
Smoothing quantile regression for a distributed system

Rong Jianga, Keming Yub,∗

aDonghua University, Shanghai, 201620, People’s Republic of China
bBrunel University, London UB83PH, UK

Abstract

Quantile regression has become a popular alternative to least squares regres-

sion for providing a comprehensive description of the response distribution,

and robustness against heavy-tailed error distributions. However, the nons-

mooth quantile loss poses new challenges to distributed estimation in both

computation and theoretical development. To address this challenge, we use

a convolution-type smoothing approach and its Taylor expression to trans-

form the nondifferentiable quantile loss function into a convex quadratic loss

function, which admits a fast and scalable algorithm to perform optimization

under massive and high-dimensional data. The proposed distributed estima-

tors are both computationally and communication efficient. Moreover, only

the gradient information is communicated at each iteration. Theoretically,

we show that, after a certain number of iterations, the resulting estimator

is statistically as efficient as the global estimator without any restriction on

the number of machines. Both simulations and data analysis are conducted

to illustrate the finite sample performance of the proposed methods.

Keywords: quantile regression, massive data, high-dimensional data,

∗Corresponding author
Email addresses: jrtrying@dhu.edu.cn (Rong Jiang), keming.yu@brunel.ac.uk

(Keming Yu)

Preprint submitted to Neurocomputing July 4, 2021

distributed estimator

2010 MSC: 60G08, 62G20

1. Introduction

Technology advancement in applications such as e-commerce has led to

massive data sets that cannot be processed with stand alone computers due

to processor, memory or disk bottlenecks. Consequently, the dataset must be

stored and processed on many connected computer nodes, which thereafter

are referred to as a distributed system. More precisely, a distributed system

refers to a large cluster of computers, which are typically connected with each

other. Specifically, to obtain some estimates of the parameters of interest

under a large-scale computation problem, one can compute an estimate of

the parameters or some other summary of the data locally and then send

this more compact piece of information to a central machine. Accordingly, a

solution path can be obtained on the master node. In this work, we consider a

“master-and-worker”-type distributed system, in which workers do not need

to communicate with each other directly. However, they should be connected

to a master node, which is a computer with outstanding capacities. The

related references can be found in Yang (1997), Jiang et al. (2018), Chen

et al. (2021), and so on.

In a distributed system, because data are often collected from different

sources with different times and locations, the homoscedasticity assumption

is often not valid (Fan et al., 2014). Moreover, heavy-tailed noise, with an

infinite variance (e.g., Cauchy distribution), is prevalent in practice. For such

heavy-tailed noise, most existing theories for distributed systems based on

2

least squares will no longer be applicable. Quantile regression (QR) proposed

by Koenker and Bassett (1978) is a powerful tool for learning the relation-

ship between a scalar response and multivariate predictors in the presence of

heavier tails and/or data heterogeneity, which makes QR a natural candidate

as an analysis tool for distributed systems. Other references about the QR

method can be found in Koenker (2005), Wang and Wang (2013), Lv et al.

(2013), Yu et al. (2016), He et al. (2021), and so on.

Modern data acquisitions have facilitated the collection of massive (Alex

et al., 2009) and high-dimensional data (Jiang, 2018) with complex struc-

tures. The main purpose of the paper is to provide a new estimation ap-

proach for high-dimensional QR in a distributed system and establish the

theoretical results. More specifically, we consider the following linear model:

Y = X⊤β0 + ε, (1.1)

where X is a random vector of p-dimensional covariates, β0 is a vector of

unknown parameters of interest, and the noise ε satisfies P (ε ≤ 0|X) = τ .

Note that β0 and ε should truly be β0,τ and ετ , and we omit the subscript

τ for notational convenience. Theoretically, the true parameter vector β0 in

model (1.1) solves the following minimization problem:

β0 = argmin
β

E
{
ρτ
(
Y −X⊤β

)}
, (1.2)

where ρτ (r) = τr − rI(r < 0) is the check loss function with I(v) denoting

the indicator function that takes value 1 if v is true, and zero otherwise.

In this paper, we consider the setting in which p increases with sample size

n and even p can be much larger than n. Therefore, the number of available

3

covariates is typically large, but only a small number of covariates are re-

lated to the response. By a variable selection technique, one can discover the

important variables with high probability. In recent decades, various vari-

able selection techniques have been well studied, such as the least absolute

shrinkage and selection operator (LASSO) proposed by Tibshirani (1996),

smooth clipped absolute deviation (SCAD) proposed by Fan and Li (2011),

and minimax concave penalty (MCP) proposed by Zhang (2010). Existing

approaches to penalized QR for a distributed system mostly focus on LASSO

and develop corresponding algorithms (see Zhao et al. (2020), Wang and Lian

(2020) and Chen et al. (2020)). Therefore, we consider the following penal-

ized QR estimator based on LASSO:

β̂L = argmin
β

n∑

i=1

ρτ
(
Yi −X⊤

i β
)
+ λn‖β‖1, (1.3)

where {Yi,Xi}ni=1 are independent and identically distributed samples from

(Y,X), ‖β‖1 is the ℓ1-regularization of β, and λn is the regularization pa-

rameter.

For problem (1.2) under massive data sets with fixed p, Xu et al. (2020)

studied a “one-shot” QR method. It only used one round of communication,

in which the estimators were obtained in parallel on local machines, and

then communicated and combined into a central node to form an estimator

by averaging the local estimators. However, the one-shot method suffers

from the following drawbacks. It requires a large sample size on each local

machine, as their theories heavily rely on asymptotic expansions of certain

estimators. Moreover, the number of machines K should be Ke
√
K = n to

ensure the effectiveness of the methods, but this feature may not be desirable

in distributed settings. For example, in a sensor network with a vast number

4

of sensors, the number of machines may exceed the constraint set for the

optimal rate. Furthermore, for high-dimensional regression using a penalized

model, Lee et al. (2017) noticed that simple averaging does not work due

to the unignorable bias size. Volgushev et al. (2019) and Chen and Zhou

(2020) also studied a one-short QR method by weighted averaging of the

local estimators, which requires the conditions K = o(
√
n) and K = O(ñr)

with 0 ≤ r < 1/3 to achieve the optimal rate of convergence, where ñ is the

sample size of the local machine.

For problem (1.3) under massive and high-dimensional datasets, Zhao

et al. (2020) proposed a bias-correction method (van de Geer et al., 2014) to

obtain a debiased estimator before taking the average. However, the debi-

asing step is computationally time-consuming and suffers the drawbacks of

the one-short method. Wang and Lian (2020) extend the communication-

efficient surrogate likelihood method proposed by Jordan et al. (2019) for

distributed QR. However, their iterative algorithm cannot improve estima-

tion accuracy. Chen et al. (2020) transformed QR loss to a least squares

loss and provided a distributed estimator that is both computationally and

communicatively efficient. However, their method only works when the er-

ror term ε is independent of the covariates X, which is a highly restrictive

assumption.

In view of the existing literature, one question that naturally arises from

the analysis of the QR method under massive and high-dimensional datasets

is as follows: can we possibly develop a communication-efficient estimation

that is valid under some regularity conditions, to relax the restriction on the

number of machines, sample size of local machines, and error term? Moti-

5

vated by this question, our paper presents a multiround distributed algorithm

for estimating β0 in model (1.1). Note that the QR loss function ρτ (·) is non-
differentiable and lacks strong convexity. Thus, QR remains computation-

ally expensive for large-scale data when both the sample size and dimension

are very large. To circumvent the nondifferentiability of the QR loss func-

tion, Horowitz (1998) proposed smoothing the indicator part of the check

function via a kernel smoothing survival function. Chen et al. (2019) ap-

plied Horowitz’s smoothing quantile regression to solve problem (1.2) under

a massive dataset. However, their method requires that each local machine

computes and communicates a p × p-dimensional matrix to the master ma-

chine, where p is the dimension of covariance. Communication is expensive

when p is very large. Moreover, their method cannot be extended to solve

problem (1.3). The smoothing method proposed by Horowitz (1998) gains

smoothness at the cost of convexity, which inevitably raises optimization is-

sues. In general, computing a global minimum of a nonconvex function is

intractable. To address the aforementioned issue, Fernandes et al. (2021) pro-

posed a convolution-type smoothing method that yields a convex and twice

differentiable loss function, which yields a lower mean squared error than

that of the estimator in Horowitz (1998) and a more accurate Bahadur-Kiefer

representation than the standard QR estimator. Since the convolution-type

smoothing loss function is globally convex and locally strongly convex, the

standard Newton-Raphson iteration method can be used to solve problem

(1.2). However, the convolution-type smoothing loss function cannot be di-

rectly applied to (1.3) under a distributed system, because it contains the

function of unknown parameters. Thus, we use a Taylor expansion of the

6

convolution-type smoothing loss function, and then the standard QR loss

can be transformed to a convex quadratic loss. Therefore, several efficient

optimization methods in the optimization literature can be adopted. For ex-

ample, the Projected Scaled Subgradient, sign projection (PSSsp) algorithm

(Schmidt, 2010) and the active set algorithm (Solntsev et al., 2015) were

used.

To summarize, we aim to make the following important contributions to

the existing literature.

(1) We develop a communication-efficient estimation that turns the non-

differentiable quantile loss function into a convex quadratic loss function.

(2) We show that, after a constant number of iterations, our method

achieves a near-oracle rate under some regularity conditions, and then relaxes

the restriction on the number of machines, sample size of the local machine

and error term. The proposed method only needs one machine (master ma-

chine) with certain computing power. Other machines can perform poorly

because they only need to perform simple calculations.

This paper is organized as follows. We start with a brief review of the

convolution-type smoothing method and its application in distributed sys-

tems in Section 2. In Section 3, the distributed smoothing QR estimator is

proposed. The variable selection method is developed in Section 4. Both

simulation examples and the application on real data are given in Section 5

to illustrate the proposed procedures. We conclude this paper with a brief

discussion in Section 6. All technical proofs are deferred to the Appendix.

Notation: We fix some notations that will be used throughout this

paper. For a vector v = (v1, . . . , vn)
⊤, define ‖v‖1 =

∑n
i=1 |vi|, ‖v‖2 =

7

√∑n
i=1 v

2
i , and ‖v‖∞ = max1≤i≤n |vi|. If A is a p×q matrix and the element

of row i and column j is aij, we use ‖A‖ to denote its spectral norm, defined

by ‖A‖ = maxv∈Sn−1 ‖Av‖2, where Sn−1 = {v ∈ Rn : ‖v‖2 = 1} is the unit

sphere in Rn and ‖A‖∞ = max1≤i≤p

∑p
j=1 |aij |. For two sequences of real

numbers {an}n≥1 and {bn}n≥1, an . bn denotes an ≤ Cbn for some constant

C > 0, an & bn if bn . an, and an ≍ bn if an . bn and bn . an.

2. Smoothing quantile regression

2.1. Standard smoothing quantile regression

Theoretically, the true parameter vector β0 in model (1.1) solves the fol-

lowing minimization problem:

β0 = argmin
β

E [ρτ {e(β)}] = argmin
β

∫
ρτ (t)dF (t, β), (2.1)

where e(β) = Y − X⊤β and F (t, β) = P (e(β) ≤ t). With regard to (2.1),

the QR estimator of β0 can be solved by minimizing the following objective

function:

1

n

n∑

i=1

ρτ {ei(β)} =

∫
ρτ (t)dF̂ (t, β), (2.2)

where ei(β) = Yi −X⊤
i β and F̂ (·, β) denotes the empirical distribution func-

tion of ei(β). For large-scale data when both n and p are large, we apply

kernel smoothing (Fernandes et al., 2021) to the empirical objective function

in (2.2) to address the nondifferentiability and lack of strong convexity of the

loss function, and then have

β̂ =argmin
β

Sh(β) ≡ argmin
β

∫
ρτ (t)dF̂h(t, β)

= argmin
β

[
(1− τ)

∫ 0

−∞
F̂h(t, β)dt+ τ

∫ +∞

0

{1− F̂h(t, β)}dt
]
,

(2.3)

8

where F̂h(t, β) =
∫ t

−∞ f̂h(u, β)du, f̂h(u, β) = n−1
∑n

i=1Kh (u− ei(β)),Kh(·) =
K(·/h)/h,K(·) is a smooth kernel function and h is a bandwidth. Now, Sh(β)

is twice continuously differentiable with the gradient and Hessian matrix

S
(1)
h (β) = n−1

n∑

i=1

Xi

{
K̃(−ei(β)/h)− τ

}
,

S
(2)
h (β) = n−1

n∑

i=1

XiX
⊤
i Kh(−ei(β)),

respectively, where K̃(t) =
∫ t

−∞K(u)du. Moreover, provided that the kernel

function K(·) is nonnegative, Sh(β) is a convex function. Below we list the

explicit expressions of the check functions in (2.3) under several commonly

used kernels.

(1) Uniform kernel K(u) = (1/2)I(|u| ≤ 1):

Sh(β) =
1

n

n∑

i=1

[
h

4
{e2i (β) + h2}I{|ei(β)| ≤ h}

+
1

2
|ei(β)|I{|ei(β)| > h}+ (τ − 1/2)ei(β)

]
;

(2.4)

(2) Epanechnikov kernel K(u) = (3/4)(1− u2)I(|u| ≤ 1):

Sh(β) =
1

n

n∑

i=1

[
h

16
{6 + 6e2i (β)− e4i (β)}I{|ei(β)| ≤ h}

+
1

2
|ei(β)|I{|ei(β)| > h}+ (τ − 1/2)ei(β)

]
;

(2.5)

(3) Gaussian kernel K(u) = (2π)−1/2 exp(−u2/2):

Sh(β) =
1

n

n∑

i=1

[
h(2π)−1/2 exp(−e2i (β)/(2h

2))− ei(β)Φ(−ei(β)/h) + τei(β)
]
.

(2.6)

9

2.2. Smoothing quantile regression for a distributed system

Now let us discuss how to use (2.3) to develop a distributed estimator.

Suppose that n observations are distributed across K local machines. Define

M = {1, . . . , n} to be all sample observations. Decompose M = ∪K
k=1Mk,

where Mk collects the observations distributed to the kth worker, |Mk| = nk

and n =
∑K

k=1 nk.

Note that under a distributed system, each machine cannot communicate

Sh(β) in (2.3) to the master machine, due to the functionals of unknown

parameter β, such as I{|ei(β)| > h} in (2.4) and (2.5) or Φ(−ei(β)/h) in

(2.6). We then use a Taylor expansion of Sh(β) around an initial estimator

β̂0 of β0. This yields:

Sh(β) =Sh(β̂
0) + (β − β̂0)⊤S

(1)
h (β̂0) +

1

2
(β − β̂0)⊤S

(2)
h (β̂0)(β − β̂0) + op(‖β − β̂0‖22),

=S̃h(β, β̂
0) + op(‖β − β̂0‖22),

where

S̃h(β, β̂
0) = Sh(β̂

0) + (β − β̂0)⊤S
(1)
h (β̂0) +

1

2
(β − β̂0)⊤S

(2)
h (β̂0)(β − β̂0).

(2.7)

Note that (2.7) is a convex quadratic loss function; thus, it is convenient to

apply for a distributed system. Under a distributed system, S
(1)
h (β̂0) and

S
(2)
h (β̂0) can be rewritten as

S
(1)
h (β̂0) =

1

n

K∑

k=1

nkS
(1)
h,k(β̂

0), S
(2)
h (β̂0) =

1

n

K∑

k=1

nkS
(2)
h,k(β̂

0), (2.8)

where S
(1)
h,k(β̂

0) = n−1
k

∑
i∈Mk

Xi

{
K̃(−ei(β̂

0)/h)− τ
}

and S
(2)
h,k(β̂

0) = n−1
k

∑
i∈Mk

XiX
⊤
i Kh(−ei(β̂

0)).

10

From (2.7) and (2.8), we can see that each local machine computes and

communicates a p-dimensional vector S
(1)
h,k(β̂

0), and a p× p-dimensional ma-

trix S
(2)
h,k(β̂

0) to the first machine M1 (master machine). However, when

p → ∞, p × p is very large. The burden of communication is heavy. Note

that (2.7) can be written as

S̃h(β, β̂
0) =Sh(β̂

0) + (β − β̂0)⊤S
(1)
h (β̂0) +

1

2
(β − β̂0)⊤S

(2)
h1,1

(β̂0)(β − β̂0)

+
1

2
(β − β̂0)⊤

{
S
(2)
h (β̂0)− S

(2)
h1,1

(β̂0)
}
(β − β̂0)

=S̄h,h1
(β, β̂0) + C + op

(
‖β − β̂0‖22

)
,

where S
(2)
h1,1

(β̂0) = n−1
1

∑
i∈M1

XiX
⊤
i Kh1

(−ei(β̂
0)) and h1 are based on the

first sample, C = Sh(β̂
0) + (β̂0)⊤S

(1)
h (β̂0) + 1/2(β̂0⊤)⊤S

(2)
h1,1

(β̂0)β̂0 is constant

which is independent of β, and

S̄h,h1
(β, β̂0) = β⊤

{
S
(1)
h (β̂0)− S

(2)
h1,1

(β̂0)β̂0
}
+

1

2
β⊤S

(2)
h1,1

(β̂0)β. (2.9)

The last identity in the equation is due to ‖S(2)
h (β̂0) − S

(2)
h1,1

(β̂0)‖ = op(1),

which is detailed in the proof of Theorem 3.1 in the Appendix.

By now we have transformed the nondifferentiable quantile loss function

(2.2) into a convex quadratic loss function (2.9), which admits a fast and scal-

able algorithm to perform optimization under massive and high-dimensional

data. Moreover, the communication complexity is p only, as there is no need

to communicate the (K−1)×p×p sample covariance matrixes {S(2)
h,k(β̂

0)}Kk=2.

11

3. Distributed smoothing QR estimator

Section 2 shows that the estimation of β0 in model (1.1) can be imple-

mented by solving quadratic optimization (2.9) to obtain

β̂1
H = argmin

β
S̄h,h1

(β, β̂0) = β̂0 −
{
S
(2)
h1,1

(β̂0)
}−1

S
(1)
h (β̂0). (3.1)

To establish the asymptotic properties of the proposed estimator, the

following technical conditions are imposed.

C1. The kernel function K(·) is a symmetric, bounded and nonnegative

function that integrates into one, that is, K(u) = K(−u), 0 ≤ K(u) ≤
∞ for all u ∈ R and

∫
K(u)du = 1. In addition, min|u|≤1K(u) > 0 and

∫
u2K(u)du < ∞.

C2. There exists l2 ≥ l1 > 0 such that l1 ≤ fε|X(0) ≤ l2 almost surely

(for all X), where fε|X(·) is the conditional density function of ε given X.

Moreover, there exists a constant l3 > 0 such that
∣∣fε|X(t)− fε|X(0)

∣∣ ≤ l3|t|
for all t ∈ R almost surely.

C3. The random vector X is sub-exponential: there exist c̃1 ≥ 0 such

that

P
(
|X⊤Σ−1/2δ| ≥ c̃1‖δ‖2t

)
≤ 2 exp(−t),

for all δ ∈ Rp and t ≥ 0, where Σ = E(XX⊤) is a positive definite matrix.

Moreover, assume that 0 < Λmin(Σ) ≤ Λmax(Σ) < ∞, where Λmin(Σ) and

Λmax(Σ) are the smallest and largest eigenvalues of Σ, respectively.

C4. The random vector X is sub-Gaussian: there exist c̃2 ≥ 0 such that

P
(
|X⊤Σ−1/2δ| ≥ c̃2‖δ‖2t

)
≤ 2 exp(−t2/2),

for all δ ∈ Rp and t ≥ 0.

12

Remark 3.1. Condition C1 is a mild condition on K(·) for smoothing ap-

proximation. For example, for Gaussian kernel K(u) = (2π)−1/2 exp(−u2/2),

it is easy to see that it satisfies condition C1. Condition C2 is a regular

condition on the smoothness of the conditional density function fε|X(·). C3

assumes a sub-exponential condition on the random covariates, which encom-

passes the bounded case considered by Fernandes et al. (2021). Moreover, the

conditions C2 and C3 ensure that D = E{fε|X(0)XX⊤} is positive definite,

which means that D−1 exists. Conditions C3 and C4 are the standard irrep-

resentable condition. ConditionC4 is slightly more stringent than Conditions

C3. If X is Gaussian, then C3 and C4 hold. Heavier-tailed distributions

of X are excluded here so that we can expect standard rates of convergence

for the quantile regression estimates. Conditions C2-C4 are standard condi-

tions, which are commonly used in high-dimensional quantile regression (see

He et al. (2020), Wang and Lian (2020) and Chen et al. (2020)).

We are ready to present the theoretical results for our distributed smooth-

ing QR estimator.

Theorem 3.1. Suppose we have an initial estimator β̂0 with ‖β̂0 − β0‖2 =

Op(an) with an ≍ n−c1 for some constant c1 > 0 and an &
√

p/n. The

dimension p ≍ nc2 for some constant 0 < c2 < 1. h1 → 0 and (p/n)1/2 .

h . (p/n)1/4. Assume that conditions C1-C3 are satisfied, we can obtain

‖β̂1
H − β0‖2 = Op

(√
p

n
+ an

{√
p logn

nh
+

√
p logn1

n1h1
+ an + h+ h1

})
.

(3.2)

Note that, (3.2) means that one round of aggregation enables a refine-

ment of the estimator with its bias reducing from Op(an) to op(an), when

13

p logn1/(n1h1) = o(1). Therefore, an iterative refinement of the initial esti-

mator will successively improve the estimation accuracy. Now we are ready

to present the theoretical results for the estimator in (3.1) with multiple

rounds of aggregations.

Theorem 3.2. Suppose that all conditions in Theorem 3.1 hold, ‖β̂0−β0‖2 =
Op(
√

p/n1) with n1 = nr, 0 < r ≤ 1, and p ≍ nc3 with 0 < c3 < r, h1 ≍
(p logn1/n1)

1/3. We have

‖β̂q
H − β0‖2 = Op

(√
p

n
+

√
p

n1

(
p log n1

n1

)q/3
)
. (3.3)

The initial estimator of β0 can be obtained by minimizing (2.2) based on

the first machine M1, thus we have ‖β̂0 − β0‖2 = Op(
√

p/n1) under some

regularity conditions; see He and Shao (2000). It can be shown that when

the iteration number q is sufficiently large,

q ≥ Q1 ≡ ϕ(1 + 3/2 log(n1/n)/ log(p logn1/n1)), (3.4)

where ϕ(·) is an integer up function, the second term in (3.3) is dominated

by the first term, and the convergence rate in (3.3) becomes

‖β̂q
H − β0‖2 =Op

(√
p/n
)
,

which is the convergence rate of the smoothed QR estimator by (2.3) in a

single machine setup; see Theorem 3.1 in He et al. (2020). Next, we have the

asymptotic distribution of β̂q
H as follows.

Theorem 3.3. Assume that Conditions C1-C4 are satisfied. ‖β̂0 − β0‖2 =
Op(
√

p/n1) with n1 = nr, 0 < r ≤ 1, p ≍ nc4 with 0 < c4 < min(3/8, r),

14

h ≍ (p/n)2/5, h1 ≍ (p logn1/n1)
1/3, and n → ∞. The number of iterations q

satisfies (3.4). Then, for any α ∈ Rp with α 6= 0, we have

n1/2α⊤(β̂q
H − β0)√

α⊤D−1ΣD−1α

L−→ N (0, τ(1− τ)) ,

where
L−→ stands for convergence in the distribution.

Theorem 3.3 shows that β̂q
H achieves the same asymptotic efficiency as

the estimator computed directly on all the samples; see Theorem 3.3 in He

et al. (2020). Note that in a common scenario when n1 = nr, 0 < r ≤ 1,

the number of iterations Q1 in (3.4) is bounded by a constant. It is also

important to note that the required number of rounds Q1 is usually quite

small. Some examples are present in Table 1.

Based on the above analysis, we now introduce a distributed smoothing

QR method for estimating β0. The procedure is summarized in Algorithm 1.

Algorithm 1: Distributed smoothing QR method.

Input: The number of iterations Q1, the quantile level τ , kernel function

K(·), and bandwidths h and h1;

1: Calculate the initial estimator β̂0 based on machine M1:

β̂0 = argmin
β

∑

i∈M1

ρτ
(
Yi −X⊤

i β
)
; (3.5)

2: for q = 0 : Q1 − 1 do

3: Transmit the current iterate β̂q
H to local machines {Mk}Kk=1;

4: for k = 1 : K do

Compute the local gradient S
(1)
h,k(β̂

q
H) at machine Mk;

Transmit the local gradient S
(1)
h,k(β̂

q
H) to machine M1;

15

5: end for

6: Calculate the global gradient S
(1)
h (β̂q

H) = n−1
∑K

k=1 nkS
(1)
h,k(β̂

q
H),

and S
(2)
h1,1

(β̂q
H) in machine M1. Compute the estimator:

β̂q+1
H = β̂0 −

{
S
(2)
h1,1

(β̂q
H)
}−1

S
(1)
h (β̂q

H); (3.6)

7: end for

Output: The final estimator is β̂Q1

H .

It is worthwhile to note that there are many methods to solve (3.5). In our

experiments, we adopt the coordinate descent algorithm (Pietrosanu et al.,

2020) to obtain β̂0. Moreover, (3.6) may be computationally expensive for

calculating the inverse matrix of S
(2)
h1,1

(β̂q
H) under a large p and may need

modifications if S
(2)
h1,1

(β̂q
H) is ill-conditioned, especially when h1 is too small.

In this situation, we could use a Barzilai-Borwein algorithm (Barzilai and

Borwein, 1988) to obtain a simple approximation of the inverse matrix of

S
(2)
h1,1

(β̂q
H).

4. Distributed penalized smoothing QR estimator

To further encourage the sparsity of the estimator which is discussed in

Section 2, it is natural to consider the following ℓ1-regularized problem:

β̂1
L =argmin

β

{
S̄h,h1

(β, β̂0
L) + λn‖β‖1

}

=argmin
β

[
β⊤
{
S
(1)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)β̂

0
L

}
+

1

2
β⊤S

(2)
h1,1

(β̂0
L)β + λn‖β‖1

]
,

(4.1)

where β̂0
L is defined as an initial estimator of β0 under the LASSO penalty. By

(4.1), the estimation of the high-dimensional sparse β0 can be implemented

16

by solving a penalized quadratic optimization instead of the penalized QR

optimization. Therefore, several efficient optimization methods in the opti-

mization literature, such as the PSSsp algorithm and the active set algorithm

can be adopted. Next, we present the main theoretical results.

Theorem 4.1. Suppose that we have an initial estimator β̂0
L with ‖β̂0

L −
β0‖2 = Op(ãn) with ãn ≍ n−c5 for some constant c5 > 0. The dimension

p = o(exp(n1)) and (s/n)1/2 . h . (log(n ∨ p)/n)1/4, where s is the sparsity

of β0, s =
∑p

j=0 I(β0,j 6= 0) and n ∨ p = max(n, p). Take

λn = C̄






√
log(n ∨ p)

n
+ ãn



√

s log(n ∨ p)

nh
+

√
s log(n1 ∨ p)

n1h1
+ ãn + h+ h1







 ,

(4.2)

with C̄ being a sufficiently large constant. Under conditions C1, C2 and C4,

we can obtain

‖β̂1
L − β0‖2 = Op

(√
sλn

)
. (4.3)

Suppose that ãn ≍
√
s log(n1 ∨ p)/n1 and h1 ≍ (s log(n1∨p)/n1)

1/3, then

(4.2) is equal to

λn =Op

(√
log(n ∨ p)

n
+ ãn

(
s log(n1 ∨ p)

n1

)1/3
)
,

and (4.3) can be written as

‖β̂1
L − β0‖2 =Op

(√
s log(n ∨ p)

n
+ ãn

√
s

(
s log(n1 ∨ p)

n1

)1/3
)
,

For the estimator with its bias reducing from Op(ãn) to op(ãn), assume
√
s (slog(n1 ∨ p)/n1)

1/3 = o(1). Now, we are ready to present the theoretical

results for the estimator in (4.1) with multiple rounds of aggregations.

17

Theorem 4.2. Suppose we have an initial estimator β̂0
L with ‖β̂0

L − β0‖2 =

Op(
√

s log(n1 ∨ p)/n1) with n1 = nc6, 0 < c6 ≤ 1. Let p = o(exp(nc6)),

s = o((n1/ log(n1 ∨ p))2/5), h1 ≍ (s log(n1 ∨ p)/n1)
1/3 and (s/n)1/2 . h .

(log(n ∨ p)/n)1/4. Take

λq
n = C̄

(√
log(n ∨ p)

n
+ s5q/6

(
log(n1 ∨ p)

n1

)(2q+3)/6
)
,

with C̄ being a sufficiently large constant. Under conditions C1, C2 and C4,

we can obtain

‖β̂q
L − β0‖2 =Op

(√
s log(n ∨ p)

n
+ s(5q+3)/6

(
log(n1 ∨ p)

n1

)(2q+3)/6
)
. (4.4)

The initial estimator β0 can also be obtained by minimizing (4.1) based on

M1, thus we have ‖β̂0
L−β0‖2 = Op(

√
s log(n1 ∨ p)/n1) under some regularity

conditions; see Theorem 2 in Belloni and Chernozhukov (2011). It can be

shown that when the iteration number q is sufficiently large,

q ≥ Q2 ≡ ϕ(1 + 3 log(log(n ∨ p)n1/ log(n1 ∨ p)n)/ log(s5 log2(n1 ∨ p)/n2
1)),

(4.5)

the second term in (4.4) is dominated by the first term, and the convergence

rate in (4.4) becomes

‖β̂q
L − β0‖2 =Op

(√
s log(n ∨ p)/n

)
,

which is the convergence rate of the ℓ1-regularized quantile regression esti-

mator in a single machine setup; see Theorem 2 in Belloni and Chernozhukov

(2011).

The following theorems provide results on support recovery of the pro-

posed estimators in (4.1). Let T = {j ∈ {1, . . . , p} : |β0,j | > 0} is the support

of β0 and T̂ 1 = {j ∈ {1, . . . , p} : |β̂1
L,j| > 0}.

18

Theorem 4.3. Suppose that all conditions in Theorem 4.1 hold.

(i) We have T̂ 1 ⊆ T with probability tending to one;

(ii) In addition, suppose that for a sufficiently large constant C̃ > 0,

min
j∈T

|β0,j| ≥C̃‖D−1
T×T‖∞

{√ log(n ∨ p)

n

+ ãn(

√
s log(n ∨ p)

nh
+

√
s log(n1 ∨ p)

n1h1
+ ãn + h+ h1)

}
,

we have T̂ 1 = T with probability tending to one.

The support recovery result for β̂q
L can be present in the following theo-

rem. Denote T̂ q = {j ∈ {1, . . . , p} : |β̂q
L,j| > 0}.

Theorem 4.4. Suppose that all conditions in Theorem 4.2 hold.

(i) We have T̂ q ⊆ T with probability tending to one;

(ii) In addition, suppose that for a sufficiently large constant C̃ > 0,

min
j∈T

|β0,j| ≥C̃‖D−1
T×T‖∞

{√
log(n ∨ p)

n
+ s5q/6

(
log(n1 ∨ p)

n1

)(2q+3)/6
}
,

(4.6)

we have T̂ q = T with probability tending to one.

When q satisfies (4.5), the condition (4.6) reduces to minj∈T |β0,j| ≥
C̃‖D−1

T×T‖∞
√
log(n ∨ p)/n, which matches the rate of the lower bound for

the “beta-min” condition in LASSO in a single machine setting (Wainwright,

2009).

Based on the above analysis, we introduce a distributed ℓ1-regularized

smoothing QR method for estimating β0.

19

Algorithm 2: Distributed penalized smoothing QR estimator

Input: The number of iterations Q2, the quantile level τ , kernel function

K(·), the regularization parameter λn, and bandwidths h and h1;

1: Calculate the initial estimator β̂0
L based on M1:

β̂0
L = argmin

β

∑

i∈M1

ρτ
(
Yi −X⊤

i β
)
+ λn‖β‖1; (4.7)

2: for q = 0 : Q2 − 1 do

3: Transmit the current iterate β̂q
L to local machines {Mk}Kk=1;

4: for k = 1 : K do

Compute the local gradient S
(1)
h,k(β̂

q
L) at machine Mk;

Transmit the local gradient S
(1)
h,k(β̂

q
L) to machine M1;

5: end for

6: Calculate the global gradient S
(1)
h (β̂q

L) = n−1
∑K

k=1 nkS
(1)
h,k(β̂

q
L),

and S
(2)
h1,1

(β̂q
L) in machine M1. Compute the estimator:

β̂q+1
L = argmin

β

{
S̄h,h1

(β, β̂q
L) + λn‖β‖1

}
; (4.8)

7: end for

Output: The final estimator is β̂Q2

L .

It is worthwhile to note that optimization problems (4.7) and (4.8) have

been extensively studied in the optimization literature, and several efficient

optimization methods have been developed. In our experiments, we adopt

the coordinate descent algorithm (Pietrosanu et al., 2020) to obtain β̂0
L in

(4.7), and the PSSsp algorithm (Schmidt, 2010) to solve (4.8). Moreover,

20

the number of iterations Q2 in (4.5) is bounded by a constant and is usually

quite small. Some examples of Q1 and Q2 are present in Table 1, and we

take s = (n1/ log(n1 ∨ p))1/3 for Q2.

Table 1: The numbers of iterations Q1 and Q2 under different n, n1 and p.

n p n1 Q1 p n1 Q1 p n1 Q2 p n1 Q2

1010 102 104 10 103 105 10 105 105 13 1015 105 14

105 5 106 5 106 9 106 10

106 4 107 3 107 6 107 6

107 3 108 2 108 4 108 4

1015 103 106 9 104 106 17 1010 107 14 1020 107 15

107 6 107 8 108 11 108 11

108 4 108 5 109 8 109 9

109 3 1010 3 1011 2 1011 2

1020 103 106 13 105 108 12 1010 108 17 1030 108 19

107 8 109 8 109 14 109 15

108 6 1010 6 1010 12 1010 13

1010 4 1012 4 1012 4 1012 4

5. Numerical studies

In this section, we first use Monte Carlo simulation studies to assess

the finite sample performance of the proposed procedures and then demon-

strate the application of the proposed methods with two real data analy-

ses. All programs are written in R code. The Gaussian kernel K(u) =

(
√
2π)−1 exp(−u2/2) is used in this section.

21

5.1. Simulation example 1

In this section, we compare the proposed algorithm (3.1) in Section 3

with the following existing methods under full data analysis: interior points

algorithm (IP) in Portnoy and Koenker (1997), the ADMM algorithm in

Pietrosanu et al. (2020) and the Conquer algorithm in He et al. (2020).

We generate data from the following linear model:

Yi = X⊤
i β0 + εi, i = 1, . . . , n,

where Xi = (1, Xi1, . . . , Xip)
⊤ is a (p + 1)-dimensional covariate vector and

(Xi1, . . . , Xip) is drawn from a multivariate normal distribution N(0,Σ). The

covariance matrix Σ is constructed by Σij = 0.5i−j for 1 ≤ i, j ≤ p. Different

dimensions p = 10, 100 and sample sizes n = 102, 103, 104, 105, 106 are con-

sidered in this section. The true value of the parameter is β0 = (1, . . . , 1) and

quantile level τ = 0.5. Two distributions for the model error ε are considered

as follows: a standard normal distribution (N(0,1)), and a t distribution with

freedom of 5 (t(5)). In this section, we choose the least squares estimation

as the initial estimation and h = (p/n)2/5 for simplicity.

To evaluate the performance of the four methods, we calculate the mean

squared error (MSE) ‖β̂ − β0‖2 and computation time (in seconds). Sim-

ulation results are presented in Tables 2 and 3, based on 100 simulation

replications. From Tables 2 and 3, the following conclusions can be drawn:

(1) In terms of MSEs in Table 2, we note that (i) all the estimators are

close to the true value because the results of MSEs are very small; (ii) for

any given sample size n, dimension p and error, it can be seen that the MSEs

of Conquer and our proposed method (Proposed) are smaller than those of

22

IP and ADMM. Moreover, the performance of our proposed method is close

to that of Conquer.

(2) In terms of computation time in Table 3, we note that (i) all methods

run fast except the case of p = 100, n = 106; (ii) for any given sample size n,

dimension p and error, the computation time of Conquer is the shortest. The

computation time of our proposed method is close to IP and shorter than

ADMM.

Table 2: The means and standard deviations (in parentheses) of MSEs (×100) under

different sample sizes n, dimensions p and distributions of errors for Simulation example

1.

ε p n IP ADMM Conquer Proposed

N(0,1) 10 103 15.627 (3.481) 15.683 (3.460) 14.415 (3.194) 12.423 (3.289)

104 5.101 (1.332) 5.127 (1.306) 4.916 (1.274) 4.035 (1.060)

105 1.592 (0.418) 1.607 (0.415) 1.527 (0.417) 1.298 (0.325)

106 0.505 (0.135) 0.496 (0.141) 0.455 (0.130) 0.393 (0.079)

100 103 52.729 (4.704) 52.821 (4.678) 46.366 (4.083) 46.508 (4.095)

104 16.237 (1.109) 16.296 (1.126) 15.177 (1.186) 15.233 (1.195)

105 5.213 (0.307) 5.243 (0.288) 4.953 (0.359) 5.057 (0.366)

106 1.643 (0.106) 1.654 (0.116) 1.577 (0.126) 1.624 (0.120)

t(5) 10 103 16.850 (3.711) 16.966 (3.666) 15.804 (3.498) 16.409 (3.732)

104 5.652 (1.404) 5.699 (1.404) 5.431 (1.310) 5.419 (1.244)

105 1.710 (0.460) 1.730 (0.460) 1.656 (0.442) 1.656 (0.430)

106 0.529 (0.137) 0.552 (0.146) 0.500 (0.127) 0.517 (0.133)

100 103 58.381 (5.040) 58.420 (4.966) 52.320 (3.761) 52.439 (3.774)

104 16.909 (1.153) 16.944 (1.286) 15.796 (0.706) 15.841 (0.712)

105 5.476 (0.382) 5.463 (0.399) 5.280 (0.361) 5.351 (0.367)

106 1.659 (0.064) 1.673 (0.071) 1.603 (0.046) 1.626 (0.068)

23

Table 3: The means of computation times (in seconds) under different sample sizes n,

dimensions p and distributions of errors for Simulation example 1.

ε p n IP ADMM Conquer Proposed

N(0,1) 10 103 0.003 0.013 0.003 0.003

104 0.028 0.095 0.013 0.023

105 0.382 0.496 0.109 0.231

106 3.941 3.439 1.306 2.164

100 103 0.055 0.118 0.012 0.092

104 0.600 1.324 0.075 0.621

105 6.626 13.128 0.600 5.610

106 80.340 190.381 19.781 88.382

t(5) 10 103 0.003 0.013 0.003 0.003

104 0.028 0.095 0.012 0.015

105 0.319 0.491 0.106 0.161

106 3.640 3.477 1.357 1.846

100 103 0.076 0.122 0.015 0.124

104 0.873 1.321 0.074 0.790

105 6.939 13.314 0.605 5.883

106 82.083 184.321 16.440 93.300

5.2. Simulation example 2

In this section, we study the performance of the distributed smoothing

QR estimator (DSQR) method in Section 3. Furthermore, we include the

following three competitors in our comparison:

(1) the central estimator (Cen), which computes the quantile regression

by (2.2) using all data by the coordinate descent algorithm (Pietrosanu et al.,

2020) (to be consistent with Simulation example 3);

(2) the one-shot estimator with averaging (Avg); see Xu et al. (2020);

24

(3) the linear estimator for QR (LEQR); see Chen et al. (2019).

We generate data from the following linear model:

Yi = X⊤
i β0 + {εi − F−1

εi
(τ)}, i = 1, . . . , n,

where Xi = (1, Xi1, . . . , Xip)
⊤ is a (p + 1)-dimensional covariate vector and

(Xi1, . . . , Xip) is drawn from a multivariate normal distribution N(0,Σ). The

covariance matrix Σ is constructed by Σij = 0.5i−j for 1 ≤ i, j ≤ p with p =

100, which makes the irrepresentability condition (condition C3) satisfied.

The true value of the parameter is β0 = (1, . . . , 1). The errors εi are generated

independently from a chi-square distribution with 2 degrees of freedom. We

fix the subset sample size n1 = 500 and vary the number of machines K;

then, the total sample size n = 500K. According to Theorem 3.3, we choose

h = (p/n)2/5 and h1 = (p logn1/n1)
1/3 for simplicity.

To evaluate the performance of the four methods, we calculate the MSE

and computation time (in seconds). Simulation results for τ = 0.3, 0.5

and 0.7 are presented in Figure 1 and Table 4, respectively, based on 100

simulation replications. From Figure 1 and Table 4, the following conclusions

can be drawn:

(1) In terms of MSEs in Figure 1, we note that (i) all the estimators are

close to the true value because the results of MSEs are very small; (ii) for any

given number of machines K and quantiles τ , it can be seen that the MSEs

of the averaged estimator (Avg) are the largest one. Moreover, its estimated

efficiency cannot be improved when K is larger than the subsample size; (iii)

when K is small, the performance of the DSQR estimator is better than that

of LEQR.

(2) In terms of computation time in Table 4, we note that for any given

25

number of machines K and quantile level τ , all estimators are much faster

to compute than the Cen, as expected. In particular, our proposed estima-

tor (DSQR) is the fastest one among the estimators. It takes a long time

to calculate the one-shot estimator (Avg) on a single machine, but its com-

puting time under a distributed system should be divided by K, which is

approximately 0.03, so it runs much fast.

Table 4: The means of computation times (in seconds) under different K and τ for Simu-

lation example 2.

τ Method\K 20 40 60 80 100 200 300 400 500 600 700 800

0.3 Cen 3 9 17 26 36 106 197 314 519 698 915 1177

Avg 0.6 1.2 1.8 2.4 2.9 5.8 8.7 11.6 14.3 17.2 20.0 22.9

LEQR 0.3 0.6 0.9 1.2 1.4 3.7 5.4 7.2 8.9 10.6 12.3 14.1

DSQR 0.1 0.2 0.3 0.4 0.5 0.9 1.3 1.8 2.1 2.5 3.0 3.4

0.5 Cen 4 9 18 26 34 98 192 314 463 625 823 1009

Avg 0.7 1.2 1.8 2.4 2.9 5.8 9.3 12.3 14.8 17.4 20.2 23.3

LEQR 0.4 0.6 0.9 1.2 1.3 3.6 6.0 7.9 9.2 10.6 12.4 14.3

DSQR 0.1 0.2 0.2 0.3 0.4 0.8 1.3 1.7 1.9 2.2 2.6 3.0

0.7 Cen 3 9 17 25 35 109 210 295 416 614 825 1035

Avg 0.6 1.2 1.8 2.3 2.8 5.6 8.4 11.2 14.1 16.9 19.8 22.7

LEQR 0.3 0.6 0.9 1.1 1.3 3.5 5.3 7.1 8.8 10.6 12.3 14.1

DSQR 0.1 0.2 0.3 0.3 0.4 0.8 1.1 1.5 1.9 2.3 2.6 3.0

5.3. Simulation example 3

In this section, we study the performances of the distributed penalized

smoothing QR estimator (DPSQR) method proposed in Section 4. Further-

more, we include the following five competitors in our comparison:

26

0 200 400 600 800

0.
05

0.
10

0.
15

0.
20

0.
25

K

M
S

E

Cen
Avg
LEQR
DSQR

20 60 100 200 300 400 500 600 700 800

(a) τ = 0.3

0 200 400 600 800

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

K

M
S

E

Cen
Avg
LEQR
DSQR

20 60 100 200 300 400 500 600 700 800

(b) τ = 0.5

0 200 400 600 800

0.
1

0.
2

0.
3

0.
4

0.
5

K

M
S

E

Cen
Avg
LEQR
DSQR

20 60 100 200 300 400 500 600 700 800

(c) τ = 0.7

Figure 1: The means of MSEs versus the number of machines K under different quantiles

τ for Simulation example 2.

27

(1) the central estimator (Cen), which computes the penalized quantile

regression based on all data by the coordinate descent algorithm (Pietrosanu

et al., 2020);

(2) the subdata estimator (Sub) of our proposed method, which computes

(4.1) using only data on the first machine;

(3) the averaging estimator (Avg) of our proposed method, which com-

putes (4.1) on each local machine and combines the local estimators by taking

the average;

(4) the communication-efficient estimator (CE); see Wang and Lian (2020);

(5) the robust estimator with LASSO (REL); see Chen et al. (2020).

We conduct a simulation study with n = 106 and the data are generated

from the following linear model:

Yi = X⊤
i β0 + {εi − F−1

εi
(τ)}, i = 1, . . . , n,

where Xi = (1, Xi1, . . . , Xip)
⊤ is a (p + 1)-dimensional covariate vector and

(Xi1, . . . , Xip) is drawn from a multivariate uniform distribution on the [0, 1]p

with covariance matrix Σij = 0.5i−j for 1 ≤ i, j ≤ p with p = 100. The true

value of the parameter is β0 = (1, 1, 2, 3, 0, . . . , 0). The errors εi are generated

independently from one of the following two distributions:

(i) Normal errors: εi ∼ N(0, 1);

(ii) Heteroscedastic errors: εi = 0.5(1 +X2
i1)ξi and ξi ∼ t(3).

The following five numbers of machines are considered: K = 100, 200, 500,

800, 1000, and each subset contains equal observations (n/K). The tuning

parameter λn is selected by the cross-validation method, which can be ob-

tained by using package cv.hqreg in R. To evaluate the performance of six

28

methods, we calculate the MSE in Simulation example 1, the average pro-

portion of nonzero coefficients correctly estimated to be nonzero (denoted as

C), and the average proportion of zero coefficients incorrectly estimated to be

nonzero (denoted as IC). Note that C = 1 and IC = 0 imply perfect recov-

ery. We further study the computational efficiency of our proposed estimator

by the computation time (in seconds). Simulation results for τ = 0.1, 0.5

and 0.9 are presented in Tables 5-10, respectively, based on 100 simulation

replications.

From Tables 5-10, the following conclusions can be drawn:

(1) In terms of MSEs in Tables 5 and 8, we note that (i) all the estimators

are close to the true value because the results of MSEs are very small; (ii) for

any given number of machines K, quantile level τ and error terms, the MSEs

of subdata estimator (Sub) are the largest one as expected, since it only uses

the data on one machine. It can be improved by the averaged estimator

(Avg). Furthermore, the proposed estimator (DPSQR) can further reduce

the MSEs of Sub; (iii) the performances of the DPSQR estimator are close

to Cen and better than other methods under different quantiles and errors.

(2) In terms of ICs in Tables 6 and 9, the performance of the all data

estimator (Cen) is very good, with IC = 0 under different quantiles and

errors. Moreover, for any given number of machines K, quantile level τ and

error terms, the performance of our proposed estimator (DPSQR) is better

than other methods.

(3) The six methods can select all true predictors in all settings and thus

we do not report C in the tables.

(4) In terms of computation time in Tables 7 and 10, we note that (i)

29

Table 5: The means and standard deviations (in parentheses) of MSEs under different K

and τ for Simulation example 3. Noises are generated from Normal errors.

τ K Cen Sub Avg CE REL DPSQR

0.1 100 0.036 (0.006) 0.183 (0.045) 0.143 (0.005) 0.201 (0.049) 0.095 (0.054) 0.042 (0.027)

200 0.036 (0.006) 0.259 (0.071) 0.146 (0.006) 0.241 (0.068) 0.188 (0.065) 0.044 (0.033)

500 0.036 (0.006) 0.582 (0.124) 0.160 (0.008) 0.498 (0.121) 0.305 (0.105) 0.102 (0.096)

800 0.036 (0.006) 0.845 (0.135) 0.178 (0.009) 0.691 (0.151) 0.310 (0.125) 0.094 (0.092)

1000 0.036 (0.006) 1.024 (0.167) 0.190 (0.010) 0.790 (0.190) 0.313 (0.151) 0.062 (0.065)

0.5 100 0.033 (0.005) 0.188 (0.044) 0.176 (0.004) 0.313 (0.019) 0.113 (0.007) 0.100 (0.043)

200 0.033 (0.005) 0.202 (0.064) 0.177 (0.004) 0.187 (0.066) 0.163 (0.061) 0.070 (0.055)

500 0.033 (0.005) 0.349 (0.091) 0.178 (0.005) 0.272 (0.089) 0.213 (0.073) 0.053 (0.054)

800 0.033 (0.005) 0.520 (0.121) 0.181 (0.005) 0.391 (0.148) 0.246 (0.101) 0.057 (0.067)

1000 0.033 (0.005) 0.633 (0.139) 0.183 (0.006) 0.455 (0.138) 0.249 (0.108) 0.047 (0.060)

0.9 100 0.039 (0.007) 0.209 (0.062) 0.167 (0.006) 0.212 (0.039) 0.114 (0.079) 0.066 (0.054)

200 0.039 (0.007) 0.285 (0.077) 0.166 (0.006) 0.263 (0.072) 0.214 (0.071) 0.057 (0.053)

500 0.039 (0.007) 0.568 (0.118) 0.160 (0.007) 0.486 (0.113) 0.287 (0.105) 0.074 (0.076)

800 0.039 (0.007) 0.841 (0.140) 0.156 (0.008) 0.697 (0.136) 0.309 (0.127) 0.085 (0.091)

1000 0.039 (0.007) 1.003 (0.154) 0.154 (0.007) 0.790 (0.146) 0.289 (0.127) 0.071 (0.097)

for any given number of machines K, quantile level τ and error terms, the

computation time of Cen is the longest one, as expected. Moreover, other

estimators are much faster to compute than Cen; (ii) the computation time

of Sub is the shortest, as expected; (iii) our proposed estimator (DPSQR)

is slower to compute than Avg for large K because the number of iterations

(DPSQR) increases with increasing K; (iv) the CE is faster than our proposed

estimator (DPSQR) since it only involves one round of aggregation; (v) our

proposed estimator (DPSQR) is faster than REL.

30

Table 6: The means and standard deviations (in parentheses) of ICs under different K

and τ for Simulation example 3. Noises are generated from Normal errors.

τ K Cen Sub Avg CE REL DPSQR

0.1 100 0.000 (0.000) 0.012 (0.011) 0.034 (0.016) 0.046 (0.063) 0.006 (0.013) 0.007 (0.017)

200 0.000 (0.000) 0.054 (0.025) 0.180 (0.037) 0.385 (0.098) 0.145 (0.086) 0.021 (0.047)

500 0.000 (0.000) 0.142 (0.037) 0.325 (0.043) 0.338 (0.109) 0.314 (0.169) 0.136 (0.205)

800 0.000 (0.000) 0.191 (0.040) 0.362 (0.045) 0.374 (0.089) 0.326 (0.188) 0.148 (0.221)

1000 0.000 (0.000) 0.209 (0.039) 0.374 (0.047) 0.390 (0.082) 0.327 (0.196) 0.112 (0.188)

0.5 100 0.000 (0.000) 0.010 (0.008) 0.009 (0.004) 0.000 (0.000) 0.000 (0.000) 0.008 (0.005)

200 0.000 (0.000) 0.013 (0.013) 0.015 (0.007) 0.029 (0.036) 0.036 (0.043) 0.013 (0.019)

500 0.000 (0.000) 0.068 (0.031) 0.156 (0.032) 0.194 (0.118) 0.170 (0.112) 0.062 (0.093)

800 0.000 (0.000) 0.107 (0.036) 0.237 (0.038) 0.282 (0.133) 0.252 (0.179) 0.103 (0.155)

1000 0.000 (0.000) 0.130 (0.039) 0.265 (0.040) 0.335 (0.128) 0.265 (0.205) 0.095 (0.145)

0.9 100 0.000 (0.000) 0.013 (0.011) 0.035 (0.015) 0.001 (0.003) 0.004 (0.012) 0.005 (0.007)

200 0.000 (0.000) 0.051 (0.025) 0.182 (0.038) 0.054 (0.028) 0.124 (0.076) 0.019 (0.040)

500 0.000 (0.000) 0.140 (0.035) 0.327 (0.039) 0.252 (0.085) 0.300 (0.148) 0.094 (0.167)

800 0.000 (0.000) 0.181 (0.038) 0.360 (0.049) 0.363 (0.091) 0.358 (0.184) 0.142 (0.224)

1000 0.000 (0.000) 0.207 (0.031) 0.371 (0.047) 0.409 (0.092) 0.381 (0.201) 0.143 (0.229)

31

Table 7: The means of computation times (in seconds) under different K and τ for Simu-

lation example 3. Noises are generated from Normal errors.

τ K Cen Sub Avg CE REL DPSQR

0.1 100 829 0.18 19.7 2.1 19.6 4.6

200 829 0.14 6.5 1.3 17.3 5.4

500 829 0.04 7.1 1.1 25.0 7.9

800 829 0.01 8.4 1.1 33.4 11.7

1000 829 0.01 10.0 1.0 41.1 13.3

0.5 100 476 0.13 16.3 2.1 18.8 4.3

200 476 0.11 6.1 1.1 16.9 5.0

500 476 0.02 5.9 1.0 24.5 7.7

800 476 0.01 6.4 1.0 32.9 11.2

1000 476 0.01 7.0 1.0 40.7 13.2

0.9 100 780 0.17 16.3 2.1 18.9 4.1

200 780 0.13 6.2 1.3 17.1 4.7

500 780 0.05 6.7 1.0 24.6 6.9

800 780 0.01 8.2 1.0 32.9 10.5

1000 780 0.01 9.8 0.9 40.7 12.3

32

Table 8: The means and standard deviations (in parentheses) of MSEs under different K

and τ for Simulation example 3. Noises are generated from Heteroscedastic errors.

τ K Cen Sub Avg CE REL DPSQR

0.1 100 0.048 (0.011) 0.197 (0.062) 0.136 (0.006) 0.214 (0.067) 0.112 (0.061) 0.058 (0.044)

200 0.048 (0.011) 0.297 (0.076) 0.137 (0.006) 0.276 (0.070) 0.206 (0.069) 0.066 (0.050)

500 0.048 (0.011) 0.596 (0.122) 0.139 (0.007) 0.518 (0.112) 0.274 (0.104) 0.087 (0.079)

800 0.048 (0.011) 0.886 (0.160) 0.140 (0.007) 0.746 (0.159) 0.311 (0.117) 0.097 (0.092)

1000 0.048 (0.011) 1.048 (0.189) 0.142 (0.008) 0.874 (0.187) 0.314 (0.151) 0.074 (0.091)

0.5 100 0.016 (0.004) 0.144 (0.032) 0.128 (0.003) 0.247 (0.019) 0.127 (0.004) 0.084 (0.034)

200 0.016 (0.004) 0.154 (0.038) 0.128 (0.003) 0.132 (0.042) 0.131 (0.036) 0.055 (0.041)

500 0.016 (0.004) 0.224 (0.064) 0.129 (0.004) 0.161 (0.061) 0.149 (0.052) 0.037 (0.038)

800 0.016 (0.004) 0.327 (0.074) 0.131 (0.004) 0.209 (0.069) 0.164 (0.060) 0.025 (0.028)

1000 0.016 (0.004) 0.385 (0.074) 0.132 (0.004) 0.249 (0.075) 0.166 (0.063) 0.018 (0.019)

0.9 100 0.045 (0.010) 0.231 (0.060) 0.199 (0.007) 0.228 (0.040) 0.132 (0.079) 0.077 (0.051)

200 0.045 (0.010) 0.316 (0.082) 0.200 (0.008) 0.290 (0.074) 0.216 (0.078) 0.067 (0.050)

500 0.045 (0.010) 0.642 (0.131) 0.209 (0.009) 0.558 (0.124) 0.304 (0.110) 0.097 (0.083)

800 0.045 (0.010) 0.965 (0.193) 0.225 (0.009) 0.825 (0.205) 0.334 (0.151) 0.115 (0.137)

1000 0.045 (0.010) 1.171 (0.214) 0.236 (0.010) 0.976 (0.230) 0.356 (0.166) 0.094 (0.104)

33

Table 9: The means and standard deviations (in parentheses) of ICs under different K

and τ for Simulation example 3. Noises are generated from Heteroscedastic errors.

τ K Cen Sub Avg CE REL DPSQR

0.1 100 0.000 (0.000) 0.016 (0.014) 0.042 (0.017) 0.043 (0.072) 0.013 (0.027) 0.012 (0.032)

200 0.000 (0.000) 0.060 (0.027) 0.205 (0.038) 0.420 (0.102) 0.218 (0.120) 0.044 (0.087)

500 0.000 (0.000) 0.145 (0.036) 0.336 (0.040) 0.361 (0.096) 0.335 (0.147) 0.122 (0.183)

800 0.000 (0.000) 0.190 (0.040) 0.375 (0.038) 0.370 (0.091) 0.349 (0.181) 0.153 (0.217)

1000 0.000 (0.000) 0.208 (0.040) 0.386 (0.040) 0.371 (0.095) 0.332 (0.199) 0.110 (0.203)

0.5 100 0.000 (0.000) 0.001 (0.001) 0.001 (0.002) 0.000 (0.000) 0.000 (0.000) 0.010 (0.005)

200 0.000 (0.000) 0.008 (0.008) 0.011 (0.003) 0.025 (0.029) 0.015 (0.012) 0.010 (0.009)

500 0.000 (0.000) 0.057 (0.028) 0.070 (0.022) 0.171 (0.095) 0.105 (0.074) 0.029 (0.064)

800 0.000 (0.000) 0.098 (0.029) 0.146 (0.030) 0.308 (0.097) 0.173 (0.106) 0.054 (0.100)

1000 0.000 (0.000) 0.120 (0.032) 0.181 (0.032) 0.340 (0.098) 0.204 (0.131) 0.041 (0.062)

0.9 100 0.000 (0.000) 0.018 (0.014) 0.058 (0.023) 0.002 (0.006) 0.006 (0.013) 0.006 (0.010)

200 0.000 (0.000) 0.061 (0.025) 0.228 (0.037) 0.057 (0.025) 0.145 (0.071) 0.018 (0.043)

500 0.000 (0.000) 0.153 (0.036) 0.346 (0.044) 0.245 (0.076) 0.305 (0.142) 0.101 (0.171)

800 0.000 (0.000) 0.195 (0.044) 0.369 (0.043) 0.351 (0.088) 0.326 (0.181) 0.129 (0.220)

1000 0.000 (0.000) 0.219 (0.045) 0.386 (0.038) 0.398 (0.094) 0.333 (0.188) 0.122 (0.219)

34

Table 10: The means of computation times (in seconds) under different K and τ for

Simulation example 3. Noises are generated from Heteroscedastic errors.

τ K Cen Sub Avg CE REL DPSQR

0.1 100 1305 0.16 20.1 2.9 19.6 4.3

200 1305 0.13 6.4 1.3 17.3 4.9

500 1305 0.07 7.5 1.1 24.7 7.3

800 1305 0.02 8.7 1.0 33.0 10.8

1000 1305 0.01 10.2 0.9 40.6 12.4

0.5 100 486 0.16 15.0 2.1 18.7 4.3

200 486 0.09 6.0 1.1 16.9 5.1

500 486 0.05 5.9 1.0 24.5 7.5

800 486 0.02 6.1 1.0 32.8 11.0

1000 486 0.01 6.6 0.9 40.4 12.7

0.9 100 1277 0.15 19.6 3.6 18.7 4.2

200 1277 0.14 6.2 1.2 16.8 4.6

500 1277 0.07 7.3 1.0 24.4 6.7

800 1277 0.04 8.6 1.0 32.4 9.8

1000 1277 0.02 10.2 0.8 40.0 11.3

35

Table 11: Covariates and their descriptions for real data example 1.

Name Description

SO2 SO2 concentration (ug/m3)

NO2 NO2 concentration (ug/m3)

CO CO concentration (ug/m3)

TEMP temperature (degrees Celsius)

PRES pressure (hPa)

DEWP dew point temperature (degrees Celsius)

WSPM wind speed (m/s)

5.4. Real data example 1: Beijing multi-site air-quality data set

We apply the proposed DSQR method in Section 3 to the analysis of Bei-

jing multi-site air-quality dataset. The dataset includes 420768 hourly air

pollutant data points from 12 nationally-controlled air-quality monitoring

sites. The air-quality data are from the Beijing Municipal Environmental

Monitoring Center. The meteorological data at each air-quality site were

matched with the nearest weather station from the China Meteorological

Administration. The time period is from March 1st, 2013, to February 28th,

2017. The dataset is obtained from online site: https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-

Site+Air-Quality+Data. More details can be found in the relevant paper by

Chen et al. (2020).

In this study, we can use a linear model (1.1) to explore the relationship

between the PM2.5 concentration (ug/m3) and seven variables in Table 11.

Because the data are from 12 nationally-controlled air-quality monitoring

sites, we consider the number of blocks K = 12. The initial estimator in

our method is based on the first site (Aotizhongxin site). Figure 2 depicts

the changes in estimated coefficients for the Beijing multi-site air-quality

36

data using our proposed DSQR method with quantiles τ = 0.1, 0.3, 0.5, 0.7

and 0.9. From Figure 2, it is easy to see that the estimated coefficients of

SO2, NO2, DEWP and WSPM increase with quantile τ . Furthermore, we

evaluate the performance of the proposed DSQR estimator compared with IP,

ADMM, Conquer, AVQR, LEQR and a two-step procedure (TS) proposed

by Volgushev et al. (2019), based on the mean absolute fitting error (MAFE):

MAFE =
1

n

n∑

i=1

|Yi − Ŷi|,

where n is the total sample size 420768, Yi is the value of PM2.5, and Ŷi is the

fitted value of Yi at quantile 0.5. The results are present in Table 12. We also

calculate the MAFE of the least squares method by full data, which is equal

to 30.391. In terms of the MAFE, we can find that quantile regression is

better than the least square method for this example. The results of all data

analysis by IP, ADMM, and Conquer are the same. Our proposed method is

close to all data analysis, and is better than AVQR, TS and LEQR. Moreover,

to illustrate the computational advantage of the proposed DSQR method, we

also list the running times for quantiles τ = 0.1, 0.3, 0.5, 0.7 and 0.9 together

by different methods in Table 12. The results show that the DSQR costs less

time than the other six methods. To summarize, our algorithm can handle

QR with massive data problems easily, with its running time competitive.

5.5. Real data example 2: Year Prediction MSD data set

As an illustration, we now apply the proposed DPSQR methodology in

Section 4 to the Year Prediction MSD dataset. The dataset is collected from

the public database of the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Y

37

Table 12: The computation times (in seconds) for all quantiles τ = 0.1, 0.3, 0.5, 0.7, 0.9

and MAFE with τ = 0.5 of the IP, ADMM, Conquer, AVQR, TS, LEQR and DSQR

estimators for real data example 1.

IP ADMM Conquer AVQR TS LEQR DSQR

t 10.3 31.0 7.7 44.7 44.8 5.33 4.0

MAFE 29.233 29.233 29.233 29.298 29.299 29.258 29.244

0.
3

0.
5

0.
7

0.
9

τ

S
O

2

0.1 0.3 0.5 0.7 0.9

0.
2

0.
3

0.
4

0.
5

0.
6

τ

N
O

2

0.1 0.3 0.5 0.7 0.9

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

τ

C
O

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

τ

T
E

M
P

0.1 0.3 0.5 0.7 0.9

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

τ

P
R

E
S

0.1 0.3 0.5 0.7 0.9

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

τ

D
E

W
P

0.1 0.3 0.5 0.7 0.9

1.
5

2.
5

3.
5

4.
5

τ

W
S

P
M

0.1 0.3 0.5 0.7 0.9

Figure 2: The estimated coefficients of DSQR under different quantiles τ for real data

example 1.

38

The dataset is a freely-available collection of audio features for contempo-

rary popular music tracks ranging from 1922 to 2011. Approximately 515345

observations were recorded with 91 variables: the year of a song, 12 average

timbre and 78 timbre covariance variables. The problem of research is to

predict the release year of songs from the audio features.

In this study, a linear model (1.1) is used to fit the data, where the year

of a song is the dependent variable (Y) and 12 average timbre and 78 timbre

covariance variables are covariate variables. To evaluate the performance of

our proposed DPSQRmethod, we first calculate the mean absolute prediction

error (MAPE) of the predictions under quantile τ = 0.5. The first 500000

data points are used for the estimation, and the remaining 15345 data points

are used for the prediction. Therefore,

MAPE =
1

ñ

ñ∑

i=1

∣∣∣Yi − Ŷi

∣∣∣ ,

where Ŷi is the fitted value of Yi and ñ = 15345. The results are presented

in Table 13, and it is easy to show that the performances of the all data

estimator (Cen) are the best of all methods, as expected. The MAPEs of

other estimators increase with K. Moreover, the MAPEs of the proposed

estimator (DPSQR) are smaller than those of Sub, CE and REL.

Furthermore, to illustrate the computational advantage of the proposed

DSPQR method, we also list the running time of our method under different

K and quantiles τ in Table 14. The results show that DSPQR costs much less

time than Cen, Avg and REL, and is close to Sub and CE. In addition, we

study the number of variables selected by the DPSQR method. The results

are presented in Table 15, which shows that LASSO procedures a small model

39

Table 13: The MAPE of the Cen, Sub, Avg, CE, REL, DPSQR estimators with τ = 0.5

under different K for real data example 2.

K Cen Sub Avg CE REL DPSQR

50 6.694 6.805 6.738 6.805 6.802 6.801

100 6.694 6.868 6.737 6.869 6.866 6.856

200 6.694 7.046 6.743 7.043 7.028 7.024

300 6.694 7.154 6.749 7.152 7.125 7.118

because the numbers of selected variables under different K and quantiles

level τ are all smaller than the case with p = 90 variables. Moreover, for

any given K, the number of selected variables decreases with quantile level

τ . In summary, again, our algorithm can handle QR with massive and high-

dimensional data problems easily, with a competitive running time.

6. Discussion

In this article, we considered a communication-efficient QR approach for

distributed high-dimensional linear model, where the size n of the data is too

large to be processed simultaneously, and the dimension p of covariates is

allowed to be much larger than n. We proposed using QR to extract features

of the conditional distribution of the response while avoiding tail conditions

and taking heteroscedasticity into account. Under appropriate conditions,

the established rate of the estimator is the same as the rate of the standard

ℓ1-regularized QR estimator using all data. One key insight from this work

is that a nonsmooth QR loss can be transformed into a convex quadratic

loss function, which greatly facilitates computation in a distributed setting.

We further provide a communication efficient distributed algorithm, which

40

Table 14: The computation times (in seconds) of the Cen, Sub, Avg, CE, REL, DPSQR

estimators under different K and quantiles τ for real data example 2.

τ K Cen Sub Avg CE REL DPSQR

0.1 50 546 0.37 16 0.77 4.0 1.3

100 546 0.14 17 0.50 3.5 0.9

200 546 0.15 21 0.51 3.4 0.8

300 546 0.13 34 0.51 3.5 1.0

0.3 50 484 0.48 22 0.99 5.6 1.3

100 484 0.22 19 0.59 3.6 1.4

200 484 0.14 28 0.63 3.7 0.9

300 484 0.12 32 0.48 3.6 1.6

0.5 50 402 0.54 20 1.10 4.7 1.6

100 402 0.26 21 0.91 4.1 1.5

200 402 0.13 52 0.72 3.8 1.3

300 402 0.19 47 0.66 4.0 1.1

0.7 50 433 0.41 20 0.83 4.2 1.4

100 433 0.20 26 0.56 3.7 1.1

200 433 3.24 102 3.59 6.7 4.1

300 433 0.11 234 0.59 3.6 1.0

0.9 50 489 0.31 15 0.81 4.0 1.2

100 489 0.14 17 0.54 3.6 1.0

200 489 0.07 72 0.42 3.4 1.0

300 489 1.96 156 2.39 5.4 2.9

41

Table 15: The number of selected variables by DPSQR method under different K and

quantiles τ for real data example 2.

K τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

50 50 35 34 24 14

100 42 36 35 29 22

200 58 37 30 23 17

300 53 41 43 38 16

runs iteratively and only communicates p-dimensional gradient information

at each iteration (instead of the p×pmatrix information). Compared with the

existing methods, our proposed method can deal with regularized quantile

regression without additional conditions: limit the number of machines or

the homogeneity of error terms.

To facilitate future research, we will discuss several interesting topics.

First, the selections of the regularization parameter λn and bandwidths h

and h1, and then, the design of corresponding distributed algorithms. Second,

Zhao et al. (2020) studied the inference result based on averaging de-biased

QR estimators. As we mentioned in the Introduction, this approach might

suffer from heavy computational cost. It would be interesting to develop

computationally efficient inference approaches. Finally, one could extend

our proposed method to quantile instrumental variable models (Kaplan and

Sun, 2017).

Acknowledgments

The authors thank editors and referees for their constructive comments

and variable suggestions which have greatly improved the article. This re-

42

search is supported by the National Natural Science Foundation of China

(Series number: 11801069).

Appendix A. Proof of main results

Lemma 1. Suppose the conditions in Theorem 3.1 hold. We have

∥∥∥S(2)
h (β̂0)−D

∥∥∥ = Op

(√
p logn

nh
+ an + h

)
.

Proof. By the proof of Lemma 3 in Cai et al. (2010), we have

∥∥∥S(2)
h (β̂0)−D

∥∥∥ ≤ 5 sup
j≤C1

∣∣∣ν⊤
j

{
S
(2)
h (β̂0)−D

}
νj

∣∣∣ , (A.1)

where ν1, . . . , νC1
are some non-random vectors with ‖νj‖2 = 1 and C1 ≤ 5p.

For α ∈ Rp, denote

S
(2)
j (α) = n−1

n∑

i=1

(
ν⊤
j Xi

)2
Kh(−ei(α)).

Therefore, when ‖β̂0 − β0‖2 ≤ an,

sup
j≤C1

∣∣∣ν⊤
j

{
S
(2)
h (β̂0)−D

}
νj

∣∣∣ ≤ sup
j≤C1

sup
‖α−β0‖2≤an

∣∣∣S(2)
j (α)− ν⊤

j Dνj

∣∣∣ . (A.2)

Denote β0 = (β0,1, . . . , β0,p). For every j, we divide the interval [β0,j −
an, β0,j + an] into nC2 small subintervals and each has length 2an/n

C2 , where

C2 is a large positive number. Therefore, there exists a set of points in Rp,

{αd, 1 ≤ d ≤ nC2p}, such that for any α in the ball ‖α− β0‖2 ≤ an, we have

‖α−αd‖2 ≤ 2
√
pan/n

C2 for some 1 ≤ j ≤ nC2p. Thus, for some large enough

constant C3, we have

|Kh(−ei(α))−Kh(−ei(αd))| ≤ C3h
−2
∣∣X⊤

i (α− αd)
∣∣ .

43

Therefore

sup
j

sup
‖α−β0‖2≤an

∣∣∣S(2)
j (α)− ν⊤

j Dνj

∣∣∣−sup
j

sup
d

∣∣∣S(2)
j (αd)− ν⊤

j Dνj

∣∣∣ ≤
C3an

√
p

nC2+1h2

n∑

i=1

‖Xi‖32.

Since maxi,j E|Xi,j|3 < ∞, by letting C2 large enough, we have for any δ > 0,

sup
j

sup
‖α−β0‖2≤an

∣∣∣S(2)
j (α)− ν⊤

j Dνj

∣∣∣− sup
j

sup
d

∣∣∣S(2)
j (αd)− ν⊤

j Dνj

∣∣∣ = Op(n
−δ).

(A.3)

By the exponential inequality (Cai and Liu, 2011), for some constant C4, we

have

sup
j

sup
d

P

(∣∣∣S(2)
j (αd)−E{S(2)

j (αd)}
∣∣∣ ≥ C4

√
p log n

nh

)
= O(n−δp). (A.4)

Moreover, by the Lemma 1 in Fernandes et al. (2021), we can obtain

|E{S(2)
j (α)} − ν⊤

j Dνj | = O(an + h). (A.5)

Thus, by (A.1)-(A.5), we have

∥∥∥S(2)
h (β̂0)−D

∥∥∥ = Op

(√
p logn

nh
+ an + h

)
.

This completes the proof.

Proof of Theorem 3.1. Note that (2.3), we have S
(1)
h (β̂) = 0, thus

S
(1)
h (β̂0) = S

(1)
h (β̂0)− S

(1)
h (β̂) = S

(2)
h (β̃)(β̂0 − β̂),

where β̃ is between β̂0 and β̂. Then, by the form of (3.1), we can obtain

S
(2)
h1,1

(β̂0)(β̂1
H − β0) =S

(2)
h1,1

(β̂0)(β̂0 − β0)− S
(1)
h (β̂0)

=
{
S
(2)
h1,1

(β̂0)− S
(2)
h (β̃)

}
(β̂0 − β0) + S

(2)
h (β̃)(β̂ − β0).

44

Thus, we have

D(β̂1
H − β0) =

{
D − S

(2)
h1,1

(β̂0)
}
(β̂1

H − β0) + S
(2)
h1,1

(β̂0)(β̂1
H − β0)

=
{
D − S

(2)
h1,1

(β̂0)
}
(β̂1

H − β0) +
{
S
(2)
h1,1

(β̂0)−D +D − S
(2)
h (β̃)

}
(β̂0 − β0)

+
{
S
(2)
h (β̃)−D

}
(β̂ − β0) +D(β̂ − β0).

(A.6)

By the Theorem 3.1 in He et al. (2020) and the condition p = O(nc2), we

have

√
(β̂ − β0)⊤Σ(β̂ − β0) = Op

(√
p

n
+ h2

)
.

Thus, by the condition C3 and h . (p/n)1/4,

‖β̂ − β0‖2 ≤
√

Λ−1
min(Σ)(β̂ − β0)⊤Σ(β̂ − β0) = Op

(√
p

n

)
. (A.7)

Note that β̃ is between β̂0 and β̂, and an &
√
p/n, thus

‖β̃ − β0‖2 . ‖β̂0 − β0‖2.

Then, by the proof of Lemma 1, we can obtain

∥∥∥S(2)
h (β̃)−D

∥∥∥ = Op

(√
p logn

nh
+ an + h

)
. (A.8)

By a similar argument of Lemma 1,

∥∥∥S(2)
h1,1

(β̂0)−D
∥∥∥ = Op

(√
p logn1

n1h1
+ an + h1

)
. (A.9)

By the conditions C2 and C3, we have

‖D(β̂1
H − β0)‖2 ≥ l1‖Σ(β̂1

H − β0)‖2 ≥ l1Λmin(Σ)‖β̂1
H − β0‖2. (A.10)

45

Then, by Lemma 1 and (A.6)-(A.10), we can obtain

‖β̂1
H − β0‖2 ≤l−1

1 Λ−1
min(Σ)‖D(β̂1

H − β0)‖2
≤
∥∥∥D − S

(2)
h1,1

(β̂0)
∥∥∥
∥∥∥β̂1

H − β0

∥∥∥
2

+
{∥∥∥S(2)

h1,1
(β̂0)−D

∥∥∥+
∥∥∥D − S

(2)
h (β̃)

∥∥∥
}∥∥∥β̂0 − β0

∥∥∥
2

+
∥∥∥S(2)

h (β̃)−D
∥∥∥
∥∥∥β̂ − β0

∥∥∥
2
+
∥∥∥D(β̂ − β0)

∥∥∥
2

=Op

(√
p

n
+ an

√
p logn

nh
+ an

√
p log n1

n1h1
+ a2n + anh+ anh1

)
.

Proof of Theorem 3.2. Note that h1 is only used to calculate S
(2)
h1,1

(β̂0), thus

we can choose h1 = O((p logn1/n1)
1/3) to obtain

√
p logn1/n1h1 ≍ h1. Then,

(3.2) can be write as

‖β̂1
H − β0‖2 = Op

(√
p

n
+ an

{√
p log n

nh
+ h+

(
p logn1

n1

)1/3
})

. (A.11)

Under the condition (p/n)1/2 . h . (p/n)1/4 in Theorem 3.1, we have
√

p logn

nh
.

(
p log2 n

n

)1/4

. (A.12)

Then, when n1/ logn1 < n3/4(pn1/ log
6 n)1/4, (p logn1/n1)

1/3 is larger than

h and
√

p logn/(nh). Thus, by (A.11), we can obtain

‖β̂1
H − β0‖2 = Op

(√
p

n
+ an

(
p logn1

n1

)1/3
)
.

On the other hand, if n1/ logn1 ≥ n3/4(p/ log6 n)1/4, under condition

an ≍
√
p/n1 and (A.12), we have

an

{√
p logn

nh
+ h

}
.

√
p

n1

(
p log2 n

n

)1/4

.
(p
n

)5/8(log5 n

log2 n1

)1/4

.

46

Then, the second term in (A.11) is dominated by the first term. Therefore,

under conditions in Theorem 3.1, and an ≍
√

p/n1, h1 = O((p logn1/n1)
1/3),

we can obtain

‖β̂q
H − β0‖2 = Op

(√
p

n
+

√
p

n1

(
p log n1

n1

)q/3
)
.

Then it completes the proof of Theorem 3.2.

Proof of Theorem 3.3. Under conditions C1, C2 and C4, the number of

iterations q satisfies (3.4), and by the result of Theorem 3.3 in He et al.

(2020), we have

sup
x∈R,α∈Rp

∣∣∣∣∣P
{

n1/2α⊤(β̂q
H − β0)√

τ(1 − τ)α⊤D−1ΣD−1α
≤ x

}
− Φ(x)

∣∣∣∣∣ .
p+ log n√

nh
+ n1/2h2,

where Φ(·) denotes the standard normal distribution function. For obtaining

the best condition on p, we choose h = O((p/n)2/5), then

p+ logn√
nh

+ n1/2h2 = (p+ logn)4/5n−3/10 → 0.

Thus, p = o(n3/8). This completes the proof.

Lemma 2. Suppose the conditions in Theorem 4.1 hold. We have

∥∥∥S̄(1)
h,h1

(β0, β̂
0
L)
∥∥∥
∞

=Op



√

log(n ∨ p)

n
+ ãn

√
s log(n ∨ p)

nh
+ ãn

√
s log(n1 ∨ p)

n1h1

+ ã2n + ã2nh + ãnh1


 ,

where S̄
(1)
h,h1

(β0, β̂
0
L) = S

(1)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)(β̂

0
L − β0).

47

Proof. Note that

S̄
(1)
h,h1

(β0, β̂
0
L) =S

(1)
h (β0) +

{
S
(2)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)
}
(β̂0

L − β0)

−
{
S
(1)
h (β0)− S

(1)
h (β̂0

L)− S
(2)
h (β̂0

L)(β0 − β̂0
L)
}
.

(A.13)

We first consider ‖S(1)
h (β0)‖∞. Note that

∥∥∥S(1)
h (β0)

∥∥∥
∞

≤
∥∥∥S(1)

h (β0)−E
{
S
(1)
h (β0)

}∥∥∥
∞
+
∥∥∥E
{
S
(1)
h (β0)

}∥∥∥
∞
. (A.14)

By Bernstein’s inequality, we can obtain

∥∥∥S(1)
h (β0)−E

{
S
(1)
h (β0)

}∥∥∥
∞

= Op

(√
log(n ∨ p)

n

)
. (A.15)

Note that,

E
{
S
(1)
h (β0)

}
= E

[
1

n

n∑

i=1

Xi

{
K̃(−ei(β0)/h)− τ

}]

= E

[
1

n

n∑

i=1

XiE
{
K̃(−ei(β0)/h)− τ |Xi

}]
.

By conditions C1 and C2,

E
{
K̃(−ei(β0)/h)− τ |Xi

}

=

∫ +∞

−∞
K(u)

∫ −hu

0

{
f(X⊤

i β0 + t|X⊤
i)− f(X⊤

i β0|X⊤
i)
}
dtdu

≤
∫ +∞

−∞
K(u)

∫ −hu

0

∣∣f(X⊤
i β0 + t|X⊤

i)− f(X⊤
i β0|X⊤

i)
∣∣ dtdu

≤l3

∫ +∞

−∞
K(u)

∫ −hu

0

|t|dtdu =
1

2
l3h

2

∫ +∞

−∞
u2K(u)du = O(h2),

and by condition C4, we have

∥∥∥E
{
S
(1)
h (β0)

}∥∥∥
∞

. h2. (A.16)

48

Thus, by (A.14)-(A.16) and condition h . (logn/n)1/4, we have

∥∥∥S(1)
h (β0)

∥∥∥
∞

= Op

(√
log(n ∨ p)

n
+ h2

)
= Op

(√
log(n ∨ p)

n

)
. (A.17)

For the initial estimator, we have β̂0
L,T c = 0 with high probability, where

T c = {j ∈ {1, . . . , p} : β0,j = 0}. Due to the fact that β0,T c = 0, by

‖β̂0
L − β0‖2 = Op(ãn), and by Lemma1, we have

∥∥∥
{
S
(2)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)
}
(β̂0

L − β0)
∥∥∥
∞

≤
∥∥∥∥
{
S
(2)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)
}

T×T

∥∥∥∥ ·
∥∥∥(β̂0

L − β0)T

∥∥∥
2

=Op


ãn

√
s log(n ∨ p)

nh
+ ãn

√
s log(n1 ∨ p)

n1h1
+ ã2n + ãnh + ãnh1


 ,

(A.18)

Finally,

∥∥∥S(1)
h (β0)− S

(1)
h (β̂0

L)− S
(2)
h (β̂0

L)(β0 − β̂0
L)
∥∥∥
∞

≤
∥∥∥
{
S
(2)
h (β̂0

L)−D
}
(β̂0

L − β0)
∥∥∥
∞
+
∥∥∥S(1)

h (β0)− S
(1)
h (β̂0

L)−D(β0 − β̂0
L)
∥∥∥
∞
.

(A.19)

Similar to (A.18), we get

∥∥∥
{
S
(2)
h (β̂0

L)−D
}
(β̂0

L − β0)
∥∥∥
∞

= Op

(
ãn

√
s log(n ∨ p)

nh
+ ã2n + ãnh

)
.

(A.20)

Denote A = S
(1)
h (β0)− S

(1)
h (β̂0

L)−D(β0 − β̂0
L), thus

‖A‖∞ ≤ ‖EA‖∞ + ‖A− EA‖∞ .

49

By conditions C1 and C2,

EA = E

[
1

n

n∑

i=1

XiX
⊤
i

∫ +∞

−∞
K(u)

{
f(X⊤

i β̂
0
L − uh|X⊤

i)− f(X⊤
i β0|X⊤

i)
}
du

]
(β0 − β̂0

L)

. E

[
1

n

n∑

i=1

XiX
⊤
i

∫ +∞

−∞
K(u)

{
|X⊤

i (β0 − β̂0
L)|+ |uh|

}
du

]
(β0 − β̂0

L)

. E

[
1

n

n∑

i=1

XiX
⊤
i

{
|X⊤

i (β0 − β̂0
L)|+ h

}]
(β0 − β̂0

L).

Thus, we have ‖EA‖∞ = Op(ã
2
n + ãnh). By the Theorem A.3 in Spokoiny

(2013), we can obtain

‖A−EA‖∞ = Op

(
ãn

√
s log(n ∨ p)

nh

)
.

Then

∥∥∥S(1)
h (β0)− S

(1)
h (β̂0

l)−D(β0 − β̂0
l)
∥∥∥
∞

= Op

(
ãn

√
s log(n ∨ p)

nh
+ ã2n + ãnh

)
.

(A.21)

By (A.19)-(A.21), we have

∥∥∥S(1)
h (β0)− S

(1)
h (β̂0

L)− S
(2)
h (β̂0

L)(β0 − β̂0
L)
∥∥∥
∞

≤ Op

(
ãn

√
s log(n ∨ p)

nh
+ ã2n + ãnh

)
.

(A.22)

Finally, combing (A.13), (A.17), (A.18) and (A.22), we can obtain
∥∥∥S̄(1)

h,h1
(β0, β̂

0
L)
∥∥∥
∞

≤
∥∥∥S(1)

h (β0)
∥∥∥
∞
+
∥∥∥
{
S
(2)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)
}
(β̂0

L − β0)
∥∥∥
∞

−
∥∥∥S(1)

h (β0)− S
(1)
h (β̂0

L)− S
(2)
h (β̂0

L)(β0 − β̂0
L)
∥∥∥
∞

=Op




√

log n

n
+ ãn





√
s log(n ∨ p)

nh
+

√
s log(n1 ∨ p)

n1h1
+ ãn + ãnh+ h1







 .

This completes the proof.

50

Proof of Theorem 4.1. We first proof that

‖(β̂1
L − β0)T c‖1 ≤ 3‖(β̂1

L − β0)T‖1,

where T is the support of β0. By the definition of β̂1
L in (4.1), we have

S̄h,h1
(β̂1

L, β̂
0
L)− S̄h,h1

(β0, β̂
0
L) + λn‖β̂1

L‖1 − λn‖β0‖1 ≤ 0.

Therefore, we can obtain

S̄h,h1
(β̂1

L, β̂
0
L)− S̄h,h1

(β0, β̂
0
L)

≤λn

(
‖β0‖1 − ‖β̂1

L‖1
)
= λn

(
‖β0,T‖1 − ‖β̂1

L,T‖1 − ‖β̂1
L,T c‖1

)

≤λn‖(β̂1
L − β0)T‖1 − λn‖(β̂1

L − β0)T c‖1.

(A.23)

Note that

S̄h,h1
(β̂1

L, β̂
0
L)− S̄h,h1

(β0, β̂
0
L)− (β̂1

L − β0)
⊤S̄

(1)
h,h1

(β0, β̂
0
L)

=
1

2
(β̂1

L − β0)
⊤S

(2)
h,h1

(β̂0
L)(β̂

1
L − β0).

(A.24)

Take C̄ large enough such that λn ≥ 2‖S̄(1)
h,h1

(β0, β̂
0
L)‖∞ with probability

tending to one, and by the conditions K(u) ≥ 0 and , we have

S̄h,h1
(β̂1

L, β̂
0
L)− S̄h,h1

(β0, β̂
0
L)

=(β̂1
L − β0)

⊤S̄
(1)
h,h1

(β0) +
1

2
(β̂1

L − β0)
⊤S

(2)
h,h1

(β̂0
L)(β̂

1
L − β0)

≥(β̂1
L − β0)

⊤S̄
(1)
h,h1

(β0, β̂
0
L)

≥− ‖β̂1
L − β0‖1

∥∥∥S̄(1)
h,h1

(β0, β̂
0
L)
∥∥∥
∞

≥− 1

2
λn‖β̂1

L − β0‖1.

(A.25)

Thus, by (A.23) and (A.25), we can obtain

−1

2
λn‖β̂1

L − β0‖1 ≤ λn‖(β̂1
L − β0)T‖1 − λn‖(β̂1

L − β0)T c‖1.

51

After rearranging, we have

‖(β̂1
L − β0)T c‖1 ≤ 3‖(β̂1

L − β0)T‖1. (A.26)

Thus, by (A.26),

‖β̂1
L − β0‖1 ≤ 4‖(β̂1

L − β0)T‖1 ≤ 4
√
s‖(β̂1

L − β0)T‖2 ≤ 4
√
s‖β̂1

L − β0‖2.
(A.27)

By (A.23) and (A.24), we have

1

2
(β̂1

L − β0)
⊤S

(2)
h,h1

(β̂0
L)(β̂

1
L − β0)

=S̄h,h1
(β̂1

L, β̂
0
L)− S̄h,h1

(β0, β̂
0
L)− (β̂1

L − β0)
⊤S̄

(1)
h,h1

(β0)

≤λn

(
‖β0‖1 − ‖β̂1

L‖1
)
− (β̂1

L − β0)
⊤S̄

(1)
h,h1

(β0, β̂
0
L)

≤λn‖β̂1
L − β0‖1 + ‖β̂1

L − β0‖1
∥∥∥S̄(1)

h,h1
(β0)

∥∥∥
∞

≤3

2
λn‖β̂1

L − β0‖1.

(A.28)

Finally, by the condition C4, for any δ ∈ Rp and some constants C7 > 0, we

get

min
δ:|δ|1.

√
s‖δ‖2

δ⊤Σδ

‖δ‖22
≥ C7. (A.29)

Then, by Lemma 1, (A.27)-(A.29), we have

‖β̂1
L − β0‖22 ≤Λ−1

min(Σ)(β̂
1
L − β0)

⊤Σ(β̂1
L − β0)

≤l−1
1 Λ−1

min(Σ)(β̂
1
L − β0)

⊤D(β̂1
L − β0)

=l−1
1 Λ−1

min(Σ)(β̂
1
L − β0)

⊤
{
S
(2)
h,h1

(β̂0
L) +D− S

(2)
h,h1

(β̂0
L)
}
(β̂1

L − β0)

≤2l−1
1 Λ−1

min(Σ)(β̂
1
L − β0)

⊤S
(2)
h,h1

(β̂0
L)(β̂

1
L − β0)

≤3l−1
1 Λ−1

min(Σ)λn‖β̂1
L − β0‖1

≤12l−1
1 Λ−1

min(Σ)λn

√
s‖β̂1

L − β0‖2.

52

Thus, ‖β̂1
L − β0‖2 ≤ 12l−1

1 Λ−1
min(Σ)λn

√
s. Finally, by the Lemma 2, we can

proof the theorem.

Proof of Theorem 4.2. We can proved Theorem 4.2 directly from the proof

of Theorem 4.1.

Proof of Theorem 4.3. Theorem 4.3 (i) follows directly from the proof of The-

orem 4.1. Now we consider Theorem 4.3 (ii). Define β̃ to be the solution of

the following optimization problem:

β̃ = arg min
β,βTc=0

[
β⊤
{
S
(1)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)β̂

0
L

}
+

1

2
β⊤S

(2)
h1,1

(β̂0
L)β + λn‖β‖1

]
,

where βT c = 0 denotes the subset vector with the coordinates of β in T c =

{j ∈ {1, . . . , p} : β0,j = 0}. Then there exist sub-gradients Z̃ with |Z̃|∞ ≤ 1

such that

{
S
(1)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)β̂

0
L

}
T
+ β̃⊤

T

{
S
(2)
h1,1

(β̂0
L)
}
T×T

+ λnZ̃T = 0.

Then, we have

β̃T − β0,T =D−1
T×T

[
− λnZ̃T −

{
S
(2)
h1,1

(β̂0
L)−D

}
T×T

(β̃T − β0,T)

−
{
S
(2)
h1,1

(β̂0
L)
}

T×T
β0,T −

{
S
(1)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)β̂

0
L

}

T

]

=D−1
T×T

[
− λnZ̃T −

{
S
(2)
h1,1

(β̂0
L)−D

}
T×T

(β̃T − β0,T)

−
{
S
(1)
h (β̂0

L)− S
(2)
h1,1

(β̂0
L)(β̂

0
L − β0)

}

T

]
.

By Lemmas 1 and 2, for a sufficiently large constant C̃ and the choice of λn,

we can obtain

‖β̃T − β0,T‖∞ ≤C̃‖D−1
T×T‖∞

{√ log(n ∨ p)

n

+ ãn(

√
s log(n ∨ p)

nh
+

√
s log(n1 ∨ p)

n1h1

+ ãn + h+ h1)
}

53

Note that P (β̃ = β̂1
L) → 1. Then Theorem 4.3 (ii) follows from the above

and together with the lower bound condition on minj∈T |β0,j|.

Proof of Theorem 4.4. We can proved Theorem 4.4 directly from the proof

of Theorem 4.3.

References

Alex, N., Hasenfuss, A., Hammer, B., 2009. Patch clustering for massive data sets. Neu-

rocomputing 72, 1455–1469.

Barzilai, J., Borwein, J., 1988. Two-point step size gradient methods. IMA Journal of

Numerical Analysis 8, 141–148.

Belloni, A., Chernozhukov, V., 2011. L1-penalized quantile regression in high-dimensional

sparse models. The Annals of Statistics 39, 82–130.

Cai, T., Liu, W., 2011. Adaptive thresholding for sparse covariance matrix estimation.

Journal of the American Statistical Association 106, 672–684.

Cai, T., Zhang, C.-H., Zhou, H., 2010. Optimal rates of convergence for covariance matrix

estimation. The Annals of Statistics 38, 2118–2144.

Chen, L., Zhou, Y., 2020. Quantile regression in big data: A divide and conquer based

strategy. Computational Statistics & Data Analysis 144, 106892.

Chen, X., Lee, J., Li, H., Yang, Y., 2021. Distributed estimation for principal compo-

nent analysis: An enlarged eigenspace analysis. Journal of the American Statistical

Association, 1–31.

Chen, X., Liu, W., Mao, X., Yang, Z., 2020. Distributed high-dimensional regression under

a quantile loss function. Journal of Machine Learning Research 21, 1–43.

Chen, X., Liu, W., Zhang, Y., 2019. Quantile regression under memory constraint. The

Annals of Statistics 47, 3244–3273.

54

Fan, J., Han, F., Liu, H., 2014. Challenges of big data analysis. National Science Review

1, 293–314.

Fan, J., Li, R., 2011. Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American Statistical Association 94, 1348–1360.

Fernandes, M., Guerre, E., Horta, E., 2021. Smoothing quantile regressions. Journal of

Business & Economic Statistics 39, 338–357.

He, X., Pan, X., Tan, K. M., Zhou, W., 2020. Smoothed quantile regression with large

scale inference. arXiv: Statistics Theory.

He, X., Shao, Q.-M., 2000. On parameters of increasing dimensions. Journal of Multivariate

Analysis 73, 120–135.

He, Y., Li, H., Wang, S., Yao, X., 2021. Uncertainty analysis of wind power probability

density forecasting based on cubic spline interpolation and support vector quantile

regression. Neurocomputing 430, 121–137.

Horowitz, J., 1998. Bootstrap methods for median regression models. Econometrica 66,

1327–1352.

Jiang, H., 2018. Sparse estimation based on square root nonconvex optimization in high-

dimensional data. Neurocomputing 282, 122–135.

Jiang, R., Hu, X., Yu, K., Qian, W., 2018. Composite quantile regression for massive

datasets. Statistics 52, 980–1004.

Jordan, M., Lee, J., Yang, Y., 2019. Communication-efficient distributed statistical learn-

ing. Journal of the American Statistical Association 14, 668–681.

Kaplan, D., Sun, Y., 2017. Smoothed estimating equations for instrumental variables

quantile regression. Econometric Theory 33, 105–157.

Koenker, R., 2005. Quantile regression. Cambridge University Press, Cambridge.

55

Koenker, R., Bassett, G., 1978. Regression quantile. Econometrica 46, 33–50.

Lee, J., Liu, Q., Sun, Y., Taylor, J., 2017. Communication-efficient sparse regression: a

one-shot approach. Journal of Machine Learning Research 18, 1–30.

Lv, S.-G., Ma, T.-F., Liu, L., Feng, Y.-L., 2013. Fast learning rates for sparse quantile

regression problem. Neurocomputing 108, 13–22.

Pietrosanu, M., Gao, J., Kong, L., Jiang, B., Niu, D., 2020. Advanced algorithms for

penalized quantile and composite quantile regression. Computational Statistics, DOI:

10.1007/S00180–020–01010–1.

Portnoy, S., Koenker, R., 1997. The gaussian hare and the laplacian tortoise: computabil-

ity of squared-error versus absolute-error estimators. Statistical Science 12, 279–300.

Schmidt, M., 2010. Graphical model structure learning with ℓ1-regularization. PhD thesis,

University of British Columbia.

Solntsev, S., Nocedal, J., Byrd, R., 2015. An algorithm for quadratic ℓ1-regularized op-

timization with a flexible active-set strategy. Optimization Methods and Software 30,

1213–1237.

Spokoiny, V., 2013. Bernstein-von mises theorem for growing parameter dimension.

arXiv:1302.3430.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B 58, 267–288.

van de Geer, S., Bhlmann, P., Ritov, Y., Dezeure, R., 2014. On asymptotically optimal

confidence regions and tests for high-dimensional models. The Annals of Statistics 42,

1166–1202.

Volgushev, S., Chao, S.-K., Cheng, G., 2019. Distributed inference for quantile regression

processes. The Annals of Statistics 47, 1634–1662.

56

Wainwright, M., 2009. Sharp thresholds for high-dimensional and noisy sparsity recovery

using ℓ1-constrained quadratic programming (lasso). IEEE Transactions on Information

Theory 55, 2183–2202.

Wang, L., Lian, H., 2020. Communication-efficient estimation of high-dimensional quantile

regression. Analysis and Applications 18, 1057–1075.

Wang, Y., Wang, S., 2013. Estimating α-frontier technical efficiency with shape-restricted

kernel quantile regression. Neurocomputing 101, 243–251.

Xu, Q., Cai, C., Jiang, C., Sun, F., Huang, X., 2020. Block average quantile regression for

massive dataset. Statistical Papers 61, 141–165.

Yang, L., 1997. Solving sparse least squares problems on massively distributed memory

computers. International Conference on Advances in Parallel and Distributed Comput-

ing, 170–177.

Yu, D., Kong, L., Mizera, I., 2016. Partial functional linear quantile regression for neu-

roimaging data analysis. Neurocomputing 195, 74–87.

Zhang, C.-H., 2010. Nearly unbiased variable selection under minimax concave penalty.

The Annals of Statistics 38, 894–942.

Zhao, W., Zhang, F., Lian, H., 2020. Debiasing and distributed estimation for high-

dimensional quantile regression. IEEE Transactions on Neural Networks and Learning

Systems 31, 2569–2577.

57

