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Graphical Abstract

AMDFNet: Adaptive Multi-level Deformable Fusion Network for RGB-D Saliency Detection
Fei Li,Jiangbin Zheng, Yuan-fang Zhang,Nian Liu,Wenjing Jia
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Highlights

AMDFNet: Adaptive Multi-level Deformable Fusion Network for RGB-D Saliency Detection
Fei Li,Jiangbin Zheng, Yuan-fang Zhang,Nian Liu,Wenjing Jia

e We propose a selective cross-modality attention module that adaptively integrates the information from both modes to
reduce the fusion ambiguity caused by unreliable inputs and maximally retain the realistic details.

e The proposed cross-modality deformable module can extract additional cues from another branch to adaptively alter the
sampling locations and cover the irregular boundaries of the salient objects.

e The multi-level feature refinement mechanism is able to fuse cross-modality features in multiple scales and incredibly
aggregate those unique cues from small size features.
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ABSTRACT

Effective exploration of useful contextual information in multi-modal images is an essential task in
salient object detection. Nevertheless, the existing methods based on the early-fusion or the late-fusion
schemes cannot address this problem as they are unable to effectively resolve the distribution gap
and information loss. In this paper, we propose an adaptive multi-level deformable fusion network
(AMDENet) to exploit the cross-modality information. We use a cross-modality deformable convolution
module to dynamically adjust the boundaries of salient objects by exploring the extra input from another
modality. This enables incorporating the existing features and propagating more contexts so as to
strengthen the model’s ability to perceiving scenes. To accurately refine the predicted maps, a multi-
scaled feature refinement module is proposed to enhance the intermediate features with multi-level
prediction in the decoder part. Furthermore, we introduce a selective cross-modality attention module
in the fusion process to exploit the attention mechanism. This module captures dense long-range
cross-modality dependencies from a multi-modal hierarchical feature’s perspective. This strategy
enables the network to select more informative details and suppress the contamination caused by the
negative depth maps. Experimental results on eight benchmark datasets demonstrate the effectiveness

of the components in our proposed model, as well as the overall saliency model.

1. Introduction

In salient objection detection (SOD), the main objec-
tive is to extract the most predominant objects from a nat-
ural scene. It has been an essential function in computer
vision since SOD has many useful applications, including
image/video compression [18, 27], object segmentation and
recognition [68, 67, 44, 23], content-based image editing [52,
55], informative common object discovery [63, 64], and im-
age retrieval [47]. Many SOD methods are based on the as-
sumption that the inputs are RGB images [40, 54, 57, 53, 66]
or video sequences [56, 25].

With the advancement of the depth cameras such as Mi-
crosoft Kinect and time-of-flight sensors [20], the SOD based
on the RGB-D (‘D’ means the depth images) offers new op-
portunities, where the depth images provide complementary
cues that are not available in the RGB images. Such cues are
game-changers in challenging SOD scenarios, e.g., cluttered
background or salient objects that have similar appearance
with the background, as shown in Fig. (1). Compared with the
SOD using RGB images, the depth information, if available,
supplies geometric cues that are otherwise invisible in color
space. This significantly enhances the final predicted maps
and has motivated the extensive recent research activities on
RGB-D based salient object detection.

In the existing research, several studies [9, 10, 8] have
investigated designing hand-crafted features with domain-
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Figure 1: Several low-quality depth samples obtained from the
existing RGB-D SOD benchmarks. The first row shows the
RGB images and the second row their depth samples.)

specific knowledge, such as the tendency of humans to focus
on the center objects for saliency detection. However, using
hand-crafted features lacks generalization ability and hence
is not applicable to other scenes, mainly due to missing high-
level representations.

To address the generalization issue, relevant investiga-
tions have been proposed using convolution neural networks
(CNNp5s) to learn the representative features. Several studies
[2, 46] have also attempted to overcome the limitation caused
by missing high-level representations by incorporating the
depth information effectively.

Although in many SOD research works, the strategies for
cross-modality fusion have been investigated, the following
issues still exist. First of all, the main challenge for the exist-
ing SOD methods is the lack of sufficient high-quality depth
datasets for training the backbone networks and extracting
the critical features. Secondly, the need for large datasets is
due to the sophisticated architecture of the networks [2, 3]
with many parameters. These issues have undermined fea-
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AMDFNet: Adaptive Multi-level Deformable Fusion Network for RGB-D Saliency Detection

ture extraction and led to sub-optimal solutions. Moreover,
the existing RGB-D benchmarks are collected by different
laboratories who have used different metrics for choosing
and labeling the images. This results into some low-quality
depth images being included which contribute little or even
negatively to the training. These low-quality samples may
further affect the accuracy of the final saliency detection,
especially if the adopted method indiscriminately integrates
the RGB and depth information. The fusing strategy and
capturing sufficient cross-modality complementary informa-
tion also play critical roles in RGB-D SOD. The selective
fusion scheme is adopted in the fusing process to prevent the
contamination caused by unreliable depth information and
effectively integrate the multi-modal information. Therefore,
it is essential to address the negative impact of the low-quality
depth images and select reliable and accurate information in
the fusion process.

The existing works have explored different contributions
between the early- [41,21, 33, 46] and late-fusion [51]. Specif-
ically, the early-fusion schemes take both RGB and depth
data as inputs and process them in a unified mode. How-
ever, such a fusion strategy ignores the distribution gap and
different feature characters in both modalities. It is also not
easy for one model to fit both modalities. By comparison, the
late-fusion strategy means that the data of both modalities are
handled in two separate processing branches to produce the
corresponding saliency maps. Both maps are then designed
through a concentration operation. Nevertheless, the major
issue with this scheme is the inner supervision between both
modalities. The rich cross-modality cues are also compressed
and lost in the two separate branches.

Both of the fusion strategies mentioned above result in
the learning process being trapped in a local optimum, where
it becomes biased towards the RGB information. This is
due to the channel concatenation degrading the learning out-
comes, where the final prediction is dominated by the RGB
features without incorporating the contribution of the cross-
modality informative feature. To enhance the fusion pro-
cess of the depth maps, several works [2, 3, 4, 19] proposed
middle-fusion strategies to conduct intermediate independent
features by two-stream CNNs. Such a network is then used
to simultaneously extract independent hierarchical features
from the RGB and depth images. Both features are then inte-
grated to eliminate the distribution gap. This scheme further
introduces rich cross-modality features with well-designed
intermediate processing actions. Hence, the desired fusion
method can consider different properties in both modalities
and adaptively alter the contribution of both modalities in the
final prediction results.

To address the abovementioned issues, we revisit the
fusion process of cross-modality complementary and pro-
pose a novel adaptive multi-level deformable fusion network
(AMDEFNet) for the RGB-D SOD. Our approach comprises
of the adaptive adjustment of the salient objects’ boundaries
in both modalities. We further optimize the fusion process
of RGB and depth information based on a selective cross-
modality attention mechanism.

In our approach, instead of indiscriminately integrating
multi-modal information from RGB and depth maps, we de-
vise a selective cross-modality attention module (SCAM).
The SCAM captures the long-range dependencies from a
multi-level cross-modality perspective. The obtained atten-
tion associations, along with the existing local and multi-scale
features in the other modality, facilitate the fusion process
by highlighting the salient objects. Inspired by the Non-
local (NL) operation [59], the SCAM also supplies extra
complementary cues on more important contextual features
that should be emphasized in propagating the features. This
improves the accuracy of locating salient object boundaries.

To further enhance the independent hierarchical features
simultaneously from both views, we also introduce a novel
feature refinement scheme. Here, we first design a cross-
modality deformable convolution module (CDCM) based on
the standard deformable convolution operation [12]. This
module adjusts the boundaries of the salient objects in both
modes to prevent contamination caused by unreliable depth
maps. The CDCM also emphasizes the salient regions and
object boundaries. As shown in Fig. (1), several depth sam-
ples lost the details of salient objects because of the cluttered
background. This may result in low-quality features being
extracted by both feature extraction branches. The CDCM ex-
tracts accurate geometric boundaries of the salient objects us-
ing both modalities to regulate the negative samples’ training
by emphasizing the geometric boundaries. This significantly
reduces the negative impact of these samples. Specifically,
another modality feature provides offsets to adjust the filter
boundaries, hence resulting in the convolution block to em-
phasize the image content, with the nodes on the foreground
having support for covering the whole target object. In con-
trast, other nodes in the background are ignored to better
focus on the salient target.

Moreover, we employ a multi-level feature refinement
mechanism (MFRM) to improve the integration of different
levels of hierarchical features in the decoding stage. Different
modalities are not equally informative or beneficial to the
final segmented map. This is because some images or depth
information are affected by imperfect alignment or direct
concatenation. Besides, it is challenging to compensate the
details of modalities explicitly or implicitly within a single
resolution scale. To address this issue, we introduce the
MFRM to further improve the performance of the precision
maps from various feature levels in both modalities. In the
MFRM module, the depth features provide the learning offset
and the modulated scalar for the image features, whereas the
image features provide the corresponding coefficients for the
depth branch. By introducing the deformable convolution
operation, the network decoder block adaptively adjusts the
reference image and supporting information at the feature
level without warping and blurring, which are usually caused
by direct concatenation.

The main contributions of this work are summarized as
follows: 1) This paper proposes a selective cross-modality
attention module that adaptively integrates the information
from both modes, reducing the fusion ambiguity caused by
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unreliable inputs and maximally reserving realistic details. 2)
The proposed cross-modality deformable convolution mod-
ule can extract additional cues from another branch to adap-
tively alter the sampling locations and cover the irregular
boundaries of the salient objects. 3) The multi-level feature
refinement mechanism aims to fuse cross-modality features
in the multi-scale terms, incredibly aggregating some unique
cues from small size features.

2. Related Work

In this section, we review the salient object detection
models for RGB and RGB-D images with a focus on deep
learning based methods.

2.1. Saliency Detection on RGB-D Images

The conventional methods for RGB-D SOD predict high-
quality saliency maps via hand-crafted features based on im-
age characteristics such as contrast and shape. Niu et al. [35]
introduced the disparity contrast and domain knowledge into
stereoscopic photography for measuring the stereo saliency.
Several other SOD studies relying on hand-crafted features
were also extended for RGB-D SOD, e.g., based on contrast
[8, 11, 36], boundary prior [9, 29, 50], or compactness [10].
Since the above methods heavily rely on hand-crafted heuris-
tic features, they often have limited generalizability to more
complex scenarios.

Furthermore, in the existing methods, domain knowledge
priors induced by both 2D images and RGB-D cues have not
been exploited. This is often addressed by the CNN-based
methods. Such methods outperform the traditional methods
because of their enhanced representativeness. Most of the
recent advances in SOD [38, 31, 15] are based on CNNs.

The depth maps also supply extra details that are invisible
in RGB images. Emerging deep learning-based approaches
have also been adopted and become a mainstream approach
in RGB-D SOD. Qu et al. adopted an early fusion strategy
to handle hand-crafted RGB and depth features together as
inputs to the CNN. Besides, early fusion schemes in [15, 21,
33] formulated four-channel inputs, treating the depth map
as the 4/ channel of the corresponding RGB images as the
CNN inputs. Unlike the early fusion for an extra channel,
the middle fusion strategy is adopted in [2, 3, 4, 19] to fuse
intermediate depth and RGB features. Specifically, Chen
et al. [2] proposed a complementarity-aware fusion module
to obtain cross-modality and cross-level features. Besides,
Wang et al. [51] used a switch map to adaptively fuse the RGB
images with depth saliency maps. Chen et al. [6] introduced
the depth map enhancement module to improve the salient
object performance.

2.2. Self-Attention to Cross-Modality Attention
Vaswani et al. [48] proposed a self-attention network
for language learning. In their proposed network, they first
calculated the attention weight between the query and each
key in a set of key-value pairs. Then, they aggregated the
values through a weighted sum with the attention weights
as the final output. Motivated by various approaches, Wang

et al. [59] then proposed the NL model for learning self-
attention in computer vision. Nam et al. [34] also proposed a
dual attention model to learn multi-modal attention. Wan et
al. [49] extracted three-modality attention for a code retrieval
task.

In RGB-D SOD, standard self-attention cannot meet the
requirement, and cross-modality attention influence should
be considered. In this paper, we propose a fusion scheme to
accurately extract multi-scale cross-modality attention from
both modality views in this work.

2.3. Deformable Convolutional Network

A deformable convolution network [12, 69] adaptively
determines the object scales or receptive field sizes with-
out being affected by the fixed structures of the convolution
kernels. Dai et al. [12] proposed deformable convolutional
networks (DCNs), where additional offsets were learned to
allow the network to obtain information from its regular local
neighborhood. This improved the capability of the regu-
lar convolutions. Based on the DCNs, Zhu et al. [69] then
proposed the modulation deformable convolution network,
which introduced an additional modulated scale to enable the
adaptive scale to control the learned offsets.

Deformable convolutions are widely used in various im-
age processing applications, such as semantic segmentation
[12], video super-resolution [58], object detection [7], SOD
[17, 30] and video SOD [5].

3. Methodology

Here, we propose a novel cross-modality fusion model
for the RGB-D images to improve the SOD performance. We
first briefly review the deformable convolution networks and
then design a cross-modality deformable convolution module
(CDCM). We then devise a multi-level feature refinement
mechanism (MFRM) which integrates cross-modality fea-
tures from coarse features to fine features. We then propose
a selective cross-modality attention module (SCAM) for fus-
ing informative and complementary details using multi-scale
features extracted in the pyramid non-local block. Finally, we
describe the implementation details of the proposed RGB-D
SOD system and the corresponding hybrid loss function.

3.1. Modulation Deformable Convolutional
Network

It is generally challenging to extract the desired cross-
modality features in SOD using the RGB-D data. The CNNs
of the cascaded standard convolution layers are also limited
by the fixed geometric structure of the standard convolution
filters. Therefore, they are often unable to adaptively fuse
useful features in both modalities. Since salient objects gen-
erally have arbitrary sizes and compositions, especially in
their depth maps, the regular-gridded sampling filters im-
pose feature extraction from the rectangular regions. This
results in lower-quality features and hence degrades the SOD
performance.

The primary motivation for adopting the modulation de-
formable convolutional networks (DCNV?2) is to lead the
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Figure 2: The network architecture of the proposed RGB-D saliency detection network. (a) Overview of our propose network
architecture. The whole network is a two-steam CNN architecture, which consists of a RGB and a depth branch. DRE; and DDE;
(i = 1,2,3) denote the features generated by the beginning three layers with cross-modality deformable convolution module at
encoding stage of both branches respectively, and RE; and DE,; (i = 4,5) are the features generated from normal convolutional
blocks. The RD; and DD, (i = 5,4, ---, 1) represent the features of both decoder stages. (b) The architecture of the cross-modality
deformable convolution module (CDCM). (c) Details of the feature fusion operation.

SOD network for locating adaptive neighborhoods for each
pixel position in the intermediate feature maps. The pixels
in the current position and the corresponding details from
another branch enhance these cross-modality features in the
RGB or depth modality.

The DCNV?2 [69] adjusts offsets in perceiving the input
features and further modulates the amplitudes of the input
feature from different spatial samples. Therefore, the DCNV2
can vary the spatial distribution and the relative influence of
its samples. Specifically, the offset dynamically extends the
size of the receptive field to obtain the desired convolutional
region. The learning modulation mechanism also provides
the network module with an extra degree of freedom to adjust
its spatial support regions.

Compared with the standard convolution layer, the DCNV2
emphasizes the irregularity and variety of the object struc-
tures. This is because DCNV2 changes the sampling location
of the convolution kernels by adding the offsets and modu-
lated scalars. Moreover, both coefficients are adaptive and
can highlight the significant boundaries, and hence suppress
the unnecessary regions extracted by the standard convolu-
tion rectangular filter. The DCNV2 then adaptively expands
the receptive field for the object according to its size. The
dynamic receptive fields further ensure that the feature map
of the object responds to the target and removes those unnec-

essary regions without informative details.

In the DCNV2, images for post Ap, and Am,, are the
learning offset and the modulation scalar for the k-th location,
respectively, i.e., K is the number of locations within the
convolution grid. A 3 X 3 kernel is defined with K = 9
and p, € {(-1,-1),(=1,0),---,(1, 1)} which denotes a 3 X
3 convolutional kernel with a dilation of 1. Besides, the
modulation scalar Amy, is in [0, 1]. Both coefficients are
obtained via a 1 X 1 convolution layer applied over the same
input feature map x as shown in Fig. (2)-(b). Hence, the
modulated deformable convolution can be written as:

K
y(p) = Y wy - x(p+ p + Apy) - Amy. (1)
k=1

The output has 3K channels, where the first 2K channels
correspond to the learned offsets Ap,, and the remaining K
channels are fed into a sigmoid layer to obtain the modulation
scalars Am,. The learning offsets Ap, are usually fractional,
and hence bilinear interpolation [12] is adopted to ensure an
integer value. The initial values of Ap, and Am, are 0 and
0.5, respectively.
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Figure 3: The details of our proposed multi-level feature refinement mechanism (MFRM). The black and red lines denote the
image and the corresponding depth processing branch, respectively.

3.1.1. Cross-modality Deformable Convolution
Module

As demonstrated in Fig. (1), there are several low-quality
depth images in these widely used RGB-D SOD datasets. If
we only regard the two processing branches without neces-
sary treatments, these negative samples will affect the final
prediction map. Moreover, it is challenging for conventional
feature extractors (e.g., VGG or ResNet) to extract the de-
sired features in the separate stream for RGB and depth maps.
The considerable distribution gap between the data in both
modalities data worsens the issue.

To address this issue, we adopt the deformable progres-
sive extraction strategy to adaptively extract the cross-modality
details. Based on the DCNV2, we propose the cross-modality
deformable convolution module (CDCM) as shown in Fig. (2)-
(b), which receives the features of another branch to produce
the modulated scalars and offsets. The offsets and scalars
learned by the depth maps provide the accurate position of
the salient objects for the image branch. This is because the
depth images effectively locate the boundary of the signifi-
cant objects. The geometric transformation ability enables
the feature extractor to obtain more accurate boundary infor-
mation. Nevertheless, the image details also provide offsets
and modulated scalars for depth information, ensuring that
the complementary details contain the saliency regions so as
to reduce the negative effect caused by the background and
non-salient objects.

Here, we employ CDCM to guide the cross-modality
feature extraction, which can dynamically adjust the receptive
field to focus on the object body in the saliency boundaries
together. In our design, we replace the traditional convolution
layer with the module at the first three encoder blocks (i.e.,
DRE; and DDE; i € {1,2,3}).

We consider the additional features consisting of the RGB
and depth information F” and F?, where ()" and () indicate
whether the parameter serves in the RGB image or depth
branch. We further assume that both features can predict the
desired values of Ap, and Am, adopted in DCNV2 [69] for
other branches. This enables the supply of more accurate

information through learnable offsets and modulated scalars.

The detailed processing can be expressed as:

K
Fr(p)= Y w) - F'(p+p, + Ap) - Am? )
k=1
and
s 3
Fil(p)= Y wd - Fd(p+p, + Ap) - Am, G)
where

Apd = ConU(Fd)
Amf = ConU(Fd)
Ap" = Conuv(F")

Am" = Conv(F").

Here, the module receives F” and F¢ as its inputs and then
extracts the enhanced cross-modality features F” and F? as:

Fr=CDCM(F",F%) + F" “4)
and
F4=CDCM(F?,F)+ F". )

Using this module, the cluttered background and unclear
salient object get highlighted using the information from the
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Figure 4: The architecture of the prior non-local block (a) and the proposed Selective Cross-Modality Attention Module (SCAM)
(b). In SCAM, input features F and additional features F* are the output from the RGB and depth encoder streams respectively.
¢, and g, are computed by multi-scale feature in F*, while § transformed by F is shared in all scales. Besides, the SCAM is
symmetrical and we denote the depth and RGB features as F and F*, respectively.

other branch. The irregular object structures can then be
accurately sampled. These adaptively-learned parameters
then adjust the boundary of the receptive field to recover
more critical details and remove the regions with irrelevant
background.

3.1.2. Semantic Feature Refinement

In multi-modality feature fusion, it is essential to prevent
the contamination introduced by unreliable depth maps. To
achieve this goal, we design a multi-level feature refinement
mechanism (MFRM), as demonstrated in Fig. (3), to com-
bine the inner cues existing in features with different sizes.
This leads to a more primitive visual context covering differ-
ent scales and shapes of the non-rigid salient objects. The
proposed MFRM is a symmetrical structure consisting of
two paths, i.e., RGB and depth streams. The MFRM aggre-
gates the features with different scales in both modalities.
This reduces the interference of different modalities of the
single-sized features.

Here, we obtain features [Frlgb, Frng, F fgb] and [Fdlepm
, F;ep e F;ep ] from the image decoder module (RD3-RD;)
and the depth decoder module (DD3-DD,), respectively. We
then employ a 33 Conv layer to obtain the sampling position
offsets Ap and controlling scalar Am from F r’g ,orF éep - Be-
sides, the DCN receives the learning parameters and original

feature F!  or F! . This means the intermediate scaled
rgb depth

features F!  and F!  can extract different cross-modality
rgh depth )
cues and cover more details.
To ensure the training flexibility, we sum the /-th learning
parameters with the upper value in (/ + 1)-th level, processed
by one X2 upsampling operation. Hence, the Ap and Am

for RGB and depth in different spatial level are defined as

follows:
Apﬁgb = CO"U(Féepm) + (Apg—;)upxz ©
Apﬁ,epth = ConU(Fr’gb) + (Apf;;]l;th)upxz ™
Ay oy = Conv(Fy ) + (Am 2y ®)
sl = ContE Gl O

where Conv represents a 1 X 1 convolution layers and / indi-
cates the spatial level.
Based on Eq. (6) to Eq. (9), the enhanced features F' rlg b

and F éept are handled with the input parameters Am' and

h
Ap'. Tt is then concentrated with the upper one F/*! as:

El = T(DCN(F! . Ap| . Am ). (F7AP2),(10)

rgb’
and
) _ i ! ! il+1 X2
Fdeprh - T(DCN(Fdepth’ Apzleplh’ Amdepth)’ (Fdeprh)up )’
(11)

where (-)“?*? denotes the up-sampling operation by a factor
of 2, T represents a transfer module and consists of a concen-
tration operation and a 1 X 1 convolution layer to reduce the
channel dimension. The outputs F!  and £!  denote the

rgh depth )
enhanced features for RGB and depth stream, respectively.
Here / is set to 3.

3.2. Selective Cross-modality Attention Module
The existing approaches [3, 4, 19] that adopted the middle-
fusion strategy have treated the intermediate features of both
modalities equally. However, considering that there is com-
plementarity due to the inconsistency of the cross-modality
RGB-D data (e.g., contamination from unreliable depth maps),
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direct integration of the cross-modality information may in-
troduce negative results. Hence, it is essential yet challenging
to capture the pertinent details of the feature fusion process,
especially the depth image.

To address the uncertainty issue of the fusing features,
we propose an information selection module SCAM. The
SCAM strengthens the important features containing helpful
complementary information using an attention strategy. The
proposed SCAM aims to capture the long-range dependencies
existing between the multi-level RGB and depth features.

A non-local (NL) [59] structure is proposed to exploit
the channel and spatial relationship between all pixels. As
demonstrated in Fig. (4)-(a), X € RHXWXC denotes the
input feature activation map, where H, W, C refer to the
height, weight and channel, respectively. The enhanced fea-
ture representation Z is defined as:

(12)

_r(_1
Z=T (D(F)M(F)Q(F)> +F,

where M(F) € REWXHW g the self-similarity matrix, and
G(F) € RHWXC1 denotes the channel transformation oper-
ation responsible for deducing the channel dimension from
C to C,. In general, C; is set as C/2 to reduce the compu-
tational cost. Besides, D(F) produces a diagonal matrix for
normalization purposes. Here, we adopt the So ftmax oper-
ation to normalize the intermediate features. Furthermore,
T () reproduces the enhanced feature back into its original
channel dimension. Specifically, 7 (-) applies a 1 X 1 Conv
layer to recover the feature from C;— to C—dimension.
The correlation matrix M and G are defined as:

M(F) = exp <Femb (F’ w0) Foemb (F’ w¢)T)
G(F) = Femp (F’ Wg)

13)

where F,,,;, (F, W) is implemented using a 3 X 3 Conv layer
of parameters W (i.e., Wy, Wy, and W, € REXC1 are the
embedding weights). In M(F), each element f; j denotes the
affinity between the i-th and j-th spatial locations in F.

By exploiting the long-range dependencies of the image
pixel or region in both modalities, we create an attention map
for each branch. The attention map indicates the extent of
information contribution from another one.

Nevertheless, there exist two limitations. First, the com-
putational complexity and memory usage of the correlation
matrix increase quadratically with the increase of the size of
the input features. The second limitation is that the direct
processing of the single-sized features might not fully exploit
the hidden cues and unable to obtain optimal predictions.
These challenge the utilization of a selective cross-modality
attention module for the large feature.

To address the computational complexity issue and estab-
lish the cross-modality attention association, we propose the
SCAM to exploit the mutual attention in both modalities. To
do this, the SCAM computes the selective attention map at
the multi-level feature level. Here, we take the RGB features
as the target source, and the depth features as the reference.
In other words, we establish the attention association between

the original RGB features and corresponding depth features
in multi-size.

Specifically, taking the enhancement of the RGB features
F, as an instance. The F, denotes the feature by the concen-
tration of embedding depth features l:lf[ as shown in Fig. (4)-b.
Here, we take the input consisting of F, € RFXWX*C and the
depth features F; € RH*WXC (o create the attention relation-
ships among multi-scale features. The self-similarity matrix
M(F) and transformation operation G(F) in the s-th level are
defined as:

T
M(Ff.) = exp (Pemb (FZ’W;) remb (FZ’W;’?> >
(14)
OFS) = Foy (3 W5 )

The kernel size and stride of the convolutional layer for the
depth feature in the s-th scale are set to 2°, whereas the values
in the image features are set to 1. Because the proposed
module employs downsampling depth features to compute
the weights W, and W b the rows in both weights are reduced
to HW /45. This significantly reduces the computational
complexity of obtaining the self-similarity matrix.

Furthermore, the enhanced embedding features E° is ob-
tained as:

. 1

E = D(FS)M(FS)Q(FS) (s € {l,-s})

as)

The embedded features are concatenated together, followed
by a 1x 1 convolution layer to reproduce its channel from sC'1
to C. Therefore, the final output in both branches processed
by the SCAM are:

.
N

rgb] W, )+ Fg (16)

oo =T ([EL

and

Faenn =T ([Bhro = B |- W) + Faepm (17
Here, we concentrate the enhanced feature representation E
by a concentration operation [-], and 7 (-,-) denotes a 1 X 1
convolution layer with weight W,, € RSCIXC This is rea-
sonable for restoring the features to their original dimensions.
In our experiments, we set .S = 3.

Compared with the standard NL block adopted in SOD
[31], the proposed SCAM significantly reduces the computa-
tional complexity and further improves feature aggregation
capability from multi-scale and cross-modality aspects. Fur-
thermore, the SCAM captures the long-range dependencies
from a cross-modality and multi-scale perceptive, where I:Zfi
exploits the depth information to generate a spatial weight
for the RGB feature, and ]:Zi refines the depth information by
using the spatial weight generated from the RGB feature.

3.3. RGB-D Saliency Detection Network

As shown in Fig. (2), we propose a symmetrical two-
stream encoder-decoder architecture for RGB-D SOD based
on the proposed SCAM and deformable feature fusion strat-

cgy.
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Figure 5: Qualitative comparison of the proposed approach with some state-of-the-art RGB-D SOD methods. (a) RGB images.
(b Depth map. (c) GT. (d) Ours. (e) A2dele[38]. (f) SMA[31]. (g) D3Net[15]. (h) DMRA[37]

Here, we denote the output features of the RGB branch
in the encoder blocks as DRE;(i = 1,2, 3) and RE;(i = 4, 5),
and the features of the depth branch in the decoder block as
RD;(i = 1,2,---,5). The structure of the depth branch is

analogous to the RGB branch. a71

We employ the CDCM at the beginning convolution 472
blocks in both branches, (i.e., DRE{-DRE; and DDE-DDE,), 47
to handle the geometric variations and process the cross- a7a
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modality cues, especially in the depth maps. Supervised by
these cross-modality details, both encoder branches can ex-
tract more valuable low-level features. For the details, we
replace the last Conv layer with a cross-modality deformable
convolution module (CDCM) to enable these blocks to re-
ceive and losslessly process the geometric information. Tak-
ing the first image encoder block DRE; as an instance, the
last regular 3 X 3 Conv layer is then replaced by a 3 X 3
CDCM. (i.e., Conv(3,3) - ReLU — Conv(3,3) - ReLU —
CDCM(3,3), where (3,3) represents the kernel size).

We then obtain the features from the RGB and depth
branches in the CNN and perform the proposed SCAM to
obtain the cross-modality attention. The global contexts for
both views are then propagated.

The decoder blocks of the two branches progressively
integrate multi-scale features. We first apply 512 channels
to the convolution layers at RD5 and DDj to receive the en-
hanced features from the SCAM. Following the UNet[43]
architecture, we then to progressively skip-connect the corre-
sponding encoder features (e.g., RE{-RD5 and DE;-DD5).

To further improve the performance of the final saliency
map, we then apply the cross-stream fusion operation (E) to
fuse the image features and the corresponding depth features
with a cascaded residual module as shown in Fig. (2)-(c).

We also employ the MFRM at the final decoder blocks
RD; and DD to refine the final saliency map. The RGB fea-
tures [Frl s Frz, Ff] and the depth feature vector [Fd1 s Fj, F;]
are obtained from RD3;-RD; and DD3-DE,, respectively.
The enhanced feature is propagated forward in both branches,
and we employ the operation (F) to concentrate the feature
in the current module with the previous one. To ensure that
the dimension of the final prediction is the same as the input,
we adopt a 3 X 3 convolution layer with one channel on the
last decoder feature map. We also use the sigmoid activation
function to obtain the final saliency map for both streams.
Each convolution layer in our decoder has a 3 x 3 kernel and
is followed by a BN [22] layer and the ReL.U activation.

3.4. Loss Function

As for the training loss of both streams, we consider a
hybrid loss function between the predicted saliency maps
and the ground truth mask. We also use in-depth supervision
for each decoder module, where we first apply a 3 X 3 Conv
layer with the sigmoid activation function on each decoder
feature map to generate a saliency map compute their loss.
We then set up a scale aggregation architecture for each side-
output branch that densely accumulates the features from the
largest scale 256 X 256 in RD; and DD; to the smallest scale
32 x 32 in RD5 and DD5. The aggregation of the features
from each scale is then used to estimate the saliency maps
and supervised by the ground-truth saliency maps.

Our hybrid loss is defined as the summation of the inter-
mediate and final saliency result losses as:

K
L= Y (f®+ BP0k e (1,2,,5),
k=1

(18)

where z,”ﬁk) denotes the loss of the k-th side output in the

RG B branch, f((jk) is the loss of the k-th side output in the
depth stream, and K denotes the total number of the outputs.
Moreover, a; and f, are the weight of each loss in both
branches.

To obtain high-quality region segmentation and clear
boundaries, the hybrid loss #¥) for each scaled prediction is
defined as:

70 — f(k) 70 4

ssim

(k)
bﬂedge

19)

where 7, () and #{ _denote the BCE loss [1], SSIM
loss [60] and Edge loss, respectively. Hence, we supervise
these multi-scale predicated saliency maps in both streams
using a hybrid loss. Here, we consider BCE loss in f(k)e

follows:

Cpee == DGl /D 10g(Sy i 1)
i (20)

+ (1 = Gyli, jDlog(l = S [i, jDI.

where G [i, j] and S} [i, j] denote the values at the location
(i, j) of the ground truth map G, and the corresponding esti-
mated saliency map S, respectively.

For the edge-preserving loss fi d)g o
ference between the extracted edge information S} of the
side-output saliency map .S}, and the corresponding boundary

G of the ground-truth saliency map G as:

we compute the dif-

Chige == LGl D1og(S{i. )
i,J

(21

where GZ[i ,j]and SZ[i , j] denote the values at the location
(i, j) of the obtained edge details from the ground truth map
G|, and the corresponding estimated saliency map .S, respec-
tively. Both edge map prediction G; and S} are obtained
using the Canny edge detector.

Besides, the SSIM strengthens the saliency boundary’s
supervision, as illustrated in [40]. Therefore, we employ
the SSIM loss as a key component in the joint loss function,
which is defined as:

) —1—i§ (Zux,uy+C])(20' y+c2>
ssim M 4 5 5 C 5 5 C
j=1 Hy + ﬂyj + ¢ O'xj + Gyj + G,

(22)

Here, the estimated map S* and the ground truth map G* are
divided into M patches using a sliding window of 11 X 11
with a stride of 1. We then obtain the patches for both maps
{xy,-.xp} and {yy, -, ypr}, respectively. In the above,
Hy,> Hy s Ox ~and o, are the mean and standard deviation of
patches X; and Vi where j €{l,--,M}. Furthermore, o, X;
and oy, are their covariance, while Cl and C, are constant

used to avoid division by zero.
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Table 1

Quantitative performance comparison of our proposed model with several other state-of-
the-art RGB-D saliency models on eight benchmark datasets in terms of four evaluation
metrics. (Figures highlighted in red indicate the best performance).

ACSD LBE DCMC SE

Dataset 4] [16] [11] [42]

DF CTMF MMCI PCFN TAN CPFP DMRA D3Net A2dele S2MA
[45] [19] [4] [21 [8] [65] [37] [15] [39] [31]

Ours

0.699
0.711
0.803
0.202

0.695
0.748
0.803
0.153

0.685
0.715
0.799
0.172

0.644
0.748
0.813
0.169

NJU2K
[24]
3
)
X
ms
—— 5 >

0.763
0.804
0.864
0.141

0.849 0.858 0.877 0.878 0.879 0.886 0.895 0.892 0.894
0.845 0.852 0.872 0.874 0.877 0.886 0.889 0.888 0.889
0.913 0.915 0.924 0.925 0.926 0.927 0.932 0.930 0.929
0.085 0.085 0.059 0.060 0.053 0.051 0.051 0.053 0.054

0.902
0.902
0.940
0.044

0.673
0.607
0.780
0.179

0.762
0.745
0.855
0.081

0.724
0.648
0.793
0.117

0.756
0.713
0.847
0.091

NLPR
(36]

0.802
0.778
0.880
0.085

0.860
0.825
0.929
0.056

0.856
0.815
0.913
0.059

0.874
0.841
0.925
0.044

0.886
0.863
0.941
0.041

0.888
0.867
0.932
0.036

0.894
0.888
0.944
0.036

0.911
0.896
0.953
0.030

0.890
0.875
0.937
0.030

0.915
0.902
0.953
0.030

0.923
0.907
0.956
0.026

0.692
0.669
0.806
0.200

0.660
0.633
0.787
0.250

0.731
0.740
0.819
0.176

0.708
0.755
0.846
0.148

STERE
[35]
3
o
X
M3
—_—— o >

0.757
0.757
0.847
0.141

0.848
0.831
0.912
0.086

0.873
0.863
0.927
0.068

0.875
0.860
0.925
0.064

0.871
0.861
0.923
0.060

0.879
0.874
0.925
0.051

0.886
0.886
0.938
0.047

0.886
0.886
0.938
0.047

0.879
0.879
0.928
0.044

0.890
0.882
0.932
0.051

0.896
0.888
0.933
0.047

110.728
110.756
110.850
1]0.169

0.703
0.788
0.890
0.208

0.707
0.666
0.773
0.111

0.741
0.726
0.856
0.090

RGBD135
(8]

0.752
0.766
0.870
0.093

0.863
0.844
0.932
0.055

0.848
0.822
0.928
0.065

0.842
0.804
0.893
0.049

0.858
0.827
0.910
0.046

0.872
0.846
0.923
0.038

0.900
0.888
0.943
0.030

0.897
0.884
0.945
0.031

0.883
0.873
0.920
0.030

0.941
0.935
0.973

0.021

0.939
0.937
0.978
0.019

0.675
0.682
0.785
0.203

0.621
0.619
0.736
0.278

0.704
0.711
0.786
0.169

0.675
0.710
0.800
0.165

SSD100
[26]

0.747
0.735
0.828
0.142

0.776
0.729
0.865
0.099

0.813
0.781
0.882
0.082

0.841
0.807
0.894
0.062

0.839
0.810
0.897
0.063

0.807
0.766
0.852
0.082

0.857
0.844
0.906
0.058

0.857
0.834
0.911
0.059

0.803
0.776
0.861
0.070

0.868
0.848
0.906
0.052

0.877
0.859
0.922
0.047

0.727
0.763
0.829
0.195

0.729
0.722
0.797
0.214

0.746
0.813
0.856
0.155

0.692
0.786
0.832
0.174

LFSD
[28]
3
)
X
ms
—— > >

0.783
0.813
0.857
0.146

0.788
0.787
0.857
0.127

0.779
0.767
0.831
0.139

0.786
0.775
0.827
0.119

0.794
0.792
0.840
0.118

0.820
0.821
0.864
0.095

0.839
0.797
0.846
0.083

0.824
0.815
0.856
0.106

0.826
0.828
0.867
0.084

0.829
0.831
0.865
0.102

0.843
0.842
0.878
0.090

0.361
0.247
0.590
0.332

0.568
0.625
0.734
0.174

0.659
0.723
0.800
0.280

0.499
0.411
0.654
0.243

DUT-RGBD
[62]

0.736
0.740
0.823
0.144

0.831
0.823
0.899
0.097

0.791
0.767
0.859
0.113

0.801
0.771
0.856
0.100

0.808
0.790
0.861
0.093

0.818
0.795
0.859
0.076

0.889
0.898
0.933
0.048

0.824
0.815
0.856
0.073

0.885
0.891
0.930
0.043

0.903
0.900
0.937
0.043

0.007
0.904
0.041
0.043

0.732
0.763
0.614
0.172

0.727
0.751
0.651
0.200

0.683
0.618
0.598
0.186

0.628
0.661
0.592
0.164

SIP
[15]
3
o
X
M3
—_—— o >

0.653
0.465
0.565
0.165

0.720
0.702
0.793
0.118

0.716
0.608
0.704
0.139

0.833
0.771
0.845
0.086

0.835
0.803
0.870
0.075

0.850
0.821
0.870
0.064

0.806
0.811
0.875
0.085

0.860
0.861
0.909
0.063

0.870
0.865
0.910
0.063

0.872
0.877
0.918
0.058

0.877
0.880
0.917

0.053

- 0.637
- 0.629
0.730
- 0.253

0.427
0.348
0.549
0.313

0.435
0.393
0.587
0.283

ReDWeb-S
[32]

0.595
0.579
0.683
0.233

0.641
0.607
0.739
0.204

0.660
0.641
0.754
0.176

0.655
0.627
0.743
0.166

0.656
0.623
0.741
0.165

0.685
0.645
0.744
0.142

0.592
0.579
0.712
0.188

0.688
0.669
0.765
0.149

0.705
0.685
0.772
0.145

0.710
0.694
0.779
0.140

0.719
0.706
0.783
0.141

4. Experiments

4.1. Benchmark Datasets and Evaluation Metrics
In this work, we conduct experiments on nine widely used
RGB-D SOD datasets, including NJU2K [24] (1985 RGB-D
images), NLPR [36] (1000 RGB-D images), RGBD135 [8]
(135 RGB-D images), STERE [35] (1000 RGB-D images),
LFSD [28] (100 RGB-D images), SSD [26] (80 RGB-D im-
ages), DUT-RGBD[37] (1200 RGB-D images), SIP [15] (929

RGB-D images) and ReDWeb-S [32] (3600 RGB-D images).
For fair comparisons, we perform the same training as de-
scribed in [37, 39], which contains 800 samples from the
DUT-RGBD dataset, 1485 samples from NJU2K and 700
samples from NLPR for training. The remaining images and
the other five datasets are used for testing to evaluate the
performance.

To avoid over-fitting, we adopt the following data aug-
mentation. First, we resize the training images, and the corre-
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sponding depth maps to 288 x 288 pixels and then randomly
crop 256 X 256 regions to train the network. We also use
random horizontal flipping. To match the channel dimen-
sion between depth and RGB images to fit the network input
layer, we further replicate each depth map to three channels.
Besides, each image and the three-channel depth map are sub-
tracted by their mean pixel values before being considered as
the inputs to the whole network.

Following the recent work [15, 31], we adopt the maxi-
mum F-measure (max-F), Structure-measure (.S,,), Enhanced-
alignment measure (E 5) and Mean Absolute Error (MAE) for
quantitative evaluations. Specifically, max-F is the weighted
harmonic mean of precision and recall, and it is a comprehen-
sive measure indicating the performance. Further, S, [13]
score measures the difference between the saliency map and
ground truth, and the larger of the score, the higher the per-
formance. Also, E§ [14] is a reasonable measure to capture
both global statistics and local pixel matching information of
the saliency maps. The MAE score further measures the dif-
ference between the continuous saliency map and the ground
truth. The smaller the value of the MAE, the smaller the gap,
indicating a higher performance.

4.2. Implementation Details

We implement the proposed network by using the Py-
Torch package and two NVIDIA 1080 Ti GPUs for comput-
ing acceleration. The stochastic gradient descent (SGD) with
the momentum algorithm is adopted to optimize our network
with a total of 40,000 iterations. The weight decay, momen-
tum and batch size are set to 1e-4, 0.9 and 8, respectively.
The initial learning rate is set to 0.01 and divided by 10 at
the 15,000 and the 30, 000"” iterations.

4.3. Comparisons with State-of-the-art Methods

We compare our method with 14 state-of-the-art RGB-
D SOD methods (including four classical traditional non-
deep models, i.e. ACSD [24], LBE [16], DCMC [11], and
SE [42], and ten learning-based models, i.e. DF [45], CTMF
[19], MMCI [4], PCEN [2], TAN [3], CPFP [65], DMRA
[37], D3Net [15], A2dele [39] and S?MA [31]. We use the
released codes and default hyper-parameters as provided by
the corresponding authors to reproduce the final saliency
maps.

1) Qualitative Evaluation: To illustrate the advantages
of the proposed method, we provide several visual examples
of different methods. As shown in Fig. (5), the proposed
method can obtain better experimental results with precise
saliency location, clean background, complete structure, and
sharp boundaries. Moreover, it is efficient in various chal-
lenging scenarios, such as low contrast, complicated scene,
background disturbance, and unreliable depth maps. To be
specific:

(a) Our model handles the disturbance of a similar appear-
ance between the salient object and the background. For ex-
ample, in the eighth image, the robot’s arms and legs are sim-
ilar to the background, and the whole scene has low contrast.
The existing methods are unable to address this challenging
case very well as their results ignore these almost identical

regions with the background. By contrast, our method shows
a competitive advantage in terms of completeness, sharpness,
and accuracy. Specifically, AMDFNet highlights the robot
and its entire limbs using the depth maps.

(b) Our model can produce robust results even in the
cases where the available depth information is inaccurate or
blurred (e.g., the second and fifth images). This indicates
the robustness of the SCAM. In these challenging scenarios,
because of the negative effect caused by unreliable depth
maps, the existing methods are unable to locate the accurate
boundaries of the salient objects. The proposed method, how-
ever, utilizes the cross-modal complementary information
and suppresses the impact of unreliable depth maps.

(c) Our model produces a complete structure and sharp
boundaries in the results. For example, in the third and fourth
images, the irregular shape of the purple flower is accurately
and entirely detected by the existing methods, such as A2dele
[38], and S2MA [31] and the unnecessary background (e.g.,
the red flower at the right of the third image and purple petals
at the right of the fourth image) are wrongly retained. By con-
trast, our method obtains complete and accurate boundaries
and has an improved ability to process complex scenarios.

In summary, the experimental results indicate that our
model accurately localizes the salient objects and segments
them precisely, whereas the existing models are disturbed in
the complex scenes.

2) Quantitative Evaluation: For a more intuitive com-
parison of performance, here we obtain the quantitative met-
rics including max-F, .S,,, Ef, and MAE score in Tab. (1). It
can be seen that our proposed method outperforms almost
all of the existing methods on all datasets, except for the
LFSD and RGND135. On these two datasets, our model
also achieves a performance comparable to the best existing
methods.

Furthermore, AMDFNet outperforms all other methods
by a notable margin on the DUT-RGB, SIP and ReDWeb
datasets, containing more challenging scenarios. The exper-
imental results further indicate that our modifications inte-
grate informational cues in both modalities and transfer the
qualified depth knowledge to facilitate a more accurate final
saliency prediction.

4.4. Ablation Study

To verify the effectiveness of each key component in our
proposed network, including CDCM, SCAM and MFRM, we
conduct ablation studies on NJU2K, NLPR, RGBD135 and
LFSD datasets. The basic model with the standard fusion de-
coder modules is regarded as the baseline model to guarantee
the fairness of the ablation experiments. Tab. (2) validates
all components in our proposed system based on four widely
used benchmarks and the above four metrics.

First, we choose the basic network that removes the multi-
level feature refinement module (MFRM), removes the cross-
modality deformable convolution module (CDCM), and re-
places the selective cross-modality attention module (SCAM)
with the standard channel and spatial attention operation [61]
as the baseline (denoted as “B”). From the Tab. (2), compar-
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Figure 6: Visualization of the output from SCAM. (a) RGB image. (b) Depth maps. (c) GT. (d) Predicted saliency maps. (e)
and (f) Heat-maps of RGB and depth channel (without SCAM). (g) and (h) Heat-maps of RGB and depth channel (with SCAM).

Table 2

Ablation study of module verification on NJU2K, NLPR, RGBD135 and LFSD dataset.
The best results on each dataset are highlighted in boldface.

Settings | NJUD-test [24] | NLPR-test [36] | RGBD135 [8] | LFSD [28]
B BS MF C| S, maxF E, MAE| S, maxF E, MAE| S, maxF E, MAE| S, maxF E, MAE
v 0.865 0.852 0.902 0.072|0.897 0.873 0.941 0.039|0.875 0.834 0.927 0.046/0.786 0.775 0.836 0.131

v
a4
a4

0.893 0.887 0.928 0.056|0.915 0.896 0.952 0.032|0.933 0.924 0.970 0.024|0.821 0.824 0.854 0.105
0.897 0.892 0.933 0.052|0.923 0.909 0.957 0.028|0.939 0.932 0.972 0.023|0.838 0.846 0.873 0.097
V| 0.902 0.902 0.940 0.044(0.923 0.907 0.956 0.026(0.939 0.937 0.978 0.019/0.843 0.842 0.878 0.090

ing the “B” with the “BS”, we replace the standard attention
operation by the selective cross-modality attention module
(denoted as ‘B®”) which improves the baseline by about 3 ~ 4
points in terms of the maximum F-measure in the NJU2K
dataset. Our proposed SCAM aims to adaptively select the
informative and vital details in depth to solve two issues:
(1) how to effectively remove the adverse effects from the
low-quality depth input. (2) how to provide complementary
information to support cross-modality fusion. The experi-
mental results prove that adding the cross-modality attention
module can significantly improve the SOD performance.
By adding the multi-level feature refinement module in
the last feature decoding block (denoted as ‘BS + MF’),
the F-measure increases to 0.902 on the NJU2K dataset
which is comparable with the state-of-the-art methods. Fur-
thermore, the performance is significantly enhanced after
adding the CDCM at the first three encoder blocks (denoted
as ‘BS + M F +C’), which yields the best performance with
F-measure and MAE percentage gains of 5.0% and 2.8%, re-
spectively compared with the original baseline on the NJU2K

dataset. The MFRM applies the advantages of multi-scale
feature and cross-modality deformable operation. This effec-
tively captures the global context in multi-scale features and
determine the salient object fully and resolve the challeng-
ing ambiguity in the SOD with a similar appearance and a
cluttered background. The experiments on the other three
datasets, i.e., NLPR, RGBD135 and LFSD, also show the
effectiveness of the proposed components significantly.
Selective Cross-modality Attention Mechanism

(SCAM) To thoroughly understand the selective cross-modality 7os

attention mechanism, we visualize several feature maps and
their corresponding heat-maps in Fig. (6). Taking the RGB
output produced by SCAM as an example, the module learns
the cross-modality complementarity from a cross-modality
perspective and prevent unreliable depth maps. As shown
in Fig. (6), the model with SCAM accurately locates the
salient object positions, and the focus covers the whole ob-
ject (e.g., the first and second images). In case of a cluttered
background or where the depth input is not ideal, the third
image contains several cans, and the foreground has a similar
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(@

Figure 7: Visualization of the sampling locations in RGB and
depth stream employed in the original convolution, modulated
convolution network (DCNv2) and cross-modality deformable
convolution module (CDCM). The green dots in each image
represent the activation units and the red dots are sampling
locations. (a) Standard convolution. (b-c) DCN in depth and
RGB stream. (d-e) CDCM in depth and RGB stream.

appearance to the background. This results in an unclear
attention map in the heat-map produced by the baseline (‘B’).
By adding the SCAM, our model maintains more structural
information of the desired mode and successfully suppresses
most background noise.

To verify the effectiveness of SCAM in memory reduc-
tion, we design an ablation study to analyze the required
computational resources in terms of floating-point operations
(FLOPs), memory consumption and parameters. The results
are shown in Tab. (3). Specifically, all experimental results
are obtained by testing methods on a 256 X 256 input sample.
We compare our method with SCAM against the original non-
local block. The original non-local operation dramatically
increases memory consumption since it requires computing a
large correlation matrix. In contrast, the additional memory
requirement of the proposed SCAM (1.251Gb) is 22.5% less
than (1.621Gb) the standard non-local operation. This means
that our method can reduce the required memory in the train-
ing process, and our method allows larger training batch size
or bigger image size under the same GPU memory.

In summary, the designed SCAM strengthens the fea-
ture from a cross-modality perspective and prevents contam-
ination caused by unreliable depth maps. Furthermore, the
computing and memory consumption significantly decreased
compared with the relevant structure.

Cross-modality Deformable Convolution Module
(CDCM) To better understand the behavior of CDCM, we
visualize the sampling location [69], which contributes sig-
nificantly to the final network prediction. Specifically, we
analyze the visual support regions in both feature encoder
modules (i.e., RGB and depth streams). First, we employ
standard convolution layer in DRE; and DDE; (i = 1,2, 3) as

Table 3
Ablation study of efficiency in terms of floating point operations
(FLOPs) and memory consumption.

Non-Local Module Type ‘ FLOPs ‘ Memory ‘ #Params
NLB [59] | 142.27G | 1.614Gb | 1.949M
Ours | 140.83G | 1.251Gb | 1.311M

Figure 8: Failure examples. (a) RGB images. (b) Depth maps.
(c) GT. (d) Heat maps. (e) Our results.

baseline. Besides, the three 3 X 3 standard convolutions lay-
ers inserted in the above blocks are replaced by DCNv2 [69]
and the sampling locations of this operation are shown in
Fig. (7)-(e) and (f). In comparison, we employ CDCM in
corresponding convolution blocks, and the sampling results
are illustrated in Fig. (7)-(e) and (f).

As shown in Fig. (7), the spatial support of the DCNv2
expands the sampling distribution and enlarges the receptive
field by deformable filters significantly. The network’s ability
to model geometric transformation is considerably enhanced,
and the spatial support adapts much more to image content,
with nodes on the foreground having support covering the
whole salient object. In contrast, nodes on the background
have expanded support that encompasses greater context.
However, the range of spatial support may be inexact, i.e.,
the boundary splitting salient regions and background could
not be detected, and salient regions contain irrelevant areas.

To regulate the sampling distribution and make full use of
cross-modal cues, the CDCM receives extra information from
another modal to guide the filter training and enhance the
network’s feature extraction ability. Based on these visible
results, we observed that these adaptive sampling location
produced by the CDCM highly emphasises the salient object
boundaries and dramatically suppresses the interference of
background information.

4.5. Failure Cases
To further promote the SOD, Fig. (8) shows several fail-
ure cases produced by our AMDFNet. As it shows in this
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figure, our approach had troubles to recognize the accurate
boundaries of the salient objects in these examples. Fur-
ther investigating the typical characteristics of the failure
cases, we can identify two factors that contribute to the low
quality of the predicted maps. First, the conflict of a salient
object between the depth maps and the RGB images leads
to false alarms. Although our SCAM reduces the adverse
effects resulted from the depth maps and the heat-maps, it
is challenging to suppress the contamination for these cases.
Secondly, the combination of the salient object and back-
ground region significantly interferes with the results. For
the cases where the spatial distance between the objects is
small, especially when the salient object is embedded in other
non-salient objects in the background (e.g., the red door is
located in a house and the letters are printed on the seats), the
depth maps cannot provide the exact location details. This
results in incorrect SOD by the algorithm.

5. Conclusion

In this paper, we have proposed a selective cross-modality
attention module to capture the dense attention among vari-
ous features maps in both modalities. The proposed module
enables selecting informative regions and suppressing the
impact of unreliable depth maps. We have also developed
a multi-level feature refinement mechanism to adaptively
strengthen those maps of different scales and refine the fea-
tures from the multi-scale and cross-modality perspectives.
Both the embedded selective attention module and densely
cooperative refinement strategy have been empirically proved
to be effective for exploiting the cross-modality complemen-
tarity. Our next challenge is to improve the quality of the
depth maps. The work presented in this paper lays the ground-
work for future therapeutic research. The multi-modal feature
fusion method further provides new insights into other chal-
lenging visual tasks, e.g., RGB-D image enhancement and
multi-source image fusion.
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