGAN with factorized

ISBI 2017 and and 3,694 channel attention as the encoder.
ISIC

[171] 2019 ISIC 3,694 A transductive approach which
chooses some of the pixels in test
images to participate the training
of the segmentation model together
with the training set.

[172] 2019 ISIC 2,750 A segmentation recommender based
on crowdsourcing and transfer learn-
ing.

7.2.2. Skin disease classification

Skin disease classification is the last step in the typical workflow of a CAD
system for skin disease diagnosis. Depending on the purpose of the system,
the output of a skin disease classification algorithm can be binary (e.g., benign
and malignant), ternary (e.g., melanoma, dysplastic nevus and common nevus)
or n > 4 categories. To accomplish the task of classification, various deep
learning methods have been proposed to classify skin disease images. In the
following, we present a brief review of the existing deep learning methods for
skin disease classification. The workflow for a typical skin disease classification
task is illustrated in Fig. [

Initially, traditional machine learning methods were employed to extract
features from skin images and then the features were input to a deep learning
based classifier for classification. The study by Masood et al. |[173] was one of
the earliest works that applied modern deep learning methods to skin disease
classification tasks. The authors first detected skin lesions with a histogram
based thresholding algorithm, and then extracted features with three machine
learning algorithms. Finally, they classified the features with a semi-supervised
classification model that combined DBNs and a self-advising support vector
machine (SVM) [174]. The proposed model was tested on a collection of 100
dermoscopy images and achieved better results than other popular algorithms.
Premaladha et al. [175] proposed a CAD system to classify dermoscopy images
of melanoma. With enhanced images, the system segmented affected skin lesion
from normal skin. Then fifteen features were extracted from these segmented
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Figure 7: The workflow for a typical skin disease classification task.

images with a few machine learning algorithms and input to a deep neural net-
work for classification. The proposed method achieved a classification accuracy
of 93% on the testing data.

With the development of deep learning, more and more novel networks are
designed such that they can be trained in an end-to-end manner. In particular,
various such kind of advanced deep networks were proposed for skin disease
classification in the past few years. In 2016, Nasr et al. [176] implemented a
CNN for melanoma classification with non-dermoscopy images taken by digital
cameras. The algorithm can be applicable in web-based and mobile applica-
tions as a telemedicine tool and also as a supporting system to assist physi-
cians. Demyanov et al. [177] trained a five-layer CNN for classifying two types
of skin lesion data. The method was tested on the ISIC dataset and the best
mean classification accuracies for the “Typical Network” and “Regular Glob-
ules” datasets were 88% and 83%, respectively. In 2017, Esteva et al. [29]
trained a single CNN using only pixels and disease labels as inputs for skin
lesion classification. The dataset in their study consists of 129,450 clinical im-
ages of 2,032 different diseases. Moreover, they compared the performance of
the CNN with 21 board-certified dermatologists on biopsy-proven clinical images
with two critical binary classification use cases: keratinocyte carcinomas versus
benign seborrheic keratoses; and malignant melanomas versus benign nevi. Re-
sults showed that the CNN achieved performances on par with all tested experts
across both tasks, demonstrating that an artificial intelligence was capable of
classifying skin cancer with a level of competence comparable to dermatologists.
Walker et. al. [178] reported a work on dermoscopy images classification which
evaluated two different inputs derived from a dermoscopy image: visual features
determined via a deep neural network (System A) based on the Inception V2
network [110]; and sonification of deep learning node activations followed by
human or machine classification (System B). A laboratory study (LABS) and
a prospective observational study (OBS) each confirmed the accuracy level of
this decision support system. In both LABS and OBS, System A was highly
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specific and System B was highly sensitive. Combination of the two systems
potentially facilitated clinical diagnosis. Brinker et. al. |179] trained a CNN
with dermoscopy images from the HAM10000 dataset exclusively for identify-
ing melanoma in clinical photographs. They compared the performance of the
automated digital melanoma classification algorithm with that of 145 dermatol-
ogists from 12 German university hospitals. This was the first time that a CNN
without being trained on clinical images performed on par with dermatologists
on a clinical image classification task.

Generally, deep neural networks have a high variance and it can be frustrat-
ing when trying to develop a final model for decision making. One solution to
this issue is to train multiple models instead of a single one and combine the
predictions from these models to form the final results, which is called ensemble
learning 180, [181]. Ensemble learning commonly produces better results than
any of the single model, and has been applied to skin disease classification. Han
et al. [182] created datasets of standardized nail images using a region-based
CNN (R-CNN). Then the datasets were utilized to fine-tune the pretrained
ResNet-152 and VGG-19 networks. The outputs of the two networks were com-
bined together and input to a two-hidden-layered feedforward neural network
for final prediction. Experimental results showed that the diagnostic accuracy
for onychomycosis using deep learning was superior to that of most of the der-
matologists who participated in this study. Though CNNs achieved expert-level
accuracy in the diagnosis of pigmented melanocytic lesions, the most common
types of skin cancer are nonpigmented and nonmelanocytic which are difficult to
be diagnosed. Tschandl et al. [183] trained a model combining the Inception V3
and ResNet-50 for skin lesion classification with 7,895 dermoscopy and 5, 829
close-up images and tested the model on a set of 2,072 images. The authors
compared the performance of the model with 95 human raters and the results
showed that the model can classify dermoscopy and close-up images of non-
pigmented lesions as accurate as human experts in the experimental settings.
Mahbod et al. [78] proposed a hybrid CNN ensemble scheme that combined
intra-architecture and inter-architecture networks for skin lesion classification.
Through fine-tuning networks of different architectures with different settings
and combining the results from multiple sets of fine-tuned networks, the pro-
posed method yielded excellent results in the ISIC 2017 skin lesion classification
challenge without requiring extensive preprocessing, or segmentation of lesion
areas, or additional training data. Perez et al. [184] evaluated 9 different CNN
architectures for melanoma classification, with 5 sets of splits created on the
ISIC Challenge 2017 dataset, and 3 repeated measures, resulting in 135 models.
The author found that ensembles of multiple models can always outperform the
individual model.

Despite deep learning models achieved excellent performance on various ex-
perimental datasets, one should also consider the fact that most deep learn-
ing models require a whole lot of labeled data for training, and obtaining
vast amounts of labeled data (especially medical data) can be really difficult
and expensive in terms of both time and money. Fortunately, transfer learn-
ing 185, [101] can be a strategy to alleviate this issue, enabling deep learning
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models to achieve satisfying performance on small datasets. The basic concept
of transfer learning is to train a model on a large dataset and transfer its knowl-
edge to a smaller one. Thus, one can utilize a deep network trained on unrelated
categories in a massive dataset (usually ImageNet [186]) and apply it to our own
problems (e.g., skin disease classification).

As only limited skin disease data can be obtained publicly, transfer learning
is widely adopted in skin disease classification tasks. Liao [60] used the pre-
trained VGG-16, VGG-19 and GoogLeNet networks to construct a universal
skin disease diagnosis system. The author trained the networks on the Dermnet
dataset and tested them on the Dermnet and OLE datasets. When tested on
the Dermnet dataset, the proposed system achieved a top-1 accuracy of 73.1%
and top-5 accuracy of 91%, respectively. For the test on the OLE dataset,
the top-1 and top-5 accuracies are 31.1% and 69%, respectively. In a more
recent work by Liao et al. [31], the authors utilized the pretrained AlexNet
for both disease-targeted and lesion-targeted classification tasks. They pointed
out that lesion type tags should also be considered as the target of an auto-
mated diagnosis system such that the system can achieve a high accuracy in
describing skin lesions. Kawahara et al. [187] extracted multi-scale features of
skin lesions with a pretrained fully convolutional AlexNet. Then the features
were pooled and used to train a logistic regression classifier to classify non-
dermoscopic skin images. Sun et al. [73] built a benchmark dataset for clinical
skin diseases and fine-tuned the pretrained VGG-16 model on the dataset for
skin disease classification. Zhang et al. [18]] utilized the pretrained Inception
V3 network to classify dermoscopy images into four classes. The model was
evaluated on a private dataset collected from the Peking Union Medical Col-
lege Hospital and experimental results showed that deep learning algorithms
were promising for automated skin disease diagnosis. Fujisawa et al. [189] pro-
posed to apply the pretrained GoogleLetNet to skin tumor classification with
a dataset containing 4, 867 clinical images of 21 skin diseases. Compared with
board-certified dermatologists, the algorithm achieved better performances with
an accuracy of 92.4% £ 2.1%. Lopez et al. [190] utilized the VGG-16 network
to perform melanoma classification. The authors trained the network in three
different ways: 1) training the network from scratch; 2) using the transfer learn-
ing paradigm to leverage features from a VGG-net pretrained on ImageNet; and
3) performing the transfer learning paradigm and fine-tuning the network. In
the experiments, the proposed approach achieved state-of-the-art classification
results with a sensitivity of 78.66% and precision of 79.74%. Han et. al. [6§]
employed the pretrained ResNet-152 model to classify clinical images of 12 skin
diseases. The model was further fine-tuned with 19,398 images from multi-
ple dermoscopy image datasets. Haenssle et al. |[191] employed a pretrained
Inception V4 network for melanoma classification. In the study, the authors
compared the performance of the algorithm with that of an international group
of 58 dermatologists. The results demonstrated that the performance of CNN
outperformed that of most but not all dermatologists. Zhang et al. |[192] utilized
the Inception V3 network to classify dermoscopy images of four common skin
diseases. To further facilitate the application of the algorithm to CAD support,
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the authors generated a hierarchical semantic structure based on domain expert
knowledge to represent classification/diagnosis scenarios. The proposed algo-
rithm achieved an accuracy of 87.25 + 2.24% on the testing dataset. Joanna et
al. [193] proposed to perform preoperative melanoma thickness evaluation with
a pretrained VGG-19 network. Experimental results showed that the developed
algorithm achieved state-of-the-art melanoma thickness prediction result with
an overall accuracy of 87.2%. Yu et al. [132] proposed a novel framework for
dermoscopy image classification. Specifically, the authors first extracted image
representations via a pretrained deep residual network and obtained global im-
age descriptors with the fisher vector encoding method. After that, the obtained
descriptors were utilized to classify melanoma images with SVM. Menegola et
al. [194] systematically investigated the applications of knowledge transfer of
deep learning in dermoscopy image recognition. Their results suggested that
transfer learning from a related task can lead to better results on target tasks.
Hekler et al. [195] claimed that they were the first to implement a deep learning
method for histopathologic melanoma diagnosis and compare the performance
of the algorithm with that of an experienced histopathologist. In the study, they
utilized a pretrained ResNet-50 network [19] to classify histopathologic slides of
skin lesions into classes of nevi and melanoma. They demonstrated that the dis-
cordance between the CNN and expert pathologist was comparable with that
between different pathologists as reported in the literature. Polevaya et al. [196]
utilized the pretrained VGG-16 network to classify primary morphology images
of macule, nodule, papule and plaque. Experimental results showed that the
method was able to achieve an accuracy of 77.50% for 4 classes and 81.67% for
3 classes on the testing dataset.

Attention mechanism aims to learn a context vector to weight the input such
that salient features can be highlighted and unrelated ones can be suppressed. It
was first extensively used in the field of natural language processing (NLP) |197,
198], and has been applied to skin disease classification recently. Barata et
al. [199] proposed a hierarchical attention model combining CNNs with LSTM
and attention modules for skin disease classification. The model made use of
the hierarchical organization of skin lesions, as identified by dermatologists, so
as to incorporate medical knowledge into the decision process. Particularly, the
attention modules were able to identify relevant regions in the skin lesions and
guide the classification decision. The proposed approach achieved state-of-the-
art results on the two dermoscopy datasets of ISIC 2017 and ISIC 2018.

As discussed above, GANs [118] with the capability of generating synthetic
real-world like samples developed rapidly during the past few years. In partic-
ular, GANs or the ideas of adversarial training have been utilized to construct
effective algorithms for skin diseases classification [200]. The applicability of
deep learning methods to melanoma detection is compromised by the limita-
tion of available skin lesion datasets that are small, heavily imbalanced, and
contain images with occlusions. To alleviate this issue, Bisla et al. |201] pro-
posed to purify data with deep learning based methods and augment data with
GANSs, for populating scarce lesion classes, or equivalently creating virtual pa-
tients with predefined types of lesions. These preprocesses can be used in a
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deep neural network for lesion classification. Experimental results showed that
the proposed preprocesses can boost the performance of a deep neural network
in melanoma detection. Yi et al. |75] utilized the categorical GAN assisted by
Wasserstein distance for dermoscopy image classification in an unsupervised and
semi-supervised way. Experimental results on the ISIC dataset showed that the
proposed method achieved an average precision score of 0.424 with only 140
labeled images. In addition, the method was able to generate real-world like
dermoscopy images. Gu et al. [202] proposed two methods for cross-domain
skin disease classification. They first explored a two-step progressive trans-
fer learning technique by fine-tuning pretrained networks on two skin disease
datasets. Then they utilized adversarial learning as a domain adaptation tech-
nique to perform invariant attribute translation from source domain to target
domain. Evaluation results on two skin disease datasets showed that the pro-
posed method was effective in solving the domain shift problem.

Besides the above research directions for skin disease classification, people
also worked on the problem of skin disease classification from other aspects.
Mishra et al. [203] investigated the effectiveness of current deep learning methods
for skin disease classification. The authors analyzed the classification processes
of several deep neural networks (including Resnet-34, ResNet-50, ResNet-101
and ResNet-152) for common East Asian dermatological conditions. The au-
thors chose ten common categories of skin diseases based on their prevalence
for evaluation. With an accuracy of more than 85% in the experiments, the
authors tried to investigate why existing models were unable to achieve com-
parable results with those in object identification tasks. The study suggested
that the deep learning based dermoscopy identification and dataset creation
can be improved. By integrating segmentation results with skin disease clas-
sification process, better classification results tend to be obtained. Wan [204]
implemented several deep networks (including U-net, Deeplab, Inception V3,
MobileNet [205] and NASNet [29]) for skin lesion segmentation and classifica-
tion on the ISIC 2017 challenge dataset. Particularly, the author cropped skin
images with the trained segmentation model and trained a classification model
based on the cropped data. In this way, the classification accuracy was further
improved. Shi et al. [206] presented a novel active learning framework for cost-
effective skin lesion analysis. They proposed a dual-criteria to select samples
and an intraclass sample aggregation scheme to enhance the model. Using only
up to 50% of samples, the proposed approach achieved state-of-the-art perfor-
mance on both tasks on the ISIC dataset. Tschandl et al. [207] trained a neural
network to classify dermatoscopy images from three retrospectively collected
image datasets. The authors obtained diagnosis predictions through two ways,
i.e., based on the most commonly occurring diagnosis in visually similar images
(obtained via content-based image retrieval), or based on the top-1 class pre-
diction of the network. Experimental results showed that presenting visually
similar images based on features from a network showed comparable accuracy
with the softmax probability-based diagnoses of deep networks.

For convenient comparison, we list the references of skin disease image clas-
sification with deep learning in Table [6] and [7l
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Table 6: References of skin disease

classification with deep learning (part 1).

Reference Year Dataset No. of Classification method
data

[173] 2015 Self-collected dataset 290 Detect skin lesions with a thresholding
algorithm, extract features with three
machine learning algorithms, and per-
form classification with a model com-
bining DBNs and self-advised SVM.

77 2016 ISIC 29,323 A CNN with three convolutional lay-
ers and pooling layers, and two fully-
connected layers.

6] 2016 Dermnet and OLE >24,300 Pretrained VGG-16, VGG-19 and
GoogLeNet.

[31) 2016 Self-collected dataset 75,665 Pretrained AlexNet.

[187) 2016  Dermofit Image Library 1,300 Pretrained fully convolutional AlexNet.

[I76] 2016 MED-NODE 170 A CNN with two convolutional layers
and two fully-connected layers.

[73) 2016 SD-198 6,584 Pretrained VGG-16.

[I75) 2016 Self-collected dataset 992 Segment skin lesions with Otsu’s
method and extract fifteen features
with several algorithms, then classify
images with deep networks and a hy-
brid adaboost-SVM.

188 2017 Collected from the Peking >28,000 Pretrained GoogleNet Inception V3.

Union Medical College
Hospital

29] 2017 Images from 18 online 129,450 Pretrained GoogleNet Inception V3.
repositories and clinical
data from the Stanford
University Medical Center.
89] 2017 Images collected from the 4,867 Pretrained GoogLeNet.

University of Tsukuba
Hospital

[19q] 2017 ISIC 1,279 VGG-16 trained from scatch and pre-
trained VGG-16.

194)] 2017 IAD and ISIC >1000 Transfer learning with VGG-M model.

and
1,279
68) 2018 Asan dataset, MED-NODE 19,878 Pretrained ResNet-152.
dataset, atlas site images,
Hallym and Edinburgh
datasets
[182) 2018 Self-collected dataset 54,666 The outputs of the pretrained ResNet-

152 and VGG-19 are combined together
and input to two fully-connected layers
for classification.
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Table 7: References of skin disease classification with deep learning (part 2).

Reference Year Dataset No. of Classification method
data
[191] 2018 Test-set-300 and ISIC 300 and  Pretrained GoogLeNet Inception V4.
100
[192) 2018 Collected from the Peking >2,800  Pretrained GoogleNet Inception V3.
Union Medical College
Hospital
[132) 2018 ISIC 1,279 Extract image features via a pretrained
CNN, obtain global descriptors based
on fisher vector encoding method and
perform classification with SVM.
[204] 2018 ISIC > GoogLeNet Inception V3, MobileNet
20,000 and NASNet.
73] 2018 ISIC and PH2 1,279 Categorical GAN assisted by Wasser-
and 200 stein distance.
[184) 2019 ISIC 2,750 9 different pretrained networks.
[199] 2019 ISIC 2,750 A model combining CNNs with LSTM
and attention modules.
[193) 2019 IAD 244 Pretrained VGG-19.
[183] 2019 Self-collected dataset 15,796 A model combining GoogLeNet Incep-
tion V3 and ResNet50.
79 2019 ISIC and HAM10000 20,735 Pretrained ResNet50.
178 2019 ISIC and IAD 2,361 GoogLeNet Inception V2.
and
2,800
78] 2019 ISIC 2,787 Combine multiple networks (AlexNet,
VGG-nets and ResNet), and fine-tune
the networks multiple times and ensem-
ble the multiple results.
207 2019 EDRA, ISIC and PRIV 888, Pretrained ResNet-50.
2,750
and
16,691
[203) 2019 Self-collected 7,264 Pretrained  Resnet-34, ResNet-50,
ResNet-101, and ResNet-152.
[195) 2019 Collected from the institute 695 Pretrained ResNet-50.
of Dr. Krahl
[201]) 2019  ISIC, PH2 and Dermofit 3,982 Segment lesions with U-net, generate
Image Library data with DCGANSs [119] and classify
lesions with pretrained ResNet-50.
[196] 2019 Self-collected - Pretrained VGG-16.
202] 2019  MoleMap and HAM1000 102,451  Progressive transfer learning of deep
and CNN models and GAN based method.
10,015
06] 2019 ISIC 3,582 A novel active learning method.
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Figure 8: The workflow for a typical multi-task learning.

7.2.8. Multi-task learning for skin disease diagnosis

In machine learning, people generally train a single model or an ensemble
of models to complete their desired tasks. While they can achieve acceptable
results in this way, information that might contribute to better performance is
ignored. Specifically, this information comes from the training data of related
tasks. By sharing representations among related tasks, existing models are
able to generalize better in the original task. This approach is called multi-
task learning (MTL) [208]. MTL enables multiple learning tasks to be solved
simultaneously, while exploring the commonalities and differences across tasks.
This can result in the improvement of learning efficiency and prediction accuracy
of the task-specific models, when compared to training models separately [209].
The workflow for a typical MTL is illustrated in Fig. Bl

Many works have adopted MTL for skin disease diagnosis. Yang et. al. [210]
proposed a multi-task CNN based model for skin lesion analysis. In the model,
each input dermoscopy image is associated with multiple labels that describe dif-
ferent characteristics of the skin lesion. Then multi-task methods are utilized to
perform skin lesion segmentation and classifications simultaneously. Experimen-
tal results showed that the multi-task method achieved promising performance
in both tasks. Different with existing deep learning approaches that commonly
use two networks to separately perform lesion segmentation and classification,
Li et. al. [65] proposed a deep learning framework consisting of multi-scale
fully convolutional residual networks and a lesion index calculation unit to si-
multaneously perform the two tasks. To investigate the correlation between
skin lesions and their body site distributions, the authors in work [211] trained
a deep multi-task learning framework to jointly optimize skin lesion classifica-
tion and body location classification. The experimental results verified that
features jointly learned with body location information indeed boosted the per-
formance of skin lesion classification. Kawahara et al. [72] proposed a multi-task
deep neural network, trained on a multi-modal dataset (including clinical and
dermoscopy images, and patient meta-data), to classify the 7-point melanoma
checklist criteria and perform skin lesion diagnosis. The network trained with
several multi-task loss functions was able to handle the combination of input
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modalities. The model classified the 7-point checklist and performed skin con-
dition diagnosis, and produced multi-modal feature vectors suitable for image
retrieval and localization of clinically discriminative regions.

7.2.4. Miscellany

Apart from the above applications of deep learning in skin disease diagnosis,
there are several works applying deep learning to skin disease diagnosis from
other aspects.

GANs have been utilized to synthesize skin images so as to facilitate skin
disease diagnosis [212,1213,[214]. To address the problems caused by lack of suf-
ficient labeled data in skin disease diagnosis tasks, Bissoto et al. [215] proposed
to use GAN to generate realistic synthetic skin lesion images. Experimental
results showed that they could generate high-resolution (up to 1024 x 512) sam-
ples containing fine-grained details. Moreover, they employed a classification
network to evaluate the generated images and results showed that the syn-
thetic images comprised clinically meaningful information. With the help of
progressive growing and GANs, Baur et al. |[216] generated extremely realistic
high-resolution dermoscopy images. Experimental results showed that even ex-
pert dermatologists found it hard to distinguish the synthetic images from real
ones. Therefore, this method can be served as a new direction to deal with the
problem of data scarcity and class imbalance. Yang et al. [217] proposed a novel
generative model based on a dual discrimination training algorithm for autoen-
coders to synthesize dermoscopy images. In contrast to other related methods,
an adversarial loss was added to the pixel-wise loss during the image construc-
tion phase. Through experiments, they demonstrated that the method can be
applied to various tasks including data augmentation and image denoising. Baur
et al. [21&] utilized GANSs to generate realistically looking high-resolution skin
lesion images with only a small training dataset (2,000 samples). They both
quantitatively and qualitatively compared state-of-the-art GAN architectures
such as DCGAN and LAPGAN against a modification of the latter one for the
image generation task at a resolution of 256 x 256. Experimental results showed
that all the models can approximate the real data distribution. However, major
differences when visually rating sample realism, diversity and artifacts can be
observed.

Besides the above GAN-based applciations, Han et al. [219] proposed a
method based on R-CNN for detecting keratinocytic skin cancer on the face.
They first used R-CNN to create 924, 538 possible lesions by extracting nodular
benign lesions from 182,348 clinical photographs. After labeling these possible
lesions, CNNs were trained with 1,106,886 image crops to locate and diagnose
cancer. Experimental results showed that the proposed algorithm achieved a
higher F1 score of 0.831 and Youden index score of 0.675 than those of nonder-
matologic physicians. Additionally, the accuracy of the algorithm was compa-
rable with that of dermatologists. Galdran et al. [220] utilized computational
color constancy techniques to construct an artificial data augmentation method
suitable for dermoscopy images. Specifically, they applied the shades of gray
color constancy technique to color-normalize images of the entire training set,
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while retaining the estimated illuminants. Then they drew one sample from the
distribution of training set and applied it to the normalized image. They per-
formed experiments on the ISIC dataset by employing this technique to train
two CNNs for skin lesion segmentation and classification. Attia et al. [221]
proposed a deep learning method based on a hybrid network consisting of con-
volutional and recurrent layers for hair segmentation with weakly labeled data.
Deep encoded features were utilized for detection and delineation of hair in skin
images. The encoded features were then fed into the recurrent layers to encode
the spatial dependencies between disjointed patches. Experiments conducted
on the ISIC dataset showed that the proposed method obtained excellent seg-
mentation results with a Jaccard Index of 77.8% and tumour disturb pattern of
14%.

8. Discussion

Skin disease diagnosis with deep learning methods has attracted much atten-
tion and achieved promising progress in recent years [29, [60, [190]. In the pub-
lished literature, the performances achieved by deep learning methods for skin
disease diagnosis are similar as those achieved by dermatologists. To develop
and validate excellent algorithms or systems supporting new imaging techniques,
lots of research and innovative system development are required |32]. The ma-
jor drawback of dermoscopy examination by dermatologists is that the process
is subjective and results may vary with experience. Thus, biopsy is needed to
differentiate benign cases from malignant ones. Biopsying benign lesions of skin
diseases may lead to increased anxieties to patients and aggravate the expense
to healthcare systems. Factors, such as training, time, and experience needed
to properly utilize various available and upcoming techniques, present a huge
barrier to early and accurate diagnosis of skin diseases. Although many auto-
mated skin disease diagnosis methods have been developed, a complete decision
support system has not been developed.

In this section, we discuss the major challenges faced in the field of skin
disease diagnosis with deep learning. Instead of describing specific cases en-
countered, we focus more on the fundamental challenges and explain the root
causes of these issues. Then, we try to provide suggestions to deal with these
problems.

8.1. Challenges

With the development of deep learning in the past few years, a variety of
works on skin disease diagnosis with deep learning methods have been proposed
and achieved promising performance. However, there are still several issues that
should be resolved before deep learning can be extensively applied to real-life
clinical scenarios of skin disease diagnosis.
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8.1.1. Limaited labeled skin disease data

Previous works on skin disease diagnosis with deep learning were commonly
trained and tested on datasets with limited number of images. The biggest
publicly available skin disease dataset that can be found in literate until now
is the ISIC dataset [62] containing more than 20,000 skin images. Though one
may obtain large numbers of skin disease data without any diagnosis information
from websites or medical institutes, labeling vast amounts of skin disease data
requires expertise knowledge and can be really difficult and expensive in terms of
both time and money. As is known that training a deep neural network requires
a large amount of labeled data. Overfitting tends to occur when only small
dataset is available. Therefore, larger datasets with labeled information are in
demand to train an effective deep neural network for skin disease diagnosis.
However, considering the practical challenges in developing a large dataset, it is
also imperative to simultaneously develop approaches that exploit deep learning
with less labeled data for skin disease diagnosis.

8.1.2. Imbalanced skin disease datasets

One common problem occurred in skin disease diagnosis tasks is the im-
balance of samples in skin disease datasets. Actually, many datasets contain
significant disproportions in the number of data points among different skin
classes and are heavily dominated by data of the benign lesions. For exam-
ple, one skin disease dataset may contain a large number of negative samples
but only limited positive samples. Training deep learning models with imbal-
anced data may result in biased results, despite employing training tricks such
as penalization of false negative cases found in a minor skin lesion class with
weighted loss function. In light of the low frequency of occurrences of certain
positive samples in skin diseases, obtaining a balanced dataset from the available
original data can be as hard as developing a large-scale dataset.

8.1.83. Noisy data obtained from heterogeneous sources

Dermoscopy images of most existing skin disease datasets are obtained with
high-resolution DSLR cameras in an optimal environment of lighting and dis-
tance of capture. Deep learning algorithms trained on these high-quality skin
disease datasets are capable of achieving excellent diagnostic performance. How-
ever, when tested with images captured with low-resolution cameras (e.g., cam-
eras of smart phones) in different lighting conditions and distances, the same
model may be hard to achieve the same performance. Actually, deep learn-
ing algorithms are found to be highly sensitive to images captured by different
equipments. In addition, self-captured images are often of inferior-quality with
much noise. Therefore, noisy data obtained from heterogeneous sources bring
challenges to skin disease diagnosis with deep learning.

8.1.4. Lack of diversity among cases in existing skin disease datasets

Most cases in existing skin disease datasets are fair-skinned individuals
rather than dark-skinned ones. Though the incident rate of skin cancer is rela-
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tively higher among fair-skinned population than that of the dark-skinned pop-
ulation, people with dark skin can also suffer from skin cancer and are usually
diagnosed in later stage [222]. Deep learning algorithms trained with skin dis-
ease data of fair-skinned population may fail to diagnose for the people with
dark skin [223]. Another problem with existing skin disease datasets is that
only categorizes of high incident rate (e.g., BCC, SCC and melanoma) are in-
cluded and other (e.g., Merkel cell carcinoma (MCC), appendageal carcinomas,
cutaneous lymphoma, sarcoma, kaposi sarcoma, and cutaneous secondaries) are
ignored. Consequently, if deep learning algorithms are trained on datasets that
do not contain data captured from dark-skinned population and have not ade-
quate cases of rare skin diseases, misdiagnosis on data with these skin conditions
may occur with a high probability. Therefore, developing skin disease datasets
with high diversity is significant for constructing effective skin disease diagnosis
systems.

8.1.5. Missing of medical history and clinical meta-data of patients

Besides performing visual inspection for a suspected skin lesion with the help
of medical equipment (e.g., dermoscopy), clinicians also take the medical history,
social habits and clinical meta-data of patients into account when making a
diagnostic decision. Actually, it is of great importance to know the diagnostic
meta-data, such as skin cancer history, age, sex, ethnicity, general anatomic site,
size and structure of skin lesions of patients (sometimes related information of
their families are also needed). It has been proved in the work |191] that the
performance of the beginner or skilled dermatologists can be improved with
additional clinical information. However, most existing works on skin disease
diagnosis with deep learning merely considered skin images and ignored medical
history and clinical information of patients. One possible factor leading to this
situation is the missing of such information in the most publicly available skin
disease datasets.

8.1.6. Explainability of deep learning methods

There has been much controversy about the topic of “black box” of deep
learning models. That is, people may not be possible to understand how the
determination of output is made by deep neural networks. This opaqueness has
led to demands for explainability before a deep learning algorithm can be applied
to clinical diagnosis. Clinicians, scientists, patients, and regulators would all
prefer having a simple explanation for how a neural network makes a decision
about a particular case. In the example of predicting whether a patient has a
disease, people would like to know what hidden factors the network is using.
However, when a deep neural network is trained to make predictions on a large
dataset, it typically uses its layers of learned, nonlinear features to model a
huge number of complicated but weak regularities in the data. It is generally
infeasible to interpret these features since their meaning depends on complex
interactions with uninterpreted features in other layers. If the same network
is refit to the same data but with changes in the initializations, there may be
different features in the intermediate layers. This indicates that unlike models in

)
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which an expert specifies the hidden factors, a neural network has many different
and equally good ways to model the same dataset. It is not trying to identify the
“correct” hidden factors, but merely use hidden factors to model the complicated
relationship between the input variables and output variables. In the future,
more efforts should be made to deal with the “black box” phenomenon.

8.1.7. Selection of deep neural networks for a specific skin disease diagnosis task

As the literature presented in the previous sections showed that most exist-
ing skin disease diagnosis tasks typically employed the currently popular deep
architectures for image segmentation or classification. Additionally, ensemble
methods of combining two or more deep networks were also utilized to analyze
skin images. However, few works have made it clear how to select an appro-
priate type of deep neural network for a specific skin disease diagnosis task.
Therefore, it is necessary to investigate the characteristics of skin diseases and
corresponding data, and then design deep networks with domain knowledge for
the specific task. In this way, better performance can be achieved.

8.2. What can we do next?

With the increasing trend of applying deep learning methods to skin disease
diagnosis recently, people are likely to witness a large number of works in this
field in the near future. However, as discussed above, several challenges exist
and need to be resolved in this field. To cope with the challenges and obtain
satisfying performance for skin disease diagnosis, there are a few possible direc-
tions that we can explore. We draw insights from the literature in the field of
skin disease diagnosis and other fields (e.g., computer vision and pattern recog-
nition), and present possible guidelines and directions for future works in the
following.

8.2.1. Obtain massive labeled skin disease data

To obtain excellent performance for skin disease diagnosis, deep neural net-
works commonly require large amounts of data for training. However, limited
labeled skin disease data is common in practice. To deal with this problem, we
can seek solutions from several aspects. On one hand, people may employ expe-
rienced clinicians to label skin disease data manually, though it would be expen-
sive and time-consuming. One the other hand, automated or semi-automated
data labeling tools, such as Fiji [224], LabelMe [225] and Imagetagger [226],
can be utilized to label massive data efficiently. Moreover, existing publicly
available skin datasets can be comprehensively integrated to form a large-scale
skin image dataset, as ImageNet in the computer vision field, for testing deep
learning algorithms. In addition, to cope with the issue caused by noisy data
with heterogenous sources, color constancy algorithms, such as Shades of Gray,
max-RGB, can be utilized to boost the performance of deep learning mod-
els [2217,1228]. These algorithms can be used as image preprocessing methods to
normalize the lighting effect of dermoscopy images.

42



8.2.2. Increase the diversity of clinical skin data

From the previous section we can observe that only limited skin disorders
were involved in most works on skin disease diagnosis with deep learning meth-
ods [60, [179, 168, 129]. As a result, the trained algorithms can only decide
whether a lesion is more likely a predefined type of skin disease, such as ne-
vus or melanoma, without even determining any subtype of it. By contrast, an
experienced pathologist can diagnose any given images of a broad spectrum of
differential diagnoses and decide a skin lesion belonging to any possible subtype
of a skin disease. A more powerful and reliable skin disease diagnosis system
that can be adapted to analyze all kinds of skin lesions is in huge demand. Con-
sequently, it is necessary to expand the existing skin image datasets to include
other cutaneous tumors and normal skin types. Moreover, it is also imperative
to include skin data captured from the dark-skinned population to improve the
diversity of current skin datasets. In this way, deep learning models trained
on these general and complex datasets can adapt to more general skin disease
diagnosis tasks.

8.2.3. Include additional clinical information to assist skin disease diagnosis

In most cases, only dermoscopy or histopathological images are input to
deep learning models for skin disease diagnosis. However, in the clinical set-
tings, accurate diagnosis also relies on the history of skin lesions, risk profile of
individuals, and global assessment of the skin. Thus, dermatologists commonly
incorporate additional clinical information to identify skin cancers. The authors
in [191] investigated the effect of including additional information and close-up
images for skin disease diagnosis and found a great improvement in the per-
formance. Therefore, additional clinical information can be incorporated into
the model training and testing processes for skin disease diagnosis. Other ex-
isting medical record data, such as un-organized documents, can be processed
with techniques including NLP, document analysis [229] and data mining [230]
and taken into account in the diagnosis process as well. Skin images and related
medical documents can be combined together to construct multi-view paradigms
for the diagnosis tasks. Multi-view models have proved their effectiveness in re-
cent works and can be extended to the field of skin disease diagnosis. Besides,
integrating human knowledge into existing deep learning algorithms is likely to
further improve the diagnosis performance as well.

8.2.4. Fuse handcrafted features with deep networks extracted features
Handcrafted features are typically extracted with less powerful traditional
machine learning models and can be obtained with relatively small labeled data
and less computational cost. However, they sometimes can achieve excellent
performance in certain skin disease diagnosis tasks. Though handcraft features
commonly lack generalization properties and showed inferior performance com-
pared with the features directly learned from massive data with deep neural
networks, they can be served as a supplementary to deep features. For ex-
ample, decorrelated color spaces can be investigated to analyze the impact of
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color spaces in border detection and use them to facilitate skin image process-
ing [231]. Skin lesion elevation and evolution features and geometrical features
provide important clues for diagnosing a skin disease. Combining these features
with deep features can further enhance the performance of current deep learn-
ing methods. Particularly, it would be promising if one could find a way to
integrate the handcrafted feature extracting process with the learning process
of deep networks. Through fusing handcrafted features with deep features, we
may not only reduce the requirement of large amounts of labeled data to train a
deep network, but also achieve better performance. Additionally, we need to in-
vestigate the characteristics of skin diseases first, and then design deep networks
with domain knowledge for the specific task. In this way, better performance
can be expected.

8.2.5. Employ GANs to synthesize additional data for training deep networks

GANSs [118] are attracting lots of attention from the computer vision commu-
nity due to their ability to generate realistic synthetic images for various tasks.
Then these images can be utilized as additional labeled data to train deep learn-
ing models. In this way, models commonly show superior performance compared
with the situation where models are trained with limited original data. This
property of GANs can be of great help for skin disease diagnosis when large-scale
labeled datasets are unavailable. Actually, there have been a few works in the
literature applying GANSs to skin disease diagnosis [167, 232, 75, 233]. However,
it should be very careful when exploiting GANs for medical applications. As
we know, GANs are trying to mimic the realistic images instead of learning the
original distribution of images. Thus, images generated with GANs can greatly
differ from the original ones. In light of this, it is feasible to train a deep learning
model with images generated by GANs at the beginning and then fine-tune the
final model with only the original images.

8.2.6. Exploit transfer learning and domain adaptation for skin disease diagno-
sis

Transfer learning [101, [234] and domain adaptation [235, 1236, 237] have
been exploited to deal with the issues caused by lack of large-scale labeled data.
As presented above, there have been many works utilizing transfer learning
or domain adaptation techniques to improve the performance of deep learning
models in skin disease diagnosis tasks [202,[196,193,/172]. One way to implement
transfer learning is to utilize existing pretrained deep learning models to extract
semantic features and perform further learning based on these features [238,
239, 1240]. For instance, Akhtar et al. |238] utilized deep models to extract
features and these features were further used to learn higher level features with
dictionary learning. Another way to implement transfer learning is freezing part
of a deep network and training the remainder. It is known that the initial layers
of a deep network learn similar filters from diverse images. Therefore, one can
directly borrow the values of parameters corresponding to initial layers from a
network trained in similar tasks and freeze these layers. Then the remainder
of the network is trained as normal with limited labeled data. In addition, we
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can take advantage of recent development [241] of transfer learning in the other
fields (e.g., computer vision) to facilitate the success of deep learning in skin
disease diagnosis tasks.

8.2.7. Develop semi-supervised deep learning methods for skin disease diagnosis

It is known that large amounts of labeled data is required to train a deep
learning model. However, collecting massive labeled skin data is expensive since
expert knowledge is required and the labeling process is time-consuming. By
contrast, it is much easier or cheaper to obtain large-scale unlabeled skin data.
Semi-supervised learning [242] aims to greatly alleviate the issues caused by lack
of large-scale labeled data by allowing a model to leverage the available massive
unlabeled data. Particularly, there have been a few works [173,[75,1243] involving
semi-supervised learning for skin disease diagnosis. Recently, semi-supervised
deep learning attracts increasing attention in the field of computer vision and
a few successful models have been proposed [244, 245, 246]. Understanding
these models and developing semi-supervised deep learning models specifically
for skin disease diagnosis can be a promising direction.

8.2.8. Explore the possibility of applying reinforce learning for skin disease di-
agnosis

Reinforce learning (RL) [247,1248] has achieved tremendous success in recent
years, reaching human-level performance in several areas such as Atari video
games [247], the ancient games of Go [249] and chess [250]. The success in part
has been made possible by the powerful function approximation abilities of deep
learning algorithms. Many medical decision problems are by nature sequential;
therefore, RL can be employed to solve these problems. Particularly, there have
been several works utilizing RL to solve medical image processing tasks and
achieved promising results |251, 252, [253]. To the best of our knowledge, there
have not works applying RL to skin disease diagnosis tasks so far. Therefore,
RL can be a potential tool to solve skin disease diagnosis problems.

8.2.9. Reasonable explanation for predictions produced by deep learning algo-
rithms

Explainability is one of the key factors that hinders the application of deep
learning methods to clinical diagnosis scenarios. To assist diagnosis, people need
reasonable explanation for the predictions produced by deep learning algorithms
rather than just a confidence score of the skin diseases. One possible solution to
this problem is to provide a reasonable explanation for the predictions according
to the ABCDE criteria (asymmetry, border, color, diameter, and evolution) or
7-point skin lesion malignancy checklist (pigment network, regression structures,
pigmentation, vascular structures, streaks, dots and globules, and blue whitish
veil) [5§].
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9. Summary

In this review, we present an overview on the advances in the field of skin
disease diagnosis with deep learning. First, we briefly introduce the domain and
technical aspects of skin disease. Second, skin image acquisition methods and
publicly available datasets are presented. Third, the conception and popular
architectures of deep learning and commonly used deep learning frameworks
are introduced. Then, we introduce the performance evaluation metrics and
review the applications of deep learning in skin disease diagnosis according to
the specific tasks. Thereafter, we discuss the challenges remained in the area of
skin disease diagnosis with deep learning and suggest possible future research
directions. Finally, we summarize the whole article.

Compared with existing related literature reviews, this article provides a
systematic survey of the field of skin disease diagnosis focusing on recent ap-
plications of deep learning. With this article, one could obtain an intuitive
understanding of the essential concepts in the field of skin disease diagnosis
with deep learning and challenges faced in this field as well. Moreover, several
possible directions to deal with these challenges can be taken into consideration
by ones who are willing to work further in this field in the future.

The potential benefits of automated diagnosis of skin diseases with deep
learning are tremendous. However, accurate diagnosis increases the demand of
reliable automated diagnosis process that can be utilized in the diagnostic pro-
cess by experts and non-expert clinicians. From the review, we can observe that
numerous deep learning systems have been proposed and achieved comparable
or superior diagnosis performance on experimental skin disease datasets. How-
ever, we should be aware that a computer-aided skin disease diagnosis system
should be critically tested before it is accepted for real-life clinical diagnosis
tasks.
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