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Abstract  

 Synthetic aperture radar (SAR) image recognition is an important stage of SAR image 

interpretation. The standard convolutional neural network (CNN) has been successfully applied in 

the SAR image recognition due to its powerful feature extraction capability. Nevertheless, the CNN 

requires numerous labeled samples for satisfactory recognition performance, while the performance 

of the CNN decreases greatly with insufficient labeled samples. Aiming at improving the SAR 

image recognition accuracy with a small number of labeled samples, a new few-shot learning 

method is proposed in this paper. We first utilize the attention prototypical network (APN) to 

calculate the average features of the support images from each category, which are adopted as the 

prototypes. Afterwards, the feature extraction is performed on the query images using the attention 

convolutional neural network (ACNN). Finally, the feature matching classifier (FMC) is adopted 

for calculating the similarity scores between the feature maps and the prototypes. We embed the 

attention model SENet to the APN, ACNN, and FMC, which effectively enhances the expression of 

the prototypes and the feature maps. Besides, the loss function of our method consists of cross-

entropy and prototype-separability losses. In the training process, this loss function increases the 

separability of different prototypes, which contributes to higher recognition accuracy. We perform 

experiments on the Moving and Stationary Target Acquisition and Recognition (MSTAR) and the 

Vehicle and Aircraft (VA) datasets. It has been proved that our method is superior to the related 

state-of-the-art few-shot image recognition methods.  
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1 Introduction 

 Synthetic aperture radar (SAR) can acquire high resolution images all day and all weather by 



virtue of its penetrating capability [1, 2]. SAR image recognition, which is an important stage in the 

SAR image interpretation, aims at obtaining the target information contained in the SAR images [3, 

4]. Traditional machine learning methods for SAR image recognition include support vector 

machine (SVM) [5], dictionary learning [6], sparse representation [7], and so on. Nevertheless, the 

performance of these methods depends on the quality of hand-crafted features. In addition, the 

speckle noise in the SAR images increases the difficulty of feature extraction [8, 9]. Thus, an 

effective feature extraction method is the key to SAR image recognition.  

 Recently, deep learning techniques have received great attention in the field of image 

processing [10-12]. As an important deep learning model, convolutional neural network (CNN) is 

widely used because of its superior feature extraction capabilities [13, 14]. CNN is a multi-layer 

network which mainly consists of convolution, pooling, and fully connected layers. The convolution 

layer adopts the convolution kernels to extract image features, while the pooling layer reduces the 

dimension of the features through pooling operation, thereby reducing the risk of overfitting [15, 

16]. The image features are further integrated by the fully connected layer and finally mapped to the 

predicted labels. In comparison with the traditional methods, CNN is a more effective feature 

extraction method, and it has been applied to SAR image recognition [17-19].  

 The CNN needs numerous labeled samples to train the model parameters. However, the sample 

annotation for SAR images is difficult because of the speckle noise. With insufficient labeled 

samples, it is difficult for the CNN model to achieve satisfactory recognition accuracy [20, 21]. On 

the basis of prior knowledge, humans can correctly classify images by learning a small number of 

labeled samples [22]. Inspired by this, researchers propose few-shot learning methods [23, 24]. In 

few-shot learning tasks, the sample categories are divided to the basic and new categories, wherein 

the former contains a large number of labeled samples while the latter only contains limited labeled 

samples. The goal of few-shot learning is to correctly recognize the unlabeled samples of the new 

categories. Nevertheless, the labeled samples in the new categories are insufficient. Therefore, few-

shot learning models utilize the numerous labeled samples in the basic category during the training 

process. Once having been trained, these models can be generalized to the new categories and used 

to recognize the corresponding unlabeled samples [25-27].  

 To improve the SAR image recognition accuracy with limited labeled data, this paper presents 

a new few-shot learning method which consists of the attention prototypical network (APN), 



attention convolutional neural network (ACNN), and feature matching classifier (FMC). We first 

utilize the APN to generate prototypes. The prototypes represent the cluster centers for different 

categories, which are obtained by calculating the average features of the images from the same 

category. Afterwards, the feature maps of the query images are extracted by the ACNN. Finally, we 

adopt the FMC to generate the similarity scores between the feature maps and the prototypes. The 

innovations of our method are: 

(1) We design the FMC for generating the similarity scores. The FMC is a neural network 

model with trainable parameters, thus it is capable of learning an appropriate similarity metric 

function for SAR data in a data-driven way.  

 (2) The APN, ACNN, and FMC are embedded with the SENet. As an attention model, SENet 

is capable of assigning weights for the feature maps, which enhances the representation of the 

prototypes and feature maps.  

 (3) By combining the cross-entropy and the prototype-separability losses, we design a new 

loss function which is capable of increasing the separability of different prototypes. Since the 

recognition process is performed by calculating the similarity scores between the feature maps and 

the prototypes, this loss function can effectively improve the recognition performance of our method. 

The structure of the rest of our paper is as follows. Section 2 reviews the related works. Section 

3 introduces the detailed principles of our method. In Section 4, we verify the effectiveness of our 

method by performing abundant experiments. Finally, this paper is summarized in Section 5.  

2 Related Work 

2.1 Few-shot Learning Methods 

Recently, few-shot learning methods have become the research hotspot in the image 

recognition. Koch et al. present the siamese neural network, which is capable of discriminating the 

similarities between the input images [28]. The siamese neural network consists of two CNN models 

with shared parameters to simultaneously extract the features of two input images. Then the distance 

function is adopted for calculating the similarities between the two feature maps, thereby judging 

whether the two images are from the same category. The matching network is composed of a neural-

network-based feature extractor and a distance-function-based classifier [29]. In the training process, 

the matching network employs the episodic training mechanism, which ensures that the conditions 

of training and testing processes are matched. In addition, the attention and memory mechanisms 



are utilized to enable rapid learning. The prototypical network proposed in [30] is a simple yet 

effective few-shot learning method. This method first utilizes the standard CNN model to extract 

image features, then the prototypes of different categories are obtained using the feature averaging 

operation. Finally, the classification of the query images is performed by comparing the Euclidean 

distances between the query images features and different prototypes. Sung et al. design the relation 

network algorithm which contains an embedding model for feature extraction and a relation model 

for feature similarity comparison [31]. In contrast with the distance-function-based similarity 

comparison methods, the relation model consists of neural network, which enables an end-to-end 

training scheme. Different from other few-shot learning methods, deep nearest neighbor neural 

network (DN4) adopts the local descriptors instead of the image-level features [32]. Following the 

descriptor extraction, the KNN method is utilized for calculating the similarities of different images 

by measuring the cosine distance between the local descriptors. Simon et al. design the deep 

subspace networks (DSN) wherein the limited samples are used for constructing dynamic classifiers 

[33]. The experiments demonstrate that DSN yields competitive results and is robust against 

perturbations. Ye et al. modify the feature extraction network via the self-attention mechanism and 

present the few-shot embedding adaptation transformer (FEAT) method wherein the extracted image 

features are discriminative and task-specific [34]. 

2.2 Few-shot Learning in SAR image recognition 

Inspired by the superiority of the above few-shot learning methods, the researchers have 

applied them to SAR image recognition with limited labeled samples. Tang et al. present a modified 

siamese network which contains a CNN model, a similarity discriminator and a classifier [35]. 

Compared with the original siamese network, the modified method adopts a classifier instead of a 

similarity discriminator to generate label predictions. The hybrid inference network in [36] first uses 

the embedding model to extract image features, then the transductive and inductive inferences are 

respectively utilized to classify the input images. Finally, the two classification results are combined 

to obtain the final result. Fu et al. design a new meta-learning method consisting of a meta-learner 

and a base-learner [37]. During the training process, three transfer learning strategies are used for 

exploiting the prior information. Besides, the difficult task mining strategy is adopted so that the 

proposed method pays more attention to difficult tasks in the training process, thereby promotes the 

efficiency of meta-learning. In [38], Yang et al. improve the performance of relation network by 



replacing the relation model with a graph neural network (GNN). Because of the strong relation 

extraction ability of GNN, the modified network can effectively measure the relationship between 

the input images.  

As can be seen, most of the few-shot image recognition methods consist of two stages: feature 

extraction and classification, which are the major concerns of these methods. Although the above 

few-shot image recognition methods have made some promising results, most of these methods 

utilize the distance-based similarity metric functions in the classification stage. Since the parameters 

in the distance-based functions are fixed, it is necessary to manually select appropriate distance 

functions for different types of data. To automatically learn a suitable similarity metric function for 

SAR data, we design the FMC to replace the distance-based functions. The FMC consists of neural 

network, which is capable of learning a suitable similarity metric in a data-driven way. In addition, 

compared with the above methods, we embed the SENet in our model to enhance the representation 

of image features in the feature extraction stage. Moreover, our method follows the thought of 

prototypical network [30]. A key novelty is that we present the prototype-separability loss and 

combine it with the cross-entropy loss in the training process. This new loss contributes to a higher 

recognition accuracy by increasing the separability between different prototypes.  

3 Proposed method 

3.1 Few-Shot Learning Formulation 

 The few-shot image recognition task contains three sets: a support set S , a query set Q , and 

an auxiliary set A . S  and Q  consists of the samples of new categories, while A  consists of the 

samples of basic categories. S  includes N  categories, and each category involves K  labeled 

images. Therefore, the few-shot recognition task is named “ N -way K -shot”. The images in Q  

are the unlabeled ones which share the same category space with S . A  contains more categories 

with numerous labeled images. However, the category space of A  is non-intersecting with those 

of S  and Q .  

The few-shot recognition methods aim at classifying the unlabeled images in Q  based on the 

learning with S  . Since the labeled images in S   are insufficient, the set A   is utilized in the 

training process. To guarantee that the conditions in the training and testing processes are matched, 

many few-shot learning methods employ the episodic training mechanism. To be specific, during 



each training episode, the auxiliary support set SA  (similar to set S ) and the auxiliary query set 

QA  (similar to set Q ) are formed by randomly selecting samples from set A . Afterwards, the 

parameters in the few-shot learning models are updated through the forward and backward 

propagation using the images in SA  and QA . 

3.2 Overall Framework 

The training and testing processes of the proposed method are shown in Figure 1. We utilize 

set A  to learn a matching method for the support and query images, then the trained model is 

applied to recognize the query images of new categories in set Q  based on a small number of 

support images in set S . 

 

Figure 1. Training and testing processes of the proposed few-shot SAR image recognition method.  
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the images in set A  are randomly selected to form sets SA  and QA . Then the support images in 

SA  are fed into the APN to generate the prototypes of different categories. The APN consists of 

convolution, SENet, and averaging modules. Afterwards, the ACNN model extracts the features of 

the query images in QA  based on the convolution and SENet modules. As can be seen, the APN 

(except for the averaging module) and ACNN are both feature extractors which are utilized for 

extracting the features of SAR images. Hence, we utilize the weight-sharing strategy between APN 

(except for the averaging module) and ACNN. Finally, the FMC is utilized for calculating the 

similarity scores between the extracted feature maps and different prototypes. The category 

probabilities of query images are obtained by performing the softmax operation on the similarity 

scores. The model parameters are updated by minimizing the loss function which includes cross-

entropy and prototype-separability losses. 

In the testing process, we utilize the support images in S  to calculate the prototypes of the 

new categories. Then the ACNN is used for extracting the feature maps of the query images in Q . 

Finally, the similarity scores between the feature maps and prototypes are obtained by the FMC. We 

calculate the category probabilities of the query images using the softmax operation, and the 

category corresponding to the maximum probability is adopted as the predicted category of the 

query images. Next, the APN, FMC and loss function of our method are described in detail.  

3.3 Attention Prototypical Network 

We design the APN model to calculate the prototypes. As shown in Figure 1, the APN consists 

of convolution, SENet, and averaging modules. The convolution module adopts convolution and 

pooling operations to extract the image features. The SENet module is utilized for optimizing the 

features obtained by the convolution module. In the averaging module, we respectively calculate 

the average features of the images from the same category, thereby obtaining the prototypes. The 

detailed process is as follows: 

Suppose iS  contains all the support images whose labels are i , which is the subset of S . In 

the prototype calculation, the images in iS  are fed into convolution modules for extracting the 

feature maps C H W F , where C , H  and W  represent the channel number, height, and width 

of F . Besides, we adopt the attention models for feature optimization. In the feature extraction, 



the attention models calculate the attention values which are used for assigning the weights for the 

feature maps, thus the important features are emphasized while the unimportant ones are restrained 

[39, 40]. As a light-weight attention model, the SENet optimizes the image features without 

increasing the computational complexity [41]. Therefore, we employ the SENet and embed it in the 

APN model. The core idea of SENet is that the importance of the features in different channels is 

different. Thus, the feature maps can be optimized by assigning weights for different channels. The 

operations performed in the SENet are as follows: 

As shown in Figure 2, the SENet adopts global pooling module to shrink F   in the spatial 

dimensions H W , then the global pooling feature map 
gp

CF  is obtained. gp gp( )F n F  is 

calculated using Equation (1): 

( )gp

1 1

1
( ) , ,

H W

i j

F n F n i j
H W = =

=


                       (1) 

where ( ), ,F n i j F  . Afterwards, gpF   is forwarded to the linear module for generating the 

attention value A

CF . Finally, the weights for different channels in the original feature map F  

are assigned by AF . Concretely, we multiply F  with AF  in the channel dimension:  

A' = F F F                             (2) 

where   is the multiplication operation and ' C H W F  denotes the optimized feature map. As 

can be seen, the SENet optimizes the feature maps in the channel dimension. By assigning weights 

for different channels, the SENet focuses on the features of important channels, while restrains those 

of the unimportant channels. Hence, the SENet is capable of concentrating on key features. 

We utilize a series of convolution and SENet modules to process the support images. Then the 

averaging module is adopted to obtain the prototypes by calculating the average features of the 

images from the same category. Suppose ( )f   represents the functional expression of APN model 

and   is the parameter matrix, the calculation of prototypes is expressed in Equation (3) 

( )i if=c S                              (3) 

where ic  denotes the prototype of category i .  



 

Figure 2. The structure of SENet. 

3.4 Feature Matching Classifier 

 To recognize the query images, we use the ACNN model to extract the feature maps. Except 

for the averaging module, ACNN shares the structures and parameters with APN, thus the structure 

of ACNN is not introduced in detail. The prototypical network method in [30] adopts the distance-

based similarity metric functions to calculate the similarity scores between the feature maps and 

prototypes. Then the category probability M Np  is obtained by the softmax function, where 

M  and N  respectively represent the number of images and categories in the query set. ,i jp  p  

is generated by:  
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Q j
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−
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( )exp    and ( )d    denote the exponential and distance functions, respectively. QF   is the set 

which contains the feature maps of query images, and ( )Q iF  denotes the feature map of the 
thi  

query image. 

 Due to the fixed parameters in the distance-based similarity metric functions, it is necessary to 

manually select appropriate distance functions for different types of data. We design a new feature 

matching classifier (FMC) which consists of neural network. Compared with the distance-based 

functions, the FMC is a neural network model with trainable parameters, thus it is capable of 

learning an appropriate similarity metric function for SAR data based on the training dataset. To 

obtain the category probability of query images, we separately combine its feature map with each 

prototype. Then the FMC is utilized to process the combined feature maps. As shown in Figure 1, 

FMC contains the convolution, SENet, and linear modules. The combined feature maps are first 
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forwarded to convolution and SENet modules for further processing and optimization. Then the 

similarity score M Nz  between the query image and different prototypes is output by the linear 

module. ,i jz  z  is calculated by: 

, ( ( ), )i j Q jz f i= F c                              (5) 

where ( )f    represents the functional expression of the FMC model and    is the parameter 

matrix. The category probabilities are obtained by performing the softmax operation on the 

similarity scores: 

( )

( )
,

,

,1

exp

exp

i j

i j N

i nn

z
p

z
=

=


                           (6) 

3.5 Loss Function 

Many few-shot image recognition algorithms adopt the cross-entropy loss function that 

measures the differences between the recognition results and the corresponding ground-truth labels. 

Suppose My  denotes the ground-truth labels of the query images, and 
M Ny  is the one-

hot encoding of y . M  and N  respectively represent the numbers of images and categories in 

the query set. The expression of the cross-entropy loss is as follows: 

ce ,,

1 1

1
loss log

M N

i ji j

i j

y p
M = =

= −                         (7) 

In the proposed method, we calculate the similarity scores between the feature maps and the 

prototypes, thereby obtaining the recognition results. Therefore, the separability between different 

prototypes affects the recognition performance of our method. We design the prototype-separability 

loss as follows: 

ps 2

2

1
loss

i j

i j

=
− c c

                           (8) 

where  , 1,i j N  . In the training process, optimizing psloss   can effectively increase the 

separability between different prototypes, which helps to improve the performance of our method. 

We utilize loss1 and loss2 to denote the cross-entropy and the prototype-separability losses, 

respectively. By combining these two losses, the loss function of our method is shown in equation 

(9):  

loss=loss1+loss2                             (9) 



Algorithm 1 describes the training process of our method in detail.  

Algorithm 1: Training process of the proposed few-shot SAR image recognition method.  

Input: auxiliary set A . iterN  is the number of training iterations. N  denotes the number of categories in the 

auxiliary set. iA  denotes the subset of A  containing all the samples whose labels are i . SA  represents the 

auxiliary support set and QA  is the auxiliary query set. 
iSA  and 

iQA  respectively denote the subset of SA  

and QA  containing the samples whose labels are i . SN  and QN  are the numbers of the randomly selected 

samples.  

Output: learned parameter matrixes   and  .   and  denote the parameter matrixes of APN and FMC, 

respectively.  

for n  in  1, , iterN  do 

for i  in  1, , N  do 

⚫ randomly select SN  samples from iA  to form the subset 
iSA . 

⚫ calculate the prototype of 
iSA  using Equation (3). 

⚫ randomly select QN  samples from ( \
ii SA A ) to form the subset 

iQA . 

end for 

⚫ 
1 NQ Q Q=  A A A  , use ACNN model to extract the features of each image from QA   and 

calculate the category probabilities according to Equations (5) and (6).  

⚫ calculate celoss  and psloss  according to Equations (7) and (8). 

⚫ acquire the loss of our method by combing celoss and psloss . 

⚫ update parameter matrixes   and   by minimizing the combined loss. 

end for 

4 Experiments 

 In this part, we first introduce the datasets, the evaluation metrics, and the detailed 

implementation of our method. Afterwards, we compare the recognition performance of our method 

with that of other methods. Finally, the proposed method is further discussed, including 

effectiveness verification, influence of the auxiliary set, computational efficiency, and the new loss 

function.  

4.1 Preliminary 

4.1.1 Datasets Description  

 The experiments are performed on two SAR datasets: the Moving and Stationary Target 

Acquisition and Recognition (MSTAR) dataset and the Vehicle and Aircraft (VA) dataset.  

(1) MSTAR Dataset  

The resolution of the images in the MSTAR dataset is 0.3 m, and the image size is of 64×64 



pixels. The imaging radar works on the X-band with HH polarization, and the depression angles 

include 15° and 17°. This dataset contains ten categories of targets, namely T62, T72, BMP2, D7, 

ZIL131, BTR60, BTR70, 2S1, ZSU234, and BRDM2. The optical and SAR images are shown in 

Figure 3. Table 1 shows the numbers of images contained in the ten categories.  

 

Figure 3. The optical and SAR images in the MSTAR dataset. 

Table 1. The numbers of images contained in the MSTAR dataset. 

Category  
Depression 

17° 15° 

2S1 299 274 

ZSU234 299 274 

BRDM2 298 274 

BTR60 256 195 

BTR70 233 196 

BMP2 233 195 

D7 299 274 

ZIL131 299 274 

T62 299 273 

T72 232 196 

Sum 2747 2425 

We divide the MSTAR dataset into auxiliary, support, and query sets. As shown in Table 2, we 

randomly select six categories (BRDM2, BTR60, BTR70, ZIL131, T62, and T72) and the 

corresponding images are used to form the auxiliary set. Next, we respectively select K  images 

2S1           ZSU234         BRDM2          BTR60          BTR70 

 

BMP2            D7             ZIL131          T62             T72 



of the other four categories (2S1, BMP2, D7, and ZSU234) with the depression of 17° to construct 

the support set. Finally, the images from the same four categories with 15° depression are utilized 

to form the query set. As a result, the support and query sets share the same label space, which is 

non-intersect with that of the auxiliary set. 

Table 2. The numbers of images in the MSTAR auxiliary, support and query sets. 

Auxiliary set Support set Query set 

Category Depression  Number Category Depression  Number Category Depression  Number 

BRDM2 17°&15° 572 2S1 17° K 2S1 15° 274 

BTR60 17°&15° 451 BMP2 17° K BMP2 15° 195 

BTR70 17°&15° 429 D7 17° K D7 15° 274 

T62 17°&15° 572 ZSU234 17° K ZSU234 15° 274 

T72 17°&15° 428       

ZIL131 17°&15° 573       

Sum 3025 Sum 4×K Sum 1017 

(2) VA Dataset 

The VA dataset contains 5 categories of vehicles and 2 categories of aircrafts: sedan car, 

delivery truck, bus, business car, fire truck, airliner, and helicopter. Figure 4 shows the 

corresponding optical and SAR images. The resolution of the images is 0.5 m. The images sizes of 

the vehicles and aircrafts are 64×64 and 128×128, respectively. In the experiments, we resize the 

aircraft images to 64×64, which is consistent with the vehicle images. The imaging radar works on 

the C-band with HH polarization, and the depression angle is 45°. The numbers of images contained 

in different categories are shown in Table 3.  

In Table 4, the VA dataset is divided to auxiliary, support, and query sets. The auxiliary set 

consists of the images of sedan car, delivery truck, and helicopter. The support set is constructed by 

respectively selecting K   images from the other four types (bus, business car, fire truck, and 

airliner). Since the number of images in VA dataset is much less than that of the MSTAR dataset, 

the maximum value of K  is set to 5. Finally, the remaining images in the four types are used to 

form the query set.  



 

Figure 4. The optical and SAR images in the VA dataset. 

Table 3. The numbers of images contained in the VA dataset. 

Category Number 

Sedan car 35 

Delivery truck 35 

Bus 35 

Business car 35 

Fire Truck 35 

Airliner 38 

Helicopter 70 

Sum 283 

Table 4. The numbers of images in the VA auxiliary, support and query sets. 

Auxiliary set Support set Query set 

Category 

Sedan car 

Delivery truck 

Helicopter 

Number 

35 

35 

70 

Category 

Bus 

Business car 

Fire Truck 

Airliner 

Sum 

Number 

K 

K 

K 

K 

4×K 

Category 

Bus 

Business car 

Fire Truck 

Airliner 

Sum 

Number 

30 

30 

30 

33 

123 

  

Sum 140 

4.1.2 Evaluation Metrics 

 In the experiments, the overall precision (OP), overall accuracy (OA), average F1 (AF1) score, 

and kappa score are utilized for evaluating the recognition performance of different methods. OP 

and OA are calculated based on the confusion matrix of the recognition results: 

Sedan car        Delivery truck            Bus           Business car 

 

Fire truck            Airliner            Helicopter  



( )1
1

0

1
0

0

1
OP

N
N ij iij

N
i jij

e e
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−
−

=

−
=

=

=





                         (10) 

1

0

1
OA

N

ii

i

e
M

−

=

=                                (11) 

where M  and N  denote the numbers of images and categories in the query set, respectively. 

ije  is the element of the confusion matrix at coordinate ( )i, j . 
1

0

N

ijj
e

−

=  and 
1

0

N

jij
e

−

=  represent 

the element sums of the confusion matrix in the 
thi  row and 

thi  column, respectively. F1 score is 

the harmonic average of the precision and recall values. The F1 score of category i  is obtained 

using equation (12).  

P R
F1 2

P +R

i i
i

i i


=                               (12) 

Pi  and R i  denote the precision and recall values for category i : 
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e
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=


                              (14) 

The AF1 score is the weighted average F1 scores of different categories: 

1 1

0 0

1
AF1 F1

N N

ij i

i j

e
M

− −

= =

 
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 
 

                          (15) 

Kappa score measures the consistency between the predicted results and the ground-truth labels: 

Kappa
1

o e

e

p p

p

−
=

−
                           (16) 

op  and ep  are calculated by equations (17) and (18).  
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                     (18) 

4.1.3 Implementation Details 

 In the structure of our method, the APN includes three convolution modules, three SENet 

modules, and an averaging module. The ACNN shares the structures and parameters with the APN 

except for the averaging module. The FMC consists of a convolution module, a SENet module, and 



a linear module. The convolution module contains convolution, batch normalization, and pooling 

layers. The kernel size in convolution layers is 3×3, and the pooling layers adopt the average 

pooling operation with a size of 2×2. In the APN and ACNN, the kernel number for the convolution 

module is 64. The FMC adopts 128 kernels in the convolution module. The averaging module 

employs the averaging operation. The linear module in the FMC consists of two linear layers, and 

the numbers of neurons in these two layers are 256 and 1, respectively. The SENet is composed of 

a global pooing module and a linear module. The global pooling module contains a pooling layer 

which employs the global pooling operation. The linear module of SENet in APN and ACNN 

contains two linear layers, and the neuron numbers for these two layers are respectively set to 8 and 

64. In the FMC, the linear module of SENet also includes two linear layers, the neuron numbers of 

which are 16 and 128, respectively.  

4.2 Recognition Performance Comparison 

 We compare the proposed method with siamese neural network [28], matching network [29], 

prototypical network [30], relation network [31], DN4 [32], DSN [33], and FEAT method [34]. The 

Siamese neural network includes two CNN models for simultaneously extracting the features of two 

input images. Then the similarities of the two images are measured by a distance function. The 

matching network employs the attention and memory mechanisms for rapid learning. The 

prototypical network calculates the Euclidean distance between the query images and prototypes, 

thereby obtaining the label predictions. The relation network designs the relation model which 

adopts the neural network to compare the similarities of images. The DN4 method abandon the 

image-level features and adopt local descriptors to represents the local regions of the image. The 

DSN method utilizes the limited samples to construct dynamic classifiers. Based on the self-

attention mechanism, FEAT method is capable of extracting discriminative and task-specific image 

features.  

4.2.1 Experiments on the MSTAR Dataset 

 The MSTAR support set includes 4 categories, each of which contains K  labeled images. In 

the experiments of most few-shot learning method, the typical settings of K  are 1 and 5. Hence, 

we conduct our experiments under the typical settings. In other words, we compare the recognition 

performance of different methods under two conditions: “4-way 5-shot” and “4-way 1-shot”. 

(1) 4-way 5-shot 



The experimental results under the “4-way 5-shot” condition is shown in Table 5. The 

performance of our method outperforms that of the Siamese, FEAT, and DN4 algorithms. This 

because these comparison methods employ the distance-based similarity metric functions in which 

the parameters are fixed. In our method, we design the FMC which consists of neural network. 

Different from the distance-based functions, the FMC is capable of learning a suitable similarity 

metric function for SAR data in a data-driven way. The OP of our method achieves 98.73%, which 

outperforms that of the prototypical network by 6.35%. The reason is that we design the prototype-

separability loss and combine it with the cross-entropy loss in the training process. This new loss is 

capable of increasing the separability between different prototypes, which contributes to a higher 

recognition accuracy. Compared with the Relation and DSN methods, we improve the feature 

extraction ability of our model by embedding the SENet in the APN, ACNN, and FMC. As an 

attention model, the SENet emphasizes the important features while restrains the unimportant ones, 

thus the recognition performance of our method is effectively improved.  

Table 5. The recognition performance of different methods on the MSTAR dataset with “4-way 5-shot” condition. 

Methods OP OA AF1 Kappa 

Siamese  85.92% 82.89% 82.27% 77.05% 

FEAT 89.24% 88.20% 88.35% 84.17% 

Prototypical  92.38% 92.23% 92.24% 89.58% 

DN4 92.32% 91.35% 91.37% 88.39% 

Matching  94.98% 94.79% 94.77% 93.01% 

DSN 94.33% 94.20% 94.20% 92.22% 

Relation  95.23% 95.08% 95.07% 93.41% 

Ours 98.73% 98.72% 98.72% 98.29% 

To intuitively compare the recognition performance, we utilize the t-Distributed Stochastic 

Neighbor Embedding (t-SNE) algorithm to visualize the output of the eight methods. As shown in 

Figure 5, different colors denote different categories. In Figure 5 (h), only a small number of the 

query images are misclassified, thus our method can effectively distinguish different categories. In 

the visual figures of the other seven methods, however, the between-category distances are much 

smaller, which decreases the recognition accuracy. Especially in Figure 5 (a) and Figure 5 (b), the 

images of different categories are seriously confused. Table 6 shows the recognition performance 

of our method for different categories. As can be seen, the precision, recall, and F1 score of BMP2 

are all 100%. Due to the confusion in the recognition results, the performance of 2S1, D7, and 



ZSU234 is inferior to that of the BMP2. 

          

(a) Siamese               (b) FEAT             (c) Prototypical            (d) DN4 

            

(e) Matching               (f) DSN               (g) Relation              (h) Ours 

Figure 5. The visual figures of the outputs obtained by different methods on the MSTAR query set. Different colors 

denote different categories. 

Table 6. The recognition performance of our method for different categories in the MSTAR query set. 

Category Precision Recall F1-score 

2S1 100% 98.54% 99.26% 

BMP2 100% 100% 100% 

D7 97.12% 98.54% 97.83% 

ZSU234 98.18% 98.18% 98.18% 

(2) 4-way 1-shot 

Next, we compare the performance of different methods under the “4-way 1-shot” condition. 

As shown in Table 7, our method outperforms the other methods in OP, OA, AF1, and kappa score. 

The OP of our method reaches 97.08%, which demonstrates that our method is capable of obtaining 

satisfactory recognition performance with very few support images. Due to the weakness of 

distance-based similarity metric functions, the performance of Siamese, FEAT, and DN4 algorithms 

are inferior to that of our method. Since we adopt the SENet for enhancing the feature extraction 

and the prototype-separability loss for increasing the separability between different prototypes, the 

recognition accuracy of our method is superior to that of Matching, DSN, and Relation methods.  

 

 

 

 



Table 7. The recognition performance of different methods on the MSTAR dataset with “4-way 1-shot” condition.  

Methods OP OA AF1 Kappa 

Siamese  78.93% 76.79% 76.20% 68.86% 

FEAT 84.37% 83.97% 83.97% 78.50% 

Prototypical  89.22% 88.69% 88.66% 84.82% 

DN4 85.84% 85.64% 85.69% 80.73% 

Matching  85.73% 82.99% 83.38% 77.16% 

DSN 87.96% 87.32% 86.97% 82.98% 

Relation  92.91% 92.72% 92.69% 90.24% 

Ours 97.08% 97.05% 97.05% 96.04% 

4.2.2 Experiments on the VA Dataset 

The VA support set includes 4 categories, and the number of labeled images in each category 

is K . Table 8 shows the recognition performance of different methods under the “4-way 1-shot” 

condition. Our method obtains the highest OP, OA, AF1, and kappa score, which demonstrates that 

our method can achieve satisfactory recognition performance on different SAR databases. The OP 

of our method (92.75%) is higher than that of the relation network (86.67%) and DSN method 

(88.68%), which proves the superiority of the SENet. Compared with the Siamese, FEAT, and DN4 

algorithms, we adopt the FMC instead of the distance-based functions, thus a suitable similarity 

metric function for SAR data is learned in a data-driven way.  

Table 8. The recognition performance of different methods on the VA dataset with “4-way 1-shot” condition. 

Methods OP OA AF1 Kappa 

Siamese  73.09% 74.80% 73.61% 66.36% 

FEAT 90.13% 88.62% 88.20% 84.82% 

Prototypical  87.54% 84.55% 83.16% 79.39% 

DN4 87.94% 85.37% 84.95% 80.48% 

Matching  84.84% 84.55% 84.45% 79.36% 

DSN 88.68% 87.80% 87.80% 83.73% 

Relation  86.67% 86.18% 86.13% 81.54% 

Ours 92.75% 92.68% 92.69% 90.24% 

 Then we utilize the t-SNE algorithm to visually compare the performance of different methods. 

In Figure 6 (a)-(g), there exists obvious confusion between different categories. Since the between-

category distance in Figure 6 (h) is much larger, our method correctly recognizes most of the query 

images. The performance of our method for different categories is shown in Table 9. The precision, 

recall, and F1 scores of the business car and airliner are above 96%. However, the recognition 



performance of the bus and fire truck is inferior on account of the confusion.  

          

(a) Siamese               (b) FEAT             (c) Prototypical            (d) DN4 

            

(e) Matching               (f) DSN               (g) Relation              (h) Ours 

Figure 6. The visual figures of the outputs obtained by different methods on the VA query set. Different colors 

denote different categories. 

Table 9. The recognition performance of our method for different categories in the VA query set. 

Category Precision Recall F1-score 

Bus 83.87% 86.67% 85.25% 

Business car 100% 96.67% 98.31% 

Fire truck 89.66% 86.67% 88.14% 

Airliner 97.06% 100% 98.51% 

4.3 Discussion 

4.3.1 Effectiveness Verification of the Proposed Method 

 Compared with the prototypical network in [30], we employ three strategies to improve the 

recognition performance. At first, we design the FMC to replace the distance-based similarity metric 

functions. Afterwards, we embed the SENet in the APN, ACNN, and FMC for feature optimization. 

Finally, a new loss function is designed by incorporating the cross-entropy and prototype-

separability losses. Next, we verify the effectiveness of the FMC, the SENet, and the new loss 

function.  

In Table 10, “baseline” denotes the prototypical network [30]. As can be seen, the OP, OA, 

AF1, and kappa score of these three strategies outperform those of the “baseline”. The FMC 

automatically learns a suitable similarity metric function for SAR data, thus its performance is better 

than the distance-based functions where the parameters are fixed. The SENet utilizes attention 

values to assign weights for the feature maps. As a result, the representation of the prototypes and 



query image features are enhanced. In the training process, the new loss function is capable of 

enlarging the separability between different prototypes, which contributes to the performance 

improvement. By combining the three strategies, the performance of our method is further improved.  

Table 10. Effectiveness verification of FMC, SENet and new loss. Baseline denotes the prototypical network.  

Strategies OP OA AF1 Kappa 

Baseline 92.38% 92.23% 92.24% 89.58% 

FMC 95.98% 95.87% 95.89% 94.46% 

SENet 96.32% 96.07% 96.06% 94.72% 

New loss 95.88% 95.67% 95.68% 94.19% 

FMC + SENet 
+ New loss 

98.73% 98.72% 98.72% 98.29% 

4.3.2 Influence of the Auxiliary Set 

The above experiments take advantage of all the images in the auxiliary set during the training 

process. In this section, we discuss the performance of our method trained by partial auxiliary set. 

At first, we respectively set the number of images from each category of the MSTAR auxiliary set 

to 20, 40, 60, 80, and 100. The experiments are performed under the “4-way 5-shot” condition. 

Figure 7 (a) shows the performance of our method trained by different numbers of images. As can 

be seen, the OP of our method is around 89.5% when each category contains 20 images. This 

because the training images are insufficient, which decreases the recognition accuracy. As the 

number of training images increases, the recognition performance of our method is gradually 

promoted. When each category contains 100 images, the OP of our method reaches around 97%.  

 Next, we discuss the impact of image categories contained in the auxiliary set on the 

performance of our method. As shown in Figure 7 (b), we randomly select partial categories from 

the MSTAR auxiliary set, and the experiments are performed under the “4-way 5-shot” condition. 

It is obvious that the performance of our method improves with the increase of the number of 

categories. The OP of our method is below 70% when the auxiliary set contains two categories of 

images. As the number of categories increases to six, the OP of our method rises to around 99%. 

This because the more categories contained in the auxiliary set, the more difficult it is to recognize 

the images during the training process, which helps to promote the performance of our method.  



     

(a)                                           (b) 

Figure 7. The influence of auxiliary set on the performance of our method. (a) The OP of our method trained by 

different numbers of images. (b) The OP of our method trained by different numbers of categories. 

4.3.3 Computational efficiency 

 For evaluating the computational efficiency, we compare the running time of our method with 

that of the comparison methods. The experiments are performed on the MSTAR dataset with the “4-

way 5-shot” condition. The GPU in our computer is GeForce RTX 2080 Ti with 11 GB memory. 

Table 11 shows the running time for different methods to recognize all the images in the query set. 

The running time of our method is 1.37 s, which is much shorter than that of the Siamese neural 

network (3.78 s) and the relation network (3.19 s). This because the Siamese and relation networks 

calculate the similarity scores between the query image and each support image. By contrast, our 

method first generates the prototypes of different categories, then the similarity scores between the 

query image and different prototypes are calculated, thus less running time is needed. Besides, our 

method requires more running time than the prototypical network. This due to we adopt the FMC 

to promote the recognition performance, which increases the computational complexity.  

Table 11. The running time required for recognizing all the images in the MSTAR query set. 

Methods Running time 

Siamese  3.78s 

FEAT 1.31s 

Prototypical  1.09s 

DN4 2.62s 

Matching  2.28s 

DSN 2.47s 

Relation  3.19s 

Ours 1.37s 

4.3.4 Discussion of the new loss function 



 In our method, the loss function consists of the cross-entropy and the prototype-separability 

losses. The cross-entropy loss is a common loss function in image recognition tasks, and it is used 

for measuring the difference between the predicted labels and the ground-truth labels. We design 

the prototype-separability loss to increase the separability between different prototypes, which is 

combined with cross-entropy loss to train our model.  

The curves of the two losses over different iterations are drawn in Figure 8. We utilize loss1 

and loss2 to denote the cross-entropy and the prototype-separability losses, respectively. As the 

iteration increases, loss1 drops from around 1.8 to 0. Whereas, loss2 drops from around 0.0011 to 

0.0002. The magnitude of loss1 is much larger than that of loss2. 

    

              (a) cross-entropy loss                           (b) prototype-separability loss 

Figure 8. The curves of the cross-entropy and the prototype-separability losses over different iterations. 

We utilize the weight parameter   to enlarge the magnitude of loss2, and try a new manner 

to combine these two losses:  

loss=loss1+ loss2                           (19) 

To obtain an appropriate weight parameter, the    is set as 0, 1, 10, 100, 1000, and 10000, 

respectively. The OA of our method under different   is shown in Table 12: 

Table 12. The OA of our method under different   

  0 1 10 100 1000 10000 

OA  97.05% 98.72% 98.23% 97.94% 96.26% 89.28% 

When    is set as 0, the OA of our method is 97.05%. Whereas, the OA of our method 

increases to 98.72% if   is set as 1, which demonstrates the effectiveness of loss2. However, the 

OA of our method drops if   continues to increase. The reason is as follows:  

The loss2 is designed to increase the separability between different prototypes. According to 



the definition in equation (8), the loss2 does not measure the difference between the predicted labels 

and the ground-truth labels of the training images. If we separately use loss2 to train our model, the 

recognition accuracy of our method cannot be improved. In our method, the loss2 is utilized as an 

auxiliary loss which is combined with loss1 to train our model. As the weight of loss2 increases, the 

proportion of loss1 drops, thus the recognition accuracy of our method decreases. 

 In our method, we do not use the weight parameter to increase the magnitude of loss2. 

Although the magnitude of loss2 is much smaller than that of loss1, it is used as an auxiliary loss 

which is capable of improving the performance of our method.  

5 Conclusion 

 We present a new few-shot SAR image recognition method which consists of APN, ACNN, 

and FMC. The APN calculates the prototypes of different categories. The ACNN is adopt for 

extracting the feature maps of query images. We design the FMC to generate the similarity scores 

between the feature maps and prototypes. As a neural network model, the FMC can automatically 

learn a suitable similarity metric function for SAR images. We embed the SENet in the structure of 

our method for enhancing the expression of prototypes and feature maps. In addition, the loss 

function for our method is a combination of the cross-entropy and prototype-separability losses. 

This new loss promotes the recognition performance by increasing the separability between different 

prototypes. Experiments on the MSTAR and VA datasets prove that our method obtains satisfactory 

accuracy in the few-shot SAR image recognition tasks. For instance, the OP of our method achieves 

98.73% on the MSTAR dataset with the “4-way 5-shot” condition, which outperforms that of other 

few-shot learning methods such as DSN, DN4, matching network, and relation network. Our future 

work includes integrating the traditional features of SAR images into the few-shot recognition 

methods, and we believe that the finely-crafted traditional features will contribute to superior 

recognition performance.  
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