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ABSTRACT

Semantics and motion are two cues of essence for the success in video salient object detection. Most
existing deep-learning based approaches extract semantic features by the use of only one fully convo-
lutional network with a simple stacked encoders. They simulate motion patterns of video objects with
two consecutive frames being simultaneously fed into a convolutional LSTM network or a weights-
sharing fully convolutional network. However, such approaches have the shortcomings of producing
a coarse predicted saliency map or requiring significant computational overheads. In this paper, we
present a novel approach with cascaded fully convolutional networks involving motion attention (ab-
breviated as CFCN-MA), to achieve real-time saliency detection in videos. Our key idea is to construct
twofold fully convolutional networks in order to gain a saliency map from coarse to fine. We devise
an optical flow-based motion attention mechanism to improve the prediction accuracy of the initial
fully convolutional networks, using the popular FlowNet2-SD model that is efficient and effective for
motion pattern recognition of distinctive objects in videos. This method can obtain a fine saliency
map with a refined region of interest. Moreover, we propose a means for calculating attention-guided
intersection-over-union loss (shortnamed as AIoU) to supervise the CFCN-MA model in learning a
saliency map with both clear edge and complete structure. Our approach is evaluated on three popu-
lar benchmark datasets, namely DAVIS, ViSal and FBMS. Experimental results demonstrate that our
method outperforms many state-of-the-art techniques while meeting the real-time demand at 27 fps.

1. Introduction1

Salient object detection aims to identify regions of in-2

terest from images and videos. This can serve as a prepos-3

sessing method for many other application problems in both4

video analysis and image analysis, such as scene understand-5

ing [42], visual tracking [2], and person re-identification6

[46]. The saliency detection can be roughly divided into7

two types of task, namely human eye fixation prediction and8

salient object detection. The slight difference between them9

is that the former targets at distinguishing the fixation points10

at first glance and the latter at segmenting the obvious ob-11

jects in scenes. In the area of image modelling and analysis,12

the task of salient object detection, highly correlated to se-13

mantic segmentation, has rekindled extensive studies since14

the fully convolutional network (FCN) [24] was proposed. In15

this paper, we focus our attention on the problem of salient16

object detection in videos.17

Video salient object detection is more challenging than18

image salient object detection, since objects in videos are19

not only semantically relevant but also temporally relevant.20

Video objects may be dynamically changing and the region21

of interest in a video sequence may suffer from a constant22

variation over time, including: deformation of different de-23

gree, transformation in colour and variation on scales. Un-24

like image saliency detectionwhere semantic clue has a deci-25

sive impact on the prediction of results, motion information26

∗Corresponding author.
lybyp@nwpu.edu.cn (Y. Li)

between two consecutive frames plays a significant role in 27

video saliency detection as human viewer is prone to paying 28

a higher attention on objects of faster movement. In addition, 29

motion patterns of video objects canwork as an auxiliary cue 30

to facilitate the detection of certain prominent regions whose 31

appearance may change constantly as time goes by and may 32

seem to be very similar to that of the cluttered background. 33

Nevertheless, how to effectively integrate semantic cue and 34

motion cue remains a critical challenge in the literature. 35

Existing approaches for detecting video salient objects 36

mainly involve two steps: first to extract the spatial and 37

temporal features, and then to apply a spatio-temporal fu- 38

sion strategy to produce a final saliency map. In particu- 39

lar, deep learning models have been shown to offer a sub- 40

stantially higher accuracy than traditional methods, due to 41

their strong capability of feature representation. Typically, 42

advance in deep-learning based video salient object detec- 43

tors has been driven by the use of fully convolutional net- 44

works [24] and convolutional LSTM (convLSTM) [41], for 45

semantic feature (or high-level spatial feature) extraction and 46

motion feature (or temporal feature) extraction, respectively. 47

For instance, the FCN-based model as proposed by Wang 48

et al. [36] exploits one FCN with its input being an image 49

for semantic extraction and another weights-sharing FCN 50

with two consecutive frames concatenated together to act as 51

the input for motion extraction. This method has achieved 52

an impressive performance in detection accuracy but suf- 53

fers from the problem of coarse prediction, due to the loss of 54

many details in high-level spatial features. The convLSTM 55
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model proposed by Shi et al. [41] entails an excellent per-56

formance on edge detection. The prediction accuracy of the57

resulting deep-learning models for video salient object de-58

tection is considerably improved through taking advantage59

of FCN for semantic feature extraction, followed by employ-60

ing a bi-directional convLSTM for spatiotemporal feature fu-61

sion [20, 21, 29]. However, the coarse detection problem62

remains: the approach has the difficulty in detecting small63

salient objects. This is largely due to the fact that the fusion64

of spatial and temporal features is carried out at a rather late65

stage during the overall detection process.66

To address this problem, we present a method, short-67

named CFCN-MA in this paper. It works by initially con-68

structing a semantic FCN for the prediction of a coarse69

saliency map, while utilising a FlowNet model to extract70

motion features and fusing such features with a motion at-71

tention module (to enhance coarse saliency detection), and72

ultimately by leveraging another cascaded FCN to obtain a73

refined final detection outcome. It combines two key ideas:74

One takes advantage of cascaded fully convolutional net-75

works for obtaining the semantic features from coarse to fine,76

and the other implements the strategy of optical flow-based77

knowledge transfer learning for effective extraction of mo-78

tion information, creating a motion based channel attention79

to rectify coarse semantic features.80

Compared to the existing FCN-based approach (e.g.,81

[36]), CFCN-MA offers a “coarse-to-fine" framework, with82

two sub-networks cascaded to resolve the coarse prediction83

problem that would otherwise result from the use of only one84

fully convolutional network involving a simple stack of con-85

volution layers. Note that previous FCN-based models en-86

code feature hierarchies in a non-linear local-to-global pyra-87

mid, causing deeper semantic features to be coarser due to88

the loss of further low-level spatial details. To address this89

important shortcoming, each fully convolutional network90

in CFCN-MA incorporates features obtained from multiple91

layers into the computation of the final result, directly or in-92

directly.93

This general design works well for simple scenes, but94

may fail to separate a region of interest from certain com-95

plicated scenes. For example, background context may be96

almost the same as the appearance of salient objects, or the97

region of interest occupies quite a small proportion within98

the whole frame. Fortunately, it is possible to address these99

issues in videos by taking the temporal information into con-100

sideration. Previous deep models attempt to exploit a se-101

quential structure of an FCN followed by a convolutional102

LSTM framework (referred to as FCN-ConvLSTM here-103

inafter), to fuse spatial and temporal features. This is not104

sufficiently efficient to achieve comprehensive spatiotempo-105

ral features due to the late incorporation of temporal infor-106

mation. However, in dealing with a dynamic visual scene,107

optical flow, regarded as a motion pattern of object surface108

and edges, can be utilised to detect small moving objects.109

Inspired by this observation, CFCN-MA employs optical110

flow as temporal information, thereby achieving the fusion111

of spatiotemporal characteristics with an attention mecha-112

nism. Considering the lack of labeled optical flow informa- 113

tion in the problem domains concerned, a pre-trained optical 114

flow model is herein use to extract the motion features. 115

In practice, real-time video salient object detection is of- 116

ten required, leading to the challenge of trading off between 117

accuracy and real-time performance. For this purpose, we 118

intend to reduce the amount of network parameters as much 119

as possible, while maintaining the insurance regarding accu- 120

racy. Consequently, in devising the present approach, within 121

the first semantic fully convolutional network, the structure 122

is set to contain only a small backbone, to be followed by 123

a lightweight refinement fully convolutional network in a 124

cascaded manner. Between them, a motion attention mod- 125

ule is designed that employs an optical flow model named 126

FlowNet2-SD, in an effort to ensure a better trade-off be- 127

tween computational efficiency and accuracy. 128

Our contributions are threefold: (1) Development of a 129

cascaded fully convolutional network system, including a 130

semantic fully convolutional network, which is utilised to 131

capture the spatial context of static images in order to ob- 132

tain a coarse saliency map, and another lightweight refine- 133

ment fully convolutional network, to further obtain a final 134

fine saliency map. (2) Design of a motion attention module 135

by adopting optical flow-based motion information, to gen- 136

erate an enhanced saliency map with an efficient pre-trained 137

FlowNet2-SD model, which helps deal with small displace- 138

ments while performing optical flow extraction, to satisfy 139

real-time requirement. (3) Proposal for a method of com- 140

puting attention-guided intersection-over-union (AIoU) loss, 141

which is exploited to reduce the representation lose of any 142

internal structure within salient objects, while focusing on 143

edge learning. 144

The rest of this paper is organized as follows. Section 145

2 presents an overview of related work to the developments 146

reported herein. Section 3 details the proposed approach. 147

Section 4 shows experimental results and finally, Section 5 148

concludes this work and points out directions for interesting 149

further research. 150

2. Related Work 151

2.1. Models for Video Salient Object Detection 152

Saliency detection can be classified into human eye 153

fixation prediction and salient object detection, involving 154

saliency detection and analysis in images [33] or in videos 155

[11, 12, 13, 37]. The main difference between human eye 156

fixation and salient object detection is: The former aims to 157

predict the distribution of human fixation points, whereas the 158

latter does to perform binary classification for each pixel in 159

an image or a single video frame. Over the past two decades, 160

saliency detection in images has been intensively studied, 161

while video saliency detection is still a relatively unexplored 162

territory. In this paper, we focus on the work of highlighting 163

the main salient objects in videos, that is, the work on video 164

salient object detection. 165

1) Conventional Models: Most previous investigations 166

(e.g., SGSP [22], SPVM [23], SAGM [34], and GFVM [35]) 167

of video salient object detection are simple extensions of 168
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existing image salient object models, while assuming cer-169

tain additional motion features. Such models exploit both170

hand-crafted spatial features in a bottom-up mechanism and171

temporal information (e.g., optical flow and difference-over-172

time), with limited representation ability.173

2) Deep-learning Models: Deep learning-based models174

for video salient object detection have also been proposed.175

Performance-wise, these models beat the traditional meth-176

ods by a large margin, benefited from large-scale datasets177

and the strong learning ability of deep neural networks. Typ-178

ically, early deep learning models applied in video salient179

object detection are devised for spatial feature extraction.180

With a great success of utilising a fully convolutional net-181

work (FCN) for image segmentation [24], the DLVS model182

[36] exploits the FCN structure to predict salient object in183

videos, also achieving a promising performance. Subse-184

quently, a number of fully convolutional networks combined185

with convLSTM (FCN-ConvLSTM), such as FGRN [20],186

PDBM [29] and SSAV, have been put forward for video187

salient object prediction.188

2.2. Related Network Design189

1) Cascaded FCN Structure: Currently, deep learning190

basedmodels for video salient object detection [7, 16, 20, 29]191

exploit either FCN structure or FCN-ConvLSTM structure.192

The FCN structure-based approach only includes one fully193

convolutional network. For example, the DLVS model [36]194

utilises a fully convolutional network for the detection of195

static salient objects (in a single video frame), and then feeds196

two concatenated adjacent frames into the same fully convo-197

lutional network to predict salient objects in dynamic scenes.198

Such early use of the FCN structure is composed of a stack199

of convolution operations (also known as down-sampling),200

resulting in the potential severe loss of low-level spatial in-201

formation and hence, often yielding a coarse inference out-202

come. Another type of FCN-ConvLSTM structure based203

model (e.g., FGRN [20], PDBM [29], and SSAV [11]) works204

by combining a fully convolutional network and a recurrent205

network to exploit both spatial feature and temporal informa-206

tion, in implementing video salient object prediction. How-207

ever, the spatial and temporal features are only incorporated208

together in a sequential manner, failing to learn spatiotem-209

poral features simultaneously and comprehensively.210

This paper extends the FCN structure to a cascaded FCN211

structure, with the employment of two FCNs, named seman-212

tic network and refinement network respectively. In order to213

obtain a high-resolution feature map, each FCN takes advan-214

tage of its inherent encoder-decoder architecture with a skip-215

connected mechanism, to integrate the deep, low-resolution216

feature maps in support of more accurate object detection.217

2) Motion Attention Mechanism: Attention mechanisms218

[11, 19, 38] have been widely used in video salient object219

detection. However, for motion based attention mechanism,220

how to effectively representmotion information between two221

adjacent frames remains a significant challenge. Optical222

flow can be regarded as a means to depict the motion of in-223

dividual pixels on a given image plane, offering a principled224

method to compute the motion of image intensities in the 225

scene under consideration. Early video saliency detection 226

techniques mainly employ the conventional Lucas-Kanade 227

mechanism [3] or its variant [4] to compute optical flow, 228

thereby being not sufficiently accurate while requiring heavy 229

computation. Recently, Dosovitskiy et al. [9] utilised a con- 230

volutional neural network (known as FlowNet) to model op- 231

tical flow with high accuracy, but its speed remains unsatis- 232

factory for real-time applications. 233

Through further optimisation of FlowNet, Eddy et al. 234

[15] proposed FlowNet2.0, which has achieved the best per- 235

formance on both accuracy and speed so far. In FlowNet2.0, 236

several sub-system components (of a different number of pa- 237

rameters) are introduced to deal with various motion charac- 238

teristics, including FlowNet2-S (147M weights), FlowNet2- 239

C (149M weights) and FlowNet2-SD (173M weights). 240

Amongst them, FlowNet2-SD is shown to be able to cope 241

with small displacements, and FlowNet2-C is able to com- 242

pute optical flow with large displacements. Moreover, 243

FlowNet2-SD has a better performance than FlowNet2-C on 244

dealing with small objects. This property can be utilised to 245

resolve the aforementioned problem when facing the situa- 246

tions where salient objects are too small, or when objects 247

of interest may be occluded by other non-salient objects. 248

Following this idea, we employ FlowNet2-SD to simulate 249

the temporal information between two continuous frames in 250

the present work. Different from the composite attention 251

method as introduced by Lai et al. [19], our method forwards 252

the obtained optical flow map to a self-attention mechanism, 253

enabling an optical flow based saliency map to be computed, 254

The resulting saliency map is then multiplied by the coarse 255

saliency map that has been previously generated from the 256

semantic FCN via dot product, to achieve a spatiotemporal- 257

fused saliency map. 258

3. Proposed Approach 259

Figure 1 illustrates the general framework of our pro- 260

posed system, comprising cascaded fully convolutional net- 261

works with motion attention, for progressively real-time 262

video salient object detection. Given two adjacent frames in 263

a video sequence, the semantic FCN is firstly employed for 264

coarse saliency detection of a single (current) frame. Then, 265

the resulting two consecutive frames are simultaneously fed 266

into the pre-trained optical flow model (FlowNet2-SD) to 267

produce motion features. The motion attention module ex- 268

ploits such motion features to enhance the saliency map ob- 269

tained from the semantic FCN, resulting in a spatiotemporal 270

based coarse saliency map. Finally, the refinement FCN is 271

used to refine it to obtain a final saliency map. In the follow- 272

ing subsections, we describe the details of how to extract 273

a coarse saliency map, and of how to integrate the motion 274

priors into the coarse-to-fine procedure for fine saliency de- 275

tection. 276

3.1. Coarse Saliency Map via Semantic FCN 277

The variant U-shaped fully convolutional network [28] 278

is herein taken to implement the semantic FCN, to predict a 279
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Figure 1: Proposed CFCN-MA framework is comprised of three parts: a semantic fully convolutional network for predicting a
coarse saliency map, a motion attention module for generating an enhanced saliency map, and a refinement fully convolutional
network for yielding an ultimately fine saliency map.

coarse saliency map for each frame in a given video clip.280

This choice is based on the observation that the original281

fully convolutional network and its variants have been ex-282

tensively studied for semantic segmentation or image salient283

object detection, capable of achieving breakthrough results.284

In videos, salient object detection can be treated as a binary285

segmentation problem which simply separates the region of286

interest from a clustered background. The U-shaped fully287

convolutional network is the state-of-the-art method for bor-288

der region segmentation. At the stage of coarse prediction,289

we employ one bit deeper-and-wider U-shaped semantic290

FCNwith ResNet34 as the backbone. Here, by “deeper-and-291

wider" it means a deeper depth and wider channel [14, 43].292

The reason behind this design decision is that a larger model293

can prevent under-fitting given sufficient training data.294

As shown in Figure 1, the semantic FCN contains seven295

encoder layers, one bridge layer, six decoder layers and one296

classifier. Within the encoder part, the first encoder layer297

is a fundamental convolution unit (ConvBnRelu), composed298

of a convolution operation, a batch normalisation and a rec-299

tified linear (ReLU) activation function. The second-to-300

fifth encoder layers correspond to the first-to-forth layers of 301

ResNet34, respectively. The sixth and seventh encoder lay- 302

ers each involve three stacked residual blocks (ResBlocks). 303

Note that the fifth and sixth encoder layers are each followed 304

by a max-pooling operation. The bridge part contains three 305

stacked fundamental convolution units. Within the decoder 306

part, except the last decoder layer, each layer has three fun- 307

damental convolution units, cascading the output of the pre- 308

ceding layer and that of the corresponding encoder layer to- 309

gether before proceeding to the first convolution unit. This 310

skip-connected mechanism effectively integrates low-level 311

features from multi-layers into high-level semantic features, 312

thereby improving the accuracy of salient object detection. 313

Finally, a convolution followed with a sigmoid activation 314

function is used as the classifier. 315

Given each frame of a video sequence, a coarse saliency 316

map is obtained by passing it onto this semantic FCN. In or- 317

der to speed up the model convergence in the training phase, 318

each decoder layer is followed by the corresponding classi- 319

fier and guided by a loss. In recognition of the practical limit 320

of having (relatively) scarce training data for video saliency 321
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detection, a dataset acquired from static image object detec-322

tion is employed for the training of this semantic FCN to323

obtain a coarse saliency map.324

3.2. Motion Attention for Enhanced Saliency Map325

The essential difference between saliency detection in326

images and that in videos is that video objects are dynamic327

and the appearance of the same salient objects may change328

constantly, whereas image saliency detection does not have329

this problem. A semantic FCN may perform well in ei-330

ther image or video domains, especially when the appear-331

ance of the detected objects forms in great contrast against332

the background. Nonetheless, it may fail in certain cases,333

where salient objects have similar appearance features to334

those of the background, e.g., of the same illumination, in-335

distinguishable colour and overlapped texture, or where they336

become too small in size over the time Specific motion cues337

in a video sequence are therefore employed to tackle this is-338

sue.339

Optical flow offers an effective representation for rela-340

tive motion patterns of the object surface and edges from341

one frame to the next. In our method, we apply optical flow342

features in the design of motion attention in an effort to im-343

prove the prediction accuracy. However, the (current) data344

available for video salient object detection does not have any345

annotated information of optical flow, so it cannot be utilised346

to train an optical flow model from scratch. Inspired by the347

work on specific-domain knowledge based transfer learning348

[5], the existing optical flow model is adapted to extract mo-349

tion features between two adjacent frames. Considering the350

real-time demand for video related applications, the selected351

optical flow model must have a high accuracy whilst not be-352

ing too time-consuming. Here, FlowNet2-SD [15], which353

has a good trade-off between accuracy and running speed,354

is chosen to extract the motion feature set M. To fuse the355

motion priors within the proposed framework, motion prior356

is introduced based attention to enhance the coarse saliency357

map C obtained from the semantic FCN.358

This motion attention strategy performs a convolution359

operation followed by another convolution unit in order to360

deal with the extracted motion map and therefore, the re-361

sulting map F. This is further handled by an adaptive aver-362

age pooling and two convolutions which are subsequently,363

followed by ReLU and a sigmoid function. We denote the364

output of this channel attention as A. Consequently, the en-365

hanced motion map M′ can be generated and formulated366

such that367

M′ = A × F (1)

where the range of A is from 0 to 1, and the value of M ′
368

belongs to (0, +∞). Finally, the enhanced motion map M′
369

is passed onto the classification module (a convolution fol-370

lowed by a sigmoid function) to obtain a temporal saliency371

map T, which is subsequently employed as the motion atten-372

tion cue to correct the coarse saliency mapC returned by the373

semantic FCN, through374

C′ = C × T (2)

where C′ is the resulting enhanced saliency map, and the 375

value range of the motion attention map T is [0, 1]. 376

3.3. Fine Saliency Map via Refinement FCN 377

Although optical flow based motion patterns are quite 378

useful for video salient object detection, they may corre- 379

spond to immobile objects which are not salient, due to cam- 380

era motion [21]. Such introduced noise (non-salient ob- 381

jects) makes the enhanced saliency map C′ become worse 382

than the previous obtained coarse saliency map. To address 383

this problem, another V-shaped fully convolutional network, 384

termed refinement FCN hereafter, is further introduced to 385

make the enhanced saliency map C′ more accurate. Since 386

the amount of training data for video saliency detection is 387

typically inadequate, at this fine-tuning stage, a lightweight 388

residual refinement FCN is developed to avoid over-fitting. 389

The structure of this refinement FCN is comprised of 390

four encoders, four decoders and one classifier. Every en- 391

coder except the first one contains a convolution unit (Con- 392

vBnRelu) and a max-pooling operation. The first encoder 393

adds an extra convolution operation before the convolution 394

unit in order to deal with the enhanced motion map M′. 395

Each decoder consists of a basic convolution unit and an 396

up-sampling operation. Before decoding, the previous up- 397

sampling result and the corresponding convolution result are 398

cascaded together. The classifier implements a simple con- 399

volution operation. The final saliency map Sfinal is obtained 400

by directly adding the fine saliency map Sfine onto the en- 401

hanced saliency map C′, as formulated by 402

Sfinal = C′ + Sfine (3)

403

3.4. Training Loss 404

As mentioned previously, saliency detection is of high 405

relevance to segmentation. More specifically, saliency de- 406

tection can be treated as a binary (foreground and back- 407

ground) classification problem at pixel level. Therefore, the 408

binary cross entropy (bce) loss [8] can be used to train the 409

entire model. However, the bce loss does not consider any 410

relationship among pixels, and a fully convolution network 411

may suffer from the problem of coarse prediction, especially 412

concerning blur edge and structure loss. 413

To tackle this problem, while noticing the success of 414

utilising the generalised intersection-over-union (GIoU) loss 415

[27] for bounding box regression, we propose an attention- 416

guided intersection-over-union (AIoU) loss, including an 417

IoU component to clear the edge of salient objects and an 418

attention-guided component to retrieve internal structure of 419

salient objects. Figure 2 illustrates the idea of this proposed 420

AIoU loss. In particular, Figure 2(a) shows an example of 421

a predicted saliency map guided by the bce loss. The yel- 422

low area in Figure 2(b) illustrates the predicted saliency map 423

supervised by the combination of the bce loss and the IoU 424

loss. The contour labeled in red line in this figure depicts 425

the edge of the saliency map. It can be seen that the result 426

predicted via the combination of the bce loss and the IoU 427
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Figure 2: Results of saliency map predicted using different
losses: (a) is a saliency map supervised by bce loss; (b) and (c)
are saliency map guided by bce loss combined with IoU loss
and that by proposed AIoU loss, respectively; (d) is ground
truth of corresponding saliency map.

loss is of good quality on the edges. However, this combi-428

nation is unable to sufficiently preserve the structure of the429

underlying salient object, because it only considers true pos-430

itive/negative pixels but ignores the false negative/positive431

ones. To improve the sensitivity to the structure of the salient432

object, the IoU loss is herein modified as the attention-433

guided (AIoU) loss, paying an extra attention on any incor-434

rectly predicted pixels within the salient region.435

The proposed AIoU loss can be formulated as436

lAIoU = 1 − (IoU − E
G
) (4)

where E denotes the number of misclassified pixels that437

should belong to the foreground but predicted as the back-438

ground, and G is the sum of a binary ground truth pixels.439

As the IoU loss is an intersection-over-union, it makes an440

effective guidance in the learning of the clear edge of salient441

objects, but may cause certain inner structure loss. To en-442

hance the learning of the salient object structure, we add a443

correction term E
G (to the IoU), representing an error rate of444

the pixels mis-predicted within a salient region. In so doing445

if there are more salient pixels being wrongly predicted, the446

value of the total loss will increase.447

The overall cost function is therefore,448

L =
K
∑

(k=1)
l(k)bce + l

(k)
AIoU (5)

where l(k) is the ktℎ sample loss, K is the number of frames449

in the video clip addressed, l(k)bce denotes the bce loss, and450

l(k)AIoU denotes the proposed attention-guided IoU loss. In451

summary, to speed up the convergence of the entire model,452

we add this loss to the end of each decoder part at the refine-453

ment stage.454

4. Results and Discussions 455

4.1. Datasets 456

Our proposed approach is evaluated on four popular pub- 457

lic benchmark datasets: Densely Annotated Video Segmen- 458

tation (DAVIS) [45], Freiburg-Berkeley Motion Segmenta- 459

tion (FBMS) [42], ViSal [17], and DAVSOD [11]. The 460

DAVIS dataset is originally built for video object segmen- 461

tation. It has 50 high-quality video sequences, covering dif- 462

ferent technical challenges, such as occlusions, motion-blur 463

and appearance changes. The FBMS dataset is initially cre- 464

ated for motion segmentation, covering 59 video sequences 465

with a split into a training set (29 video sequences) and a test 466

set (30 video sequences). In this dataset, there are multiple 467

objects moving at the same time. The ViSal dataset is the 468

earliest for video salient object detection, collected from the 469

existing video datasets and YouTube, including 17 video se- 470

quences with 963 frames and 193 annotated frames in total. 471

DAVSOD is the largest scale dataset for video salient object 472

detection, including 90 training, 46 validation and 90 testing 473

(split into 35 easy, 30 normal and 25 difficult) videos. The 474

performances of our model and other alternatives are com- 475

pared on the DAVIS test set, the FBMS test set, the entire 476

ViSal dataset (because there is no split of testing and train- 477

ing sets in the ViSal dataset) and the DAVSOD-35 dataset. 478

4.2. Evaluation Metrics 479

There are three widely-used performance measures in 480

video saliency detection, including: mean absolute error 481

(MAE)  [25], F-measure  [1], and S-measure  [10]. 482

Given a saliency map S, it initially has to be converted 483

into a binary mask. Then precision and recall can be defined 484

respectively as below: 485

Precision =
|S ∩G|

|S|
(6)

Recall =
|S ∩G|

|G|

(7)

where | ⋅ | stands for the number of non-zero binary pixels, 486

and G denotes the collection of binary ground-truth pixels. 487

The MAE metric considers both salient and non-salient 488

pixels. It calculates the average difference between a final 489

saliency map S and a binary ground-truth G, such that 490

MAE = 1
(wℎ)

w
∑

x=1

ℎ
∑

y=1
||S(x, y) −G(x, y)|| (8)

wherew and ℎ are the width and the height of an input frame 491

respectively, and both saliencymap S and ground truthG are 492

normalised to the values between 0 and 1. 493

The F-measure is a weighted harmonic of precision and 494

recall, defined as 495

F� =
(1 + �2)Precision × Recall
�2Precision + Recall

(9)

where �2 = 0.3 is assigned to allocate more weight to pre- 496

cision than recall. A set of F-measure values is first com- 497

puted for each saliency map with the threshold ranging from 498
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0 to 255, leading to an average F-measure score. Then, a499

sequence of such mean F-measure scores is computed with500

respect to all predicted saliency maps, with the maximum501

mean F-measure selected as a final evaluation index.502

The S-measure captures the similarity over non-binary503

foreground maps, comprising a region-aware structural sim-504

ilarity and an object-aware structural similarity, which is de-505

fined by506

S = � ⋅ So + (1 − �) ⋅ Sr (10)

where � ∈ [0, 1] and � is herein empirically set to 0.5. The507

further details of the computation of So and Sr are omitted508

here but can be found in [10].509

4.3. Experimental Setup and Implementation510

At the training phase, due to the inadequate amount of511

the training data for video saliency detection, we adopt the512

largest image salient dataset (DUTS-TR) [32], to train the se-513

mantic FCN first. This dataset contains many diverse salient514

objects, and totally has 10533 images. To train CFCN-515

MA, the above pre-trained semantic FCN in the static im-516

age domain is used to initialise the weights of the semantic517

FCN component within it and the pre-trained FlowNet2-SD518

model is used to obtain the optical flow between two adja-519

cent frames. Then, for testing on the DAVIS, FBMS and520

ViSal datasets, we combine the DAVIS and FBMS train-521

ing datasets to train the entire CFCN-MAmodel end-to-end.522

For testing over the DAVSOD dataset, we use the DAVSOD523

training dataset to train CFCN-MA. Also, each image is first524

re-scaled to 256 x 256 and then resized to 224 x 224 via a bi-525

linear interpolation. The entire model is optimised using the526

Adam optimiser [18], with a learning rate of 0.001 and other527

default hyper parameters typically used in the literature. We528

train the CFCN-MA network for approximately 100K itera-529

tions.530

Our proposed method is implemented on the commonly-531

used open source framework: Pytorch 0.4.1. A 16-core PC532

with an Intel(R) Xeon(R) E5-2620 v4 2.10GHz CPU (with533

512 GB RAM) and four GeForce GTX 1080 Ti GPUs (with534

11GB memory) are used to train and test the model. The535

total size of our proposed CFCN-MA is 260M, including the536

173M FlowNet2-SD and 87M remaining modules.537

4.4. Comparison with State-of-the-arts538

We quantitatively and qualitatively compare the pro-539

posed approach with other 17 methods, including ten tra-540

ditional approaches (SIVM [26], TIMP [47], SPVM [23],541

RWRV [17], MB+M [44], SAGM [34], GFVM [35], STBP542

[40], SGSP [22], SFLR [39]), and seven deep-learning based543

approaches (MSTM [31], SCOM [6], SCNN [30], DLVS544

[36], FGRN [20], MBNM [21], and PDBM [29]).545

4.4.1. Quantitative Evaluation546

Table 1 shows the results of quantitative comparison be-547

tween our method (CFCN-MA) and other competing ap-548

proaches, on four datasets in terms of all evaluation met-549

rics (namely (MAE) , F-measure  , and S-measure  .550

It demonstrates that deep learning-based methods for video 551

saliency detection significantly surpass the classical meth- 552

ods. CFCN-MA is also a deep learning-based approach, 553

and its performance is superior to all others, across all four 554

datasets regarding almost all evaluation metrics. In particu- 555

lar, for MAE, F-measure and S-measure, our method almost 556

ranks the top on all test datasets. 557

Examining these results more closely, we have the fol- 558

lowing noteworthy observations: (1) Deep learning based 559

methods consistently outperform conventional methods by a 560

large margin. Different from the conventional saliency de- 561

tection methods which mainly rely on man-made features, 562

deep learning based methods can generate features automat- 563

ically. This further verifies that deep features beat human- 564

made features on video salient object detection. (2) Our 565

method is of the lowest MAE value and the highest F- 566

measure and S-measure values amongst all deep-learning 567

based methods on all datasets. Particularly, these results 568

show that CFCN-MA outperforms the other FCN-based 569

models (i.e., DLVS and PDBM). This is attributed to the 570

proposed motion attention using the optical flow as prior 571

knowledge, different from the approach taken by the others 572

that simulates motion features by directly concatenating two 573

successive frames and forwarding the combined outcomes 574

into a simple FCN model or convLSTM model. (3) We can 575

draw a conclusion from all these results that our method has 576

a better generalisation ability than other methods. 577

4.4.2. Qualitative Evaluation 578

In order to qualitatively compare our method with the 579

rest, Figure 3 shows representative visual examples in dif- 580

ferent challenging cases, such as small-size salient objects, 581

region of interest occluded by other objects (of no inter- 582

est), and object texture similar to background. As shown 583

in this figure, most results lose the structure information 584

and mis-predict many non-salient pixels as salient ones, 585

whereas CFCN-MA offers better results. In another word, 586

our method achieves a better visual performance than the 587

rest, beating the previous deep models (i.e. DLVS and 588

PDBM). This further verifies the effectiveness of utilising 589

the proposed attention-guided IoU loss and motion priors of 590

FlowNet2-SD on forecasting the movement of small objects. 591

For instance, the salient objects in the last three columns are 592

of a very small size. Most compared methods fail to exactly 593

identify them, while ours successfully captures each with 594

clearer edges and a better preserved structure. The image 595

in the second column is easy to detect and not surprisingly, 596

our method outperforms the others again on structure and 597

edge. The image in the first column is challenging with sig- 598

nificant occlusion. Many other compared methods basically 599

fail to capture the salient object, while ours can still predict 600

it with well-preserved structure. 601

4.5. Runtime Analysis 602

To speed up the experiments, we firstly use the pre- 603

trained FlowNet2-SD to extract the optical flows between 604

two frames offline, since the weights of FlowNet2-SD 605

are fixed during the training of CFCN-MA. Compared to 606
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Table 1
Quantitative comparison between proposed CFCN-MA and 17 existing methods on DAVIS, FBMS, ViSal and DAVSOD35 (Easy
test set) datasets. Best three results are shown in red, green and blue.

DAVIS FBMS ViSal DAVSOD35
Method  ↑  ↑ M ↓  ↑  ↑ M ↓  ↑  ↑ M ↓  ↑  ↑ M ↓

SIVM [10] 0.450 0.557 0.212 0.426 0.545 0.236 0.522 0.606 0.197 0.298 0.486 0.288
TIMP [18] 0.488 0.593 0.172 0.456 0.576 0.192 0.479 0.612 0.170 0.395 0.563 0.195
SPVM [23] 0.390 0.592 0.146 0.330 0.515 0.209 0.700 0.724 0.133 0.358 0.538 0.202
RWRV [27] 0.345 0.556 0.199 0.336 0.521 0.242 0.440 0.595 0.188 0.283 0.504 0.245
MB+M [26] 0.470 0.597 0.177 0.487 0.609 0.206 0.692 0.726 0.129 0.342 0.538 0.228

T
ra
di
ti
on

al

SAGM [34] 0.515 0.676 0.103 0.564 0.659 0.161 0.688 0.749 0.105 0.370 0.565 0.184
GFVM [35] 0.569 0.687 0.103 0.571 0.651 0.160 0.683 0.749 0.105 0.334 0.553 0.167
STBP [47] 0.544 0.667 0.096 0.595 0.627 0.152 0.622 0.629 0.163 0.410 0.568 0.160
SGSP [22] 0.655 0.692 0.138 0.630 0.661 0.172 0.677 0.706 0.165 0.426 0.577 0.207
SFLR [44] 0.727 0.790 0.056 0.660 0.699 0.117 0.779 0.814 0.062 0.478 0.624 0.132

MSTM [40] 0.429 0.583 0.165 0.500 0.613 0.177 0.673 0.749 0.095 0.344 0.532 0.211
SCOM [39] 0.783 0.832 0.048 0.500 0.613 0.177 0.673 0.749 0.095 0.464 0.599 0.220
SCNN [31] 0.714 0.793 0.064 0.762 0.794 0.095 0.831 0.847 0.071 0.532 0.674 0.128
DLVS [36] 0.708 0.794 0.061 0.759 0.794 0.091 0.852 0.881 0.048 0.521 0.657 0.129
FGRN [20] 0.783 0.838 0.043 0.767 0.809 0.088 0.848 0.861 0.045 0.573 0.693 0.098
MBNM [21] 0.861 0.887 0.031 0.816 0.857 0.047 0.883 0.898 0.020 0.520 0.637 0.159
PDBM [29] 0.855 0.882 0.028 0.821 0.851 0.064 0.888 0.907 0.032 0.573 0.698 0.116
SSAV [11] 0.861 0.893 0.028 0.865 0.879 0.040 0.939 0.943 0.020 0.603 0.724 0.092D

ee
p
Le
ar
ni
ng

CFCN-MA 0.867 0.888 0.020 0.865 0.880 0.037 0.943 0.945 0.011 0.568 0.712 0.085

Table 2
Speed comparison against some representative methods. Symbols ‘*’ and ‘+’ denote CPU time and extra computation time of
optical flow. Best three results are shown in red, green and blue, respectively.

Method SGSP [22] SAGM [34] GFVM [35] SPVM [23] DLVS [36] MBNM [21] PDBM [29] CFCN-MA
Time(s) 1.700∗(+) 0.880∗(+) 1.040∗(+) 6.050∗(+) 0.470 0.033 0.050 0.037

the complete FlowNet v2.0 which takes 0.05s to compute607

each optical flow frame, FlowNet2-SD (which is a part of608

FlowNet v2.0, aiming to obtain small displacements of im-609

age sequences) only costs around 0.021s. Afterwards, the610

image concatenated with the corresponding optical flow is611

forwarded to train the remaining part of CFCN-MA, taking612

almost 2 days to train 100 epochs on the DAVSOD training613

set.614

Table 2 compares the inference time performance of our615

method against that of the seven deep-learning based video616

saliency models (namely SGSP [22], SAGM [34], GFVM617

[35], SPVM [23], DLVS [36], MBNM [21] and PDBM618

[29]). Note that as SGSP [22], SAGM [34], GFVM [35] and 619

SPVM [23] are traditional approaches without the need for 620

the speed-up of GPU and run on CPU, excluding the com- 621

putation of optical flow using FlowNet v2.0, they are left out 622

of this comparison. DLVS [36], MBNM [21], PDBM [29] 623

and our method are timed on the same GPU but a differ- 624

ent CPU (Intel(R) Xeon(R) E5-2620 v4 @2.10GHz for our 625

method and Intel Core i7-6700 @3.4GHz for others), due to 626

the different deep-learning frameworks adopted and the dif- 627

ficulty in reproducing the same experimental results given 628

in the original references for the existing methods. Given 629

a 224 × 224 frame, our model can achieve around 27 fps 630

Table 3
Results of single FCN and cascaded FCNs on four datasets. Best results are shown in bold.

DAVIS FBMS ViSal DAVSOD35
Method  ↑  ↑ M ↓  ↑  ↑ M ↓  ↑  ↑ M ↓  ↑  ↑ M ↓

SFCN 0.760 0.826 0.041 0.779 0.816 0.070 0.908 0.920 0.022 0.452 0.630 0.143
CFCN 0.797 0.845 0.031 0.821 0.862 0.050 0.943 0.943 0.012 0.548 0.692 0.100
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 3: Visual comparison of dynamic saliency maps. Top-down: (a) Original images, (b) ground truth of salient objects,
(c)-(j) detected outcomes by the proposed CFCN-MA, PDBM, MBNM, FGRN, DLVS, SCNN, SCOM, and MSTM, respectively.

(which is equivalent to 0.037 seconds per frame, including631

0.021s for FlowNet2-SD and 0.016s for the remaining mod-632

ules) without any pre-/post-processing. Thus, CFCN-MA is633

more efficient than DLVS and PDBM (and is very close to634

the best runtime performer, MBNM). Considering the rele-635

vant design specifications of DLVS and PDBM, the winning636

performance of our method can be attributed to the use of637

the sub-module (FlowNet2-SD) of FlowNet v2.0, achieving638

good performance on motion estimation whilst using the pa-639

rameters as few as possible to reach the real-time require-640

ment.641

4.6. Ablation Experiments642

For this experimental study, we compare the major com-643

ponents within the proposed model and provide empirical644

results based on different model settings and different mo-645

tion priors. All of models are trained with the same data646

augmentation and identical hyper-parameters, as described647

in Section 4.3. 648

4.6.1. Effectiveness of Cascaded FCNs 649

In order to verify the effectiveness of the proposed 650

“coarse-to-fine" framework, we conduct experiments on the 651

use of a single FCN (SFCN) and on that of cascaded FCNs 652

(CFCN), with the results shown in Table 3 and (columns 653

(g) and (h) of) Figure 4. These experimental results clearly 654

demonstrate that the use of CFCN outperforms that of 655

SFCN, reflecting the effectiveness of the cascaded FCN 656

structure introduced in this work. 657

4.6.2. Effectiveness of Motion Attention 658

To verify the effectiveness of the proposed motion at- 659

tention module, we also conduct experiments on the use of 660

CFCN (without motion attention) and that of cascaded FCNs 661

with a motion attention module employing a pre-trained 662

FlowNet2-C as the motion prior (shortnamed CFCN-MAC ). 663
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Table 4
Results of models with or without motion attention. Best results are shown in bold.

DAVIS FBMS ViSal DAVSOD35
Method  ↑  ↑ M ↓  ↑  ↑ M ↓  ↑  ↑ M ↓  ↑  ↑ M ↓

CFCN 0.797 0.845 0.031 0.821 0.862 0.050 0.943 0.943 0.012 0.548 0.692 0.100
CFCN-MAC 0.863 0.885 0.020 0.845 0.876 0.041 0.936 0.940 0.013 0.551 0.698 0.087
CFCN-MAS 0.855 0.881 0.020 0.870 0.878 0.034 0.938 0.940 0.012 0.553 0.701 0.082
CFCN-MASD 0.867 0.888 0.020 0.865 0.880 0.037 0.943 0.945 0.011 0.568 0.712 0.085

Table 5
Results of CFCN-MA using different training losses. Best results are shown in bold.

DAVIS FBMS ViSal DAVSOD35
Method  ↑  ↑ M ↓  ↑  ↑ M ↓  ↑  ↑ M ↓  ↑  ↑ M ↓

CFCN-MAbce 0.851 0.881 0.024 0.849 0.870 0.040 0.924 0.930 0.020 0.558 0.707 0.085
CFCN-MAbce+IoU 0.855 0.885 0.022 0.842 0.869 0.037 0.899 0.919 0.021 0.549 0.700 0.088
CFCN-MAbce+AIoU 0.867 0.888 0.020 0.865 0.880 0.037 0.943 0.945 0.011 0.568 0.712 0.085

The results are shown in Table 4, reflecting the positive effect664

of utilising the proposed motion attention module, since the665

motion information plays a notable role in achieving superior666

results. We further compare the effectiveness of using differ-667

ent pre-trained optical flow models, with the results given in668

Table 4, where CFCN-MAS and CFCN-MASD (also known669

as CFCN-MA) denote the cascaded FCNs with motion at-670

tention based on FlowNet2-S and on FlowNet2-SD, respec-671

tively. It can be seen that CFCN-MASD achieves better re-672

sults than the other two.673

4.6.3. Effectiveness of AIoU Loss674

In order to prove that the proposed attention-guided IoU675

loss is quite effective to supervise the entire network to learn676

a better salient region, we conduct the comparing experi-677

ments, using different losses to train the CFCN-MA. Here,678

the CFCN-MA trained with the bce loss, the combination679

of the bce and IoU losses, and the combination of the bce680

and the AIoU losses are labeled as CFCN-MAbce, CFCN- 681

MAbce+IoU and CFCN-MAbce+AIoU respectively. The com- 682

paring results shown in Table 5 reveal that our proposed 683

AIoU loss achieves the best performance on all three pub- 684

lic datasets, verifying the effectiveness of this loss function. 685

Note that the CFCN-MA trained with the combination of 686

the bce and IoU losses cannot guarantee an improved perfor- 687

mance over the model trained by just bce loss. As explained 688

in Section 3.4, the IoU loss can lead to a clear boundary of 689

the predicted salient objects, but it cannot guarantee a com- 690

plete internal semantic topology of the salient objects since 691

it does not take false negative/positive pixels into consider- 692

ation. 693

Last but not the least, Figure 4 includes additional vi- 694

sual examples to further reflect the benefits of the proposed 695

approach, while also revealing its limitation. These quali- 696

tative results illustrate that only when both spatial saliency 697

map and flow estimation fail, does the final saliencymap fail. 698

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Visual comparison of dynamic saliency maps. Left-right: (a) Original images, (b) optical flow between two adjacent
frames, (c) ground truth of salient objects, (d)-(h) detected outcomes by CFCN-MAbce+AIoU , CFCN-MAbce+IoU , CFCN-MAbce,
CFCN, and SFCN, respectively.
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Otherwise, even when the motion estimation is not so accu-699

rate, provided that the coarse saliency map generated from700

the semantic FCN is of good quality, a highly satisfactory701

final saliency map can still be detected. Alternatively, if the702

motion estimation is accurate but the semantic FCN fails,703

our model can still achieve a good prediction. This verifies704

that our method can fuse the spatial and temporal features705

effectively.706

4.7. Analysis of Failure Cases707

(a) (b) (c)

Figure 5: Examples of failure cases. Rows from first to last
correspond to previous frame, current frame, optical flow of
two frames, coarse saliency map obtained from semantic FCN,
final predicted saliency map, and ground truth, respectively.

Whilst the proposed method can handle most of video708

sequences, there are occasional cases where it fails on these709

datasets. Figure 5 shows the examples of such cases result-710

ing from the application of CFCN-MA. In particular, it fails711

to identify the salient objects from videos when both opti-712

cal flow and semantic information of the objects concerned713

cannot be detected correctly. There are two reasons for this.714

Firstly, when the context of salient objects are very simi-715

lar to that of background regions, or if the sizes of salient716

objects are too small, the semantic FCN may fail to extract717

spatial features. Secondly, the inaccurate optical flow may718

adversely affect the robustness of temporal features. To min-719

imise the occurrence of such failures, in further work, it is720

important to extract and fuse more robust spatiotemporal721

features.722

5. Conclusion723

In this paper, we have proposed a cascaded fully convo-724

lution network model with motion attention. It includes a725

semantic fully convolutional network to capture the spatial 726

context of static images in order to obtain a coarse saliency 727

map, and another lightweight refinement fully convolutional 728

network to further obtain a final fine saliency map. The mo- 729

tion attention module exploits optical flow-based motion in- 730

formation to generate an enhanced saliency map, in an ef- 731

fort to satisfy real-time requirement. We have also presented 732

a method that helps reduce the representation lose of any 733

internal structure within salient objects, while focusing on 734

edge learning. The proposed approach has been systemati- 735

cally evaluated against state-of-the-art alternatives, as well 736

as against classical non-deep learning based methods, over 737

popular datasets, demonstrating the superior performance 738

enjoyed by our approach. For future work, it would be in- 739

teresting to investigate how to ensure the extraction of only 740

the most informative spatial and temporal features in order 741

to improve the model efficiency, while attaining its accuracy. 742
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