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Abstract

Tensor data analysis is the evolutionary step of data analysis to more than two
dimensions. Dealing with tensor data is often based on tensor decomposition
methods. The present paper focuses on unsupervised learning and provides a
python package referred to as TensorClus including novel co-clustering algo-
rithms of three-way data. All proposed algorithms are based on the latent block
models and suitable to different types of data, sparse or not. They are successfully
evaluated on challenges in text mining, recommender systems, and hyperspectral
image clustering. TensorClus is an open-source Python package that allows easy
interaction with other python packages such as NumPy and TensorFlow; it also of-
fers an interface with some tensor decomposition packages namely Tensorly and
TensorD on the one hand, and on the other, the co-clustering package Coclust.
Finally, it provides CPU and GPU compatibility. The TensorClus library is avail-
able at https://pypi.org/project/TensorClus/1.
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1. Introduction1

The amount of data collected in fields, as different as social networks, online2

shopping, or medicine has grown exponentially over the last decade. Nowadays,3
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the extraction of knowledge from such data can be based on data organized in the4

form of tensors instead of matrices. A tensor is a multidimensional array, which5

is also known as the N -way and Nth-order tensor; a third-order tensor has three6

dimensions. The use of tensors in data analysis applications was pioneered by7

researchers in psychometrics and chemometrics [1]. Two recent effective open-8

source Tensorly [2] and TensorD [3] are available. They offer a state-of-the-9

art tensor decomposition approach, including algorithms such as PARAFAC and10

Tucker decomposition.11

Here, we are interested in three-way data that are present in many appli-12

cations. In medical domain, for instance, we could have a tensor patients ×13

images × features, and the objective could be analyzing patient images based14

on extracted features. To deal with such data we focus on co-clustering that can15

be viewed as an extension of clustering [4] devoted to reorganizing a data matrix16

into homogeneous blocks. This objective has attracted many authors these two17

decades through different approaches based on information-theoretic [5], spectral18

co-clustering [6, 7], matrix factorization [8, 9], or probabilistic models [10, 11,19

12, 13, 14]. The recent Coclust package [15] provides the implementation of20

co-clustering algorithms designed to efficiently handle count data matrices [15].21

However, despite the great interest in co-clustering techniques on the one hand and22

the tensor decomposition methods on the other, few works tackle co-clustering23

from tensor data. To date, we can cite [16, 17] based on tensor-based decom-24

position while aiming to extract co-clusters. In contrast with these methods that25

require parameters tuning, in our proposal, the co-clustering objective is derived26

from flexible tensor latent block models which present many advantages described27

in [18] and illustrated in section 2.2. Previously, we proposed [19, 18] Tensor La-28

tent Block Model (TLBM) for the co-clustering of tensor data as illustrated in29

Figure 1. TLBM exploits the flexibility of the latent block model [4] and is able30

to consider any type of data i.e. continuous, binary, count tables. We also showed31

that the derived algorithms can be also used for the clustering of multiple graphs32

or multi-view clustering. The package TensorClus that we propose is the first33

free python package for tensor (co)-clustering and it is open-source.34

2. TensorClus package35

TensorClus is a Python library composed of five modules dedicated to each36

step of three-way data analysis, from data loading to the visualization of re-37

sults. Figure 2 shows the structures of the library and the packages that interface38
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Figure 1: Objective of Tensor Co-clustering.

with TensorClus, namely Tensorly, TensorD, and Coclust available in Python.39

Next, we describe in details the five modules depicted in Figure 2.

Figure 2: TensorClus library structure.40

2.1. Reader module41

To load tensor data, we built a Reader module that interacts with NumPy and42

Pandas packages. The module allows the following three ways of data loading:43

• Load data from a text file: The user should save the tensor in a text file44

where the three first columns represent the tensor indices of entries and45

the last column the value of each tensor entry. For this, we can use the46

read txt tensor function.47

• Load data from datasets: The user can import tensor datasets. We illustrate48

this step with datasets having different characteristics (see Table 1). The49

true partitions are also available for all datasets; they will be used just to50
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evaluate the algorithms in this package in terms of clustering. For loading51

a dataset, the user can use the function load dataset by specifying the52

dataset name.53

• Create a NumPy array: The user can also create tensor data as an NDarray54

using the NumPy package and use it for tensor clustering.55

Table 1: Characteristics of datasets.

Datasets Type #Slices #Node #Cluster
DBLP1 Text 4 1995 3
DBLP2 Text 4 2223 3

PubMed-Diabets-4K Text 4 4354 3
Nus-Wide-8 Text+Images 6 2738 8

Amazon-Products-10 Text+Images 7 9897 10

The detailed description of the integrated datasets is available in a public56

github repository 2.57

2.2. Decomposition and clustering modules58

There are four popular implemented tensor decomposition methods, namely59

Parafac, Non-negative Parafac, Tucker decomposition, and Non-negative Tucker60

decomposition [20, 21]. Note that these methods are not devoted to cluster-61

ing, however, they return factor matrices that can be used for clustering. The62

decomposition with clustering function is dedicated for this task. It has an63

argument algorithm for choosing which clustering algorithm among a list of64

suitable algorithms for the clustering of continuous data: Kmeans++, Spherical65

Kmeans, Spectral clustering (SC), and the EM algorithm derived from Gaus-66

sian Mixture Model (GMM) available in the Scikit-Learn package.67

Notice that, both learning representations and clustering tasks are performed68

successively –not simultaneously–. In contrast with these techniques, in our pro-69

posal with TensorClus the clustering procedure is carried out directly on three-70

way data and therefore does not require any learning representations.71

2.3. Co-clustering module72

Before describing the functions available in this module, we briefly present73

some essential points. From TLBM, different derived co-clustering algorithms74

are implemented. TLBM considers a three-way tensor data X = [xij] ∈ Rn×d×v
75

where n, d, and v are the dimensions; xij is (v × 1) vector (Figure 3).76

2https://github.com/boutalbi/TensorClus/blob/master/data_
description.md
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Figure 3: Three-way Data structure

To estimate the parameters of TLBM, we rely on variational EM, which opti-77

mizes the lower band of log-likelihood [22, 19, 18]. The implemented algorithms78

take as input the tensor X and the number of row clusters g and columns clusters79

m. It alternates two steps E and M ( Algorithm 1), until the objective function80

value change is small or there is no change. The Expectation (E) step consists in81

computing the posterior probabilities Z(t) = (zik) ∈ [0, 1]n×g with
∑g

k=1 zik = 182

and W(t) ∈ [0, 1]d×m with
∑m

`=1wj` = 1, and Maximization (M) step consists83

in updating model parameters Ω(t). The parameter Ω is formed by proportions of84

row clusters π = (π1, . . . , πg), proportions of column clusters ρ = (ρ1, . . . , ρm),85

and Θ which depends on the chosen probability distribution. Finally, at conver-86

gence, the algorithms return the row and column partitions and the estimated pa-87

rameters Ω.

Algorithm 1: TLBM
Input: X , g, m.
Initialization: Randomly generate (Z(0),W(0)) and compute Ω(0)

repeat
E-Step: Compute the posterior probabilities Z(t) and W(t)

M-Step: Update parameters Ω(t)

until Convergence;
return Z, W, Ω

88

With TensorClus, binary, continuous, and count data can be analyzed from89

Bernoulli, Gaussian, and Poisson models respectively. The co-clustering mod-90

ule provides the three following functions: tensorCoclusteringBernoulli,91

tensorCoclustringGaussian, and tensorCoclusteringPoisson that have the92

following arguments:93

• n clusters denotes the number of clusters.94
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• init row and init col are the initial partitions Z and W, respectively.95

This means that the partitions are not randomly generated.96

• max iter denotes the number of iterations.97

• fuzzy is a boolean value to choose if the final partition is hard or soft parti-98

tion.99

• gpu is a boolean value to select the type of execution, with or without GPU.100

Note that TensorClus interfaces with Coclust. Therefore the user can also101

consider carrying out a co-clustering by slice. Coclust has been designed to com-102

plete and easily interface with popular machine learning libraires such as scikit-103

learn. Using the sliceMatrixCoclustering function of the co-clustering104

module, the user can perform different co-clustering algorithms with Coclust.105

This is achieved by specifying the index of slices and the selected algorithm.106

Furthermore, a version dedicated for sparse three-way data referred to as TSPLBM107

is also proposed. The TSLBM algorithm tackles the clustering of multiple graphs. It108

is devoted to co-clustering of a three-way sparse data. Given X = [xij] ∈ Rn×n×v
109

where n is the number of nodes, and v the number of graphs (slices). We can110

view the derived algorithm as an implicit consensus clustering for multiple graphs.111

With the co-clustering module, sparseTensorCoclustering allows to apply112

sparse tensor co-clustering.113

2.4. Visualization module114

TensorClus also offers a module for data visualization to illustrate and ana-115

lyze the results of co-clustering. Figure 5 shows the three visualizations proposed116

by the Visualization module.117

• plot logLikelihood evolution plots the log-likelihood in function of it-118

erations.119

• plot parameter evolution provides the evolution of Θ at each iteration.120

At the convergence, this allows to compare and interpret the obtained co-121

clusters.122

• plot slice reorganisation reorganizes each slice of a three-way data123

according the obtained co-clusters.124
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Figure 4: Comparison results using DBLP1 dataset.

3. Comparison of tensor co-clustering and tensor decomposition125

This package allows to evaluate different algorithms dedicated to three-way126

data in terms of clustering. To reach this objective, we rely on datasets where127

a partition of one dimension is available, this is the case of the used three-way128

datasets. We propose to use external measurements such as accuracy (ACC),129

Normalized Mutual Information (NMI) [23], Adjusted Rand Index (ARI) [24].130

These last two are less sensitive to heavily imbalanced clusters. These measures131

are equal to 1 if the resulting clustering is identical to the true one.132

Applied on DBLP1, we compared the sparse tensor co-clustering algorithm133

TSPLBM with Parafac and Tucker decomposition combined with clustering al-134

gorithms. We use different ranks (10, 50, and 100) for tensor decomposition. We135

performed 30 runs with random initializations. Then we computed ACC, NMI,136

ARI, and computing time by averaging all runs. All experiments were performed137

using a PC with the following characteristics: Intel® Core 9e gen,a RAM(64138

Gb), and GPU NVIDIA® GeForce® GTX 1650 Max-Q. Figure 4 shows the per-139

formances of TSPLBM and the two algorithms Parafac and Tucker decomposition140

(with different ranks) followed with the four clustering algorithms.141

The experiments were performed using CPU version. It should be emphasized142

that TSPLBM gives better results, in terms of NMI than tensor-based decomposition143

algorithms combined with clustering. Tucker decomposition with a rank equal to144
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Figure 5: Tensor co-clustering results analysis for DBLP1 dataset.

10, combined with the GMM algorithm, achieves the best results after TSPLBM.145

In terms of time execution, TSPLBM is equivalent to Parafac combined with each146

clustering algorithm using a rank number equal to 50 and better than using the147

rank number equal to 100. Figure 5 shows the pictures obtained by the visu-148

alization module. We observe the log-likelihood increase at each iteration, and149

the algorithm converges at the 15th iteration (the plot on the left). In the middle150

figure, we observe the density evolution of co-clusters (densities of 3 diagonal151

co-clusters and one common density on outside of these co-clusters) given by152

plot parameter evolution. Finally, the figure on the right represents the slice153

reorganization based on the obtained co-clustering. We note that the three co-154

clusters with higher parameter values in the previous plot, are the three diagonal155

co-clusters; for details see [18].156

TensorClus offers CPU and GPU compatibility. The CPU version uses the157

classical matrix operations from NumPy package. And for GPU, we rely to CuPy158

package wich is a NumPy-compatible array library accelerated by CUDA [25].159

We compared the CPU and GPU versions of TSPLBM to evaluate computing time160

with both versions. In Figure 6 are reported the obtained results of CPU and GPU

Figure 6: Comparison results of CPU and GPU version of TSPLBM on the three datasets.

161
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versions in performing 10 runs for each version. We observe that TensorClus162

shows a slight performance using GPU implementation. These performances can163

be improved using a more powerful GPU. The experimentation’s source code is164

available in a public github repository of TensorClus.165

4. Conclusion166

TensorClus is a Python library for three-way co-clustering. It is convenient167

and straightforward by proposing a panel of the tensor (co)-clustering methods,168

under a permissive license. It is simple and provides several tools for data load-169

ing and visualization. The library offers some illustrative examples to compare170

TensorClus with tensor-decomposition approaches combined to popular cluster-171

ing methods. Thereby, the proposed implementation allows to easily interface172

with other python packages such as Numpy, Tensorly, TensorD and Coclust.173

For future work, we intend to extend the library by introducing tri-clustering meth-174

ods and targeting further improvements in performance using GPU computations.175
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Current code version243

Nr. Code metadata description Please fill in this column
C1 Current code version V0.0.1
C2 Permanent link to code/repository

used of this code version
https://github.com/boutalbi/

TensorClus

C3 Legal Code License BSD 3-Clause License
C4 Code versioning system used Git
C5 Software code languages, tools, and

services used
Python (>= 3.6)

C6 Compilation requirements, operating
environments & dependencies

Python (>= 3.6); packages: scikit-
learn, co-clust, tensorflow, numpy,
pandas, matplotlib, tensorly, tensorD.
It supports major operating systems
namely Microsoft Windows, MacOS,
and Ubuntu.

C7 If available Link to developer docu-
mentation/manual

For example: https://tensorclus.

readthedocs.io/en/latest/

and https://pypi.org/project/

TensorClus/

C8 Support email for questions boutalbi.rafika@gmail.com

Table 2: Code metadata of TensorClus
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