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ABSTRACT

To understand animals’ behavior in finding relations between similar tasks and adapting themselves
to changes in the tasks, it is necessary to know how the brain generalizes the learned knowledge from
a previous task to unseen tasks. Recent studies in neuroscience suggest that Successor Representation
(SR)-based models provide adaptation to changes in the goal locations or reward function faster
than model-free algorithms, together with lower computational cost compared to that of model-
based algorithms. However, it is not known how such representation might help animals to manage
uncertainty in their decision making. Existing methods for the SR learning based on standard temporal
difference methods (e.g., deep neural network-based algorithms) do not capture uncertainty about the
estimated SR. In order to address this issue, the paper presents a Kalman filter-based SR framework,
referred to as Adaptive Kalman Filtering-based Successor Representation (AKF-SR). First, Kalman
temporal difference approach, which is a combination of Kalman filter and the temporal difference
method, is used within the AKF-SR framework to cast the SR learning procedure into a filtering
problem to benefit from uncertainty estimation of the SR, and also decreases in memory requirement
and sensitivity to model’s parameters in comparison to deep neural network-based algorithms. An
adaptive Kalman filtering approach is then applied within the proposed AKF-SR framework in order
to tune the measurement noise covariance and measurement mapping function of Kalman filter as the
most important parameters affecting the filter’s performance. Moreover, an active learning method
that exploits the estimated uncertainty of the SR to form the behaviour policy leading to more visits
to less certain values is proposed to improve the overall performance of an agent in terms of received
rewards while interacting with its environment. Experimental results based on three reinforcement
learning environments illustrate the efficacy of the proposed AKF-SR framework over state-of-the-art
frameworks in terms of cumulative reward, reliability, time and computational cost, and speed of
convergence to changes in the reward function.

Keywords Reinforcement Learning · Successor Representation · Kalman Filter · Kalman Temporal Difference ·
Multiple Model Adaptive Estimation · Radial Basis Function

1 Introduction

Human and animals have the learning capabilities for evaluating consequences of their actions; therefore, can adapt
their behavior based on the received reward after each action [1, 2, 3]. Such an adaptive behavior can be achieved in the
context of Artificial Intelligence (AI) via an optimal control policy, which can be obtained by Reinforcement Learning
(RL) algorithms. Generally speaking, RL is a class of Machine Learning (ML) algorithms enabling an autonomous
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agent to learn a task to maximize expected future discounted rewards while interacting with its environment [4, 5, 6].
Unlike supervised learning, RL approaches do not need labeled data, which is generally difficult to acquire, for
performing their learning processes. Traditionally, RL algorithms are categorized into two main classes: (i) Model-Free
(MF) methods [4, 7, 8, 9], which learn the value function using sample trajectories, and; (ii) Model-Based (MB)
methods [10, 11, 12] that estimate transition and reward functions through search trees or dynamic programming.
Algorithms belonging to the former category (MF algorithms) are particularly slow to adjust an agent to changes in its
task (e.g., changes in the goal locations or reward function). The MB algorithms, on the other hand, can quickly adjust
the agent to the changes. Such a rapid adaptation, however, comes with a high computational cost [13, 14]. Reusing
previous knowledge to facilitate learning of new tasks has been proposed as an appealing solution to the mentioned
adaptation problems of MB and MF algorithms [2]. To improve speed of an agent for learning a new task, which results
from changes in its learned tasks, without considerable increase in computational cost, the agent should be able to
identify the changes and reuse its knowledge from previous tasks. Reusing the transferred information learned from the
previous tasks would not be feasible if the tasks are completely irrelevant. Therefore, in this paper, we focus on the
changes in the reward function while the environment remains same.

Successor Representation (SR) methods [15, 16] are proposed as a potential solution to aforementioned adaptation
problems of both MF and MB categories of RL algorithms in the case of changes in the reward function. The SR-
based algorithms are faster to adapt to changes than MF algorithm, and provide more efficient computation than MB
algorithms. The SR-based algorithms learn the expected immediate reward received after each action, together with the
expected discounted future state occupancy (referred to as the SR) [2, 14, 15]. The value function is then factorized into
the SR and the immediate reward in each of successor states. This factorization enables rapid policy evaluation under
changes in the reward conditions as only the reward function needs to be relearned in new tasks.

When the number of states are limited, the SR and the reward function (consequently, the value function) can be
computed for each state. However, computation of the value function is not possible in RL problems with large number
of states or when states are continuous; therefore, value function needs to be approximated. The function approximators
in RL problems can be generally categorized into linear and non-linear function approximators [17, 18]. In both cases,
value of the approximate function is defined by a set of tunable parameters. Non-linear function approximators, such as
artificial neural network [17, 19, 20, 21] algorithms suffer from different issues including sensitivity of the model’s
performance to a large number of parameters, lack of theoretical convergence guarantees, and also the need for a large
number of episodes to achieve acceptable results. The linear function approximators transform the approximation
problem into the problem of computing weights to fuse several local estimators. Since linear function approximators
are simpler and better understood than the non-linear ones; therefore, several convergence guarantees have been
provided [15, 22, 23]. In this regard, Cerebellar Model Articulation Controllers (CMACs) [24] and Radial Basis
Functions (RBFs) [25] are the commonly used linear estimators. It has been discovered that the RBFs can better
represent gradual-continuous transitions in the functions to be approximated [26, 27, 28, 29]. Due to this advantage, in
this paper, we use RBFs for the SR and reward function linear approximation task.

Gershman et al. [30] have established that the temporal context model, a model of episodic memory, is actually
direct estimation of the SR via Temporal Difference (TD) learning algorithms. Kulkarni et al. [17] proposed a deep
learning method based on the combination of TD learning with Deep Neural Networks (DNNs) for estimation of
the SR. Some other works [2, 14, 31, 32] focused on the development of TD learning method by using different
DNNs algorithms to represent the SR. CTDL framework proposed in [14] combines a DNN with a Self-Organising
Map (SOM) to calculate action values to improve the performance and robustness of a DNN-based RL agent. Ma
et al. [2] proposed a DNN framework, referred to as Universal Successor Representation (USR), to approximate the
SR and incorporate it with actor-critic method to learn the SR. The methods proposed in [2, 14, 31, 32], which are
based on the combination of the standard TD learning and DNNs, however, do not consider uncertainty of the SR
(consequently, uncertainty in the value function), which exists at the heart of RL problems in the real world. When
there is uncertainty about the environment, the agent should not be overconfident of its knowledge and exploit it all the
time, but instead explore other available actions, which might be better and reduce uncertainty. The optimal solution
for the exploration/exploitation trade-off is computationally intractable, but it has been shown that uncertainty can
cause exploration through two different ways: by adding randomness to the value function or directing actions toward
uncertain ones [33]. The estimated uncertainty of the value function, therefore, is known as a useful information for
quandary between exploration and exploitation dilemma [33, 34]. Lehnert et al., [35] proposed a different method from
the TD-based SR learning algorithms, where the transition probability of the RL problem is first learned; the SR is then
approximated based on the learned transition model. Although the proposed framework is more sample efficient than
the TD-based frameworks, the trajectory for finding the transition model is far more complex due to the difficulty in
learning the accurate transition model, which makes the TD-based methods more favorable in the literature. Machado
et al. [36] has recently proposed a framework, known as the Substochastic Successor Representation (SSR), which uses
the norm of the SR as an exploration bonus. In the proposed scheme, first, the SSR is learned by minimizing the TD
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error through a DNN. The value function is then learned through a DNN structured similar to DQN framework [37],
which adopts the estimated SSR for exploration/exploitation trade-off. Geist et al. [34] proposed Kalman Temporal
Difference (KTD) framework for uncertainty estimation of the value function, but in the context of MF methods. The
proposed KTD framework also benefits from less sensitivity of the framework’s performance to model’s parameters
and reduced time and memory requirement for finding and learning of the best model in comparison to DNN-based
frameworks [2, 14, 31, 32, 36]. Less sensitivity to parameter settings improves the reproducibility aspect of a reliable
algorithm to regenerate more consistent performances across multiple learning runs; therefore, reduces the risk of
generating unpredictable performances in different practical applications [38]. Geerts et al. [39] and Salimibeni et
al. [40] applied KTD framework for the SR estimation in RL problems, respectively, with discrete state spaces and
multiple agents. The proposed algorithms, however, do not use the uncertainty information of the estimated SR, which
can be achieved from KTD algorithm, for the action selection process. Since value function is computed as a dot
product between the SR and the reward function, there is a need for approximation of the reward function. However,
Geerts et al. [39] do not discuss the reward function learning process. In this paper, as an initial step, we adopt the KTD
framework for the SR learning process and propose a reward learning algorithm. Then, an innovative action selection
scheme benefiting from the achieved uncertainty/belief of the estimated SR in order to deal with exploration/exploitation
dilemma.

As stated previously, within the SR domain, for computation of the value function, both the SR and reward function
need to be learned. So far, we proposed application of KTD within this context for the SR learning. To learn the reward
function, on the other hand, we develop a Kalman Filter (KF) to estimate the RBFs’ weights. The challenge here is
selection of KF’s parameters. Performance of KF-based algorithms are highly dependent on the filter’s parameters.
It has been shown that measurement noise covariances of a KF is one of the most important parameters of the filter
and its improper selection can significantly degrade the filter’s act and even cause divergence of the filter [41, 42].
In the earlier studies, the underlying parameter assumed to be constant during the estimation process with its value
being adapted manually by trial and error. Such a bruteforce approach, however, is significantly challenging due to
variation of the parameter value. Lately, multiple studies have proposed to adjust the parameter value at each step via
Adaptive Kalman Filter (AKF) approaches to enhance the overall accuracy of the filter [43]. Generally speaking, AKF
approaches can be categorized into two main groups: (i) Innovation-based Adaptive Estimation (IAE) methods [44],
and; (ii) Multiple Model Adaptive Estimation (MMAE) methods [45]. The former category uses a single Extended
Kalman Filter (EKF) to adapt measurement noise covariances based on the innovation or the residual sequence. In the
IAE methods, perfect knowledge of the system’s model and an appropriate window size is required for the parameter
computation. The MMAE methodologies, on the other hand, use a weighted sum of multiple KFs running in parallel for
the parameter adaptation addressing the aforementioned issue. Consequently, the MMAE methods have attracted more
attention owing to their capabilities to manage parametric uncertainty and their independence from imposing specific
requirements on the system model. Capitalizing on the success of MMAE frameworks, in this paper, we develop an
innovative MMAE-based modeling framework for learning of the reward function within the SR context. Different
algorithms were proposed for fusion of the KFs in MMAE systems [46], among which the classical scheme is used in
this paper due to its exponentially fast convergence speed to the best candidate model (filter). In the classical MMAE
scheme, weight of each filter is achieved from a Bayesian approach.

Duration of the learning process and quality of the learned policies, which are obtained based on the proposed
combination of KTD and MMAE techniques, highly depend on managing a trade-off between exploration and
exploitation. Too much exploration prevents from maximizing the immediate rewards since the selected actions may
result in a negative reward from the environment. On the other hand, exploiting uncertain knowledge offered by the
environment reduces the expected future rewards because actions are selected given current information; therefore, may
not be the optimal ones [47]. As the value function is modeled as a function of stochastic variables; therefore, there is a
stochastic variable for each state-action pair. The dilemma between exploration and exploitation should profit from
such uncertain information [34]. In this paper, we propose an active learning scheme, which uses the KTD framework
to tackle the uncertainty computation, an important issue which has been overlooked in the literature.

In summary, this paper proposes a SR-based framework, referred to as Adaptive Kalman Filtering-based Successor
Representations (AKF-SR), which can adapt quickly to changes in the reward function or goal locations faster than MF
methods and with the lower computational cost compared to MB algorithms. The following 4 key contributions are
made in this paper:

• RBFs estimators are incorporated within the AKF-SR framework to project continuous states into feature
vectors such that the SR and the reward function can be modeled as linear functions of the feature vectors.

• Within the proposed AKF-SR framework, we adopt MMAE and gradient descent-based schemes for the
reward function estimation (learning) via KF, which respectively compensate for the insufficient information
about the measurement noise covariance and measurement mapping function of the KF as the most important
parameters of a KF.
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• The KTD framework is used within the AKF-SR framework, which casts the SR learning procedure into a
filtering problem to estimate uncertainty of the learned SR. Moreover, by applying KTD, we benefit from
decreases in memory and time spent for the SR learning and also sensitivity of the framework’s performance
to its parameters (i.e., more reliable) when compared with DNN-based algorithms.

• An active learning scheme is exploited to balance the amount of exploration and exploitation based on
uncertainty information of the value function obtained from KTD algorithm of the SR learning. The proposed
active learning mechanism effectively improves performance of the proposed AKF-SR framework in terms of
cumulative reward as shown via three RL platforms.

The remainder of the paper is organized as follows: In Section 2, an overview of RL and SR is presented. The
proposed AKF-SR framework is developed in Section 3. Section 4 presents experimental results obtained based on three
benchmark RL platforms illustrating effectiveness of the proposed AKF-SR framework. Finally, Section 5 provides
conclusion of the paper.

2 Problem Formulation

In this section, first, the required background to follow developments presented in the remainder of the paper will be
presented. In what follows, we use following notation: Scalar variables are represented by Non-bold letter (e.g., X or
x)); Vectors are represented by lowercase bold letter (e.g., x); Matrices are denoted by capital bold letter (e.g.,X), and
transpose of matrixX is shown byXT .

2.1 Reinforcement Learning (RL)

Generally speaking, the main objective of an autonomous agent in RL models is to learn an optimum control policy
through interaction with the dynamic system (also considered as the agent’s environment) [33]. More specifically,
within a RL context, an autonomous agent selects actions from the action set A by following an optimal policy π∗
in such a way that its cumulative reward will be maximized over time of the agent’s interaction with its environment.
At time step k, the autonomous agent takes an action ak ∈ A given its current state sk ∈ S based on a given policy
π(.|sk), which maps the state sk to a probability distribution over the action space A. If the policy is deterministic, the
agent will always map to one specified action in a given state. The environment then answers to the selected action by
taking the agent to state sk+1 ∈ S with the transition probability of Pr(sk+1|sk, ak) and returning a reward R(sk, ak)
to the agent, where R(.) is the reward function. Given initial state s0 = s and action a0 = a, R(s0, a0) = R(s, a) has
no randomness; however, R(sk, ak) for k ≥ 1 is a function of random variable sk ∼ Pr(.|sk−1, ak−1) and possibly
random variable ak ∼ π(.|sk) (i.e., possibly stochastic policy). The expected value of the reward function R(sk, ak)
for (k ≥ 1) is, therefore, calculated by taking the expectation with respect to the probabilities Pr(.|sk−1, ak−1) and
π(.|sk). The rewards are discounted using discount factor γ ∈ (0, 1) to control the importance of the future rewards
versus the immediate ones. The 5-tuple {S,A,Pa, R, γ} defines a Markov Decision Process (MDP), which provides
a rigorous mathematical framework for modeling the RL tasks. For a fixed policy π, the return

∑∞
k=0 γ

kR(sk, ak),
represents the sum of discounted rewards observed along one trajectory of states while following π. The state-action
value function Qπ(s, a) for a policy π estimates expected value of the return

∑∞
k=0 γ

kR(sk, ak) over all infinite length
trajectories that start at state s0 = s with action a0 = a, then acting according to π:

Qπ(s, a) = E

{ ∞∑
k=0

γkR(sk, ak)

}
(1)

sk ∼ Pr(.|sk−1, ak−1), ak ∼ π(.|sk), a0 = a, s0 = s.

Using the linearity of the expectation, the expectation function E in Eq. (1) is, therefore, calculated over Pr(.|sk−1, ak−1)
and possibly stochastic policy π(.|sk) for all k ≥ 1, i.e.,

Qπ(s, a) = E

{ ∞∑
k=0

γkR(sk, ak)

}
=

∞∑
k=0

γkE {R(sk, ak)} (2)

= R(s, a) +

∞∑
k=1

γkE {R(sk, ak)} ,

where sk ∼ Pr(.|sk−1, ak−1), ak ∼ π(.|sk), a0 = a, and s0 = s. The state-action value function (Qπ(s, a)) can be
gradually update based on the Bellman update idea [48]. The iterative update of the state-action value function forms a
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learning algorithm known as Temporal Difference (TD) learning [33, 49], i.e.,

Qπnew(sk, ak) = Qπold(sk, ak)

+α
(
R(sk, ak) + γ Qπold(sk+1, ak+1)−Qπold(sk, ak)

)
, (3)

where Qπold(sk, ak) and Qπold(sk+1, ak+1) represent the latest estimates of the state-action value function at state-action
pairs (sk, ak) and (sk+1, ak+1), respectively. Qπnew(sk, ak) is an updated representation given an observed transition
(sk, ak, sk+1, R(sk, ak)) and (R(sk, ak)+γ Qπold(sk+1, ak+1)−Qπold(sk, ak)) is known as the TD error that intuitively
represents the difference between the predicted reward according to the current estimate of the state-action value function
and the actual observed reward at time step k. The parameter (0 < α ≤ 1) is the learning rate determining how much of
the error should we accept to adjust our estimates towards. During the learning process of state-action value function,
actions are selected using the current policy π. After convergence of the learning process (i.e., the TD error converges
to zero) where optimal policy π∗ is achieved, actions are obtained based on the optimal policy π∗ as follows

a = arg max
a∈A

Qπ(sk, a). (4)

This completes a brief introduction to basics of RL approaches. Next, we present the SR modeling framework.

2.2 The Successor Representation (SR)

Dayan [15] claimed that distances between states can express similarities of future paths of an agent given the policy π.
Successor Representation (also referred to as SR) [15] estimates the cumulative time expected to be spent in future state
s′ given the initial state s and initial action a by following policy π:

Mπ(s, s′, a) = E

{ ∞∑
k=0

γk1[sk = s′]|s0 = s, a0 = a

}
, (5)

In a discrete state-space scenario, the SR (Mπ(:, :, a)) is a (|S| × |S|) matrix, where |S| is cardinality of S . Gershman
et al. [30] showed that similar to the TD learning of state-action value function in Eq. (3), the SR can be also updated in
an on-policy recursive form [30], known as SARSA, as follows

Mπ
new(sk, s

′, ak) = Mπ
old(sk, s

′, ak) + α
(
1[sk = s′] + γMπ

old(sk+1, s
′, ak+1)−Mπ

old(sk, s
′, ak)

)
. (6)

whereMπ
old(sk, s

′, ak) andMπ
old(sk+1, s

′, ak+1) represent the latest estimates of the expected number of times that
the agent visit state s′ given initial state-action pair (sk, ak) and (sk+1, ak+1), respectively. The TD error here represents
the error in state visitation count of state s′ starting at initial state-action pair (sk, ak). Given the SR, the state-action
value function, Eq. (1), can be expressed as the inner product of the SR and the estimated reward function [15], i.e.,

Qπ(sk, ak) =
∑
s′∈S

∑
a′∈A

Mπ(sk, s
′, ak)R(s′, a′). (7)

Eq. (7) demonstrates the most important feature of SR-based frameworks, as it represents a linear mapping that allows
the state-action value function Qπ(sk, ak) to be reconstructed straightforwardly based on reevaluation of the reward
function (R(s′, a′)) in case of changes in the reward function. Next, we focus on extending SR model (Eqs. (5)-(7)) to
scenarios with continuous state spaces.

2.3 Feature-based Successor Representations

Estimation of the SR and the reward function are impractical for each state in RL problems with large number of states
or continuous state spaces; hence, as such one needs to resort to their approximated forms. In such cases, each pair
(s, a), is mapped into a L-dimensional state-action feature vector ψ(s, a) (ψ : A × S → RL). In this setting, the
successor representation is generalized to a feature-based SR vector [50], which encodes the expected feature values as
follows

mπ(s, a) = E

{ ∞∑
k=0

γkψ(sk, ak)|s0 = s, a0 = a

}
, (8)

For approximation of the SR and reward function, linear function approximators are reasonable choices due to their
simpler implementations and faster computation speed compared to the non-linear ones. The convergence of linear
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function approximators have been already guaranteed in RL problems [15, 22, 23]. A linear function of the feature
vectors is, therefore, used to approximately factorize the immediate reward function for the pair (s, a) as follows

R(sk, ak) ≈ ψ(sk, ak)Tθk, (9)
where θk is the reward’s weight vector. The state-action value function (Eq. (7)), therefore, can be computed as

Qπ(sk, ak) ≈ θTkmπ(sk, ak). (10)
We assume that the SR vectormπ(sk, ak) in Eq. (8) can be also approximated as a linear function of the same feature
vector:

mπ(sk, ak) ≈W k ψ(sk, ak), (11)
whereW k is a (L× L) matrix embodied by the weights Wi,j . The TD learning of the SR in Eq. (6) is update as

mπ
new(sk, ak) = mπ

old(sk, ak) + α
(
φ(sk, ak) + γmπ

old(sk+1, ak+1)−mπ
old(sk, ak)

)
. (12)

Our discussion on background of the SR is complete. Next, the proposed AKF-SR framework is presented. In the
remainder of this paper, for simplicity, we assume that the policy and transition function of the system are deterministic.

3 AK-SR: Adaptive Kalman Filtering-based Successor Representations

Once the approximation structure of the SR and the reward function have been defined, a suitable algorithm needs
to be designed to learn (estimate) the reward function R(s, a) and the SR vector mπ(s, a). For these estimations,
sample transition of the system, the feature vectors, and the received reward from the environment are used as the
measurements. DNN-based RL methods [2, 17, 36, 37, 38], require to store all these measurements together with the
network’s parameters and activations to be learned in batches. In the learning process, one needs to store the activations
from a forward propagation to be utilized later for computation of the error gradients in a back propagation process.
Therefore, considerably high memory is required for implementation of deep learning-based techniques. For instance,
there are 26 million parameters in a 50-layer ResNet network resulting in the need to compute 16 million activations
during the forward pass. Approximately, the memory required for training of a ResNet-50 network with a mini-batch of
32, is over 7.5 GB of local DRAM. Furthermore, similar to other standard TD learning-based algorithm, most of the
DNN-based frameworks [14, 17, 37] do not consider uncertainty within the value approximation context. The difficulty
between exploration and exploitation should use from such uncertainty information. Finally, reliability of a learning
algorithm is another important factor which needs to be verified for applications to real word scenarios. For a learning
process to be reliable in different applications, it should be capable of regenerating consistent performances over
multiple runs with the least frangibility to the model’s parameters (reproducibility aspect of reliability) [38]. However,
performance of a DNN model, is highly affected by its large number of parameters required to be tuned. Tuning of such
a large number of parameters, therefore, leads to high sensitivity and considerable time and effort needed to tune the
parameters, which make DNN-based RL algorithms unreliable for practical applications.

By contrast, filtering algorithms [51, 52], which are efficient techniques to process sequential data, can be implemented
based only on the last measurement. Such approaches eliminate the necessity of the learning process to record the
complete measurement history, which, in turn, translates into significant reduction in time and memory requirements in
comparison to DNN-based techniques. It also has been shown that applied filtering-based algorithms (such as KTD [34])
estimate uncertainty of the value function and consider that for action selection during the learning process in order to
make a balance between exploring unknowns and exploiting the agent’s knowledge. Furthermore, despite DNNs, a
small number of parameters is required to be tuned in filtering-based methods resulting in less time and effort required
for the parameters tuning and also less vulnerability of its performance to the model’s parameters in comparison to
its DNN-based counterpart. The performance of filtering-based algorithms, however, are highly related to the filter’s
parameters and complete information about theses parameters is not accessible. In order to tackle this problem and tune
the filter’s parameters, earlier studies proposed adaptive multiple model filters [53, 54] to adapt the filter’s parameters.

The proposed AKF-SR framework is, therefore, based on development of KTD framework to the SR learning and
adaptable KF in order to provide a powerful efficient means for estimation the reward function. The AKF-SR consists
of the following four main modules as follows:

1. RBF-based Feature Vector Construction, which projects a pair (s, a) into a feature vector consisting of RBFs
in order to generalize the SR and the reward function (consequently, value function) to continuous state spaces
such that the SR and the reward function can be modeled as linear functions of the feature vectors.

2. Reward Learning, which estimates the reward weight vector θ via a KF. To tune the measurement noise
covariance of the KF a multiple model adaptive estimation method is utilized within KF formulation for reward
learning. Furthermore, restricted gradient descent is adopted which regularizes the measurement mapping
function of the KF by updating the means and covariances of the underlying RBFs.
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Fig. 1 – Block diagram of the proposed AKF-SR framework.

3. KTD-based SR Learning, which estimates the SR weight matrixW using KTD algorithm in order to estimate
uncertainty of the SR (consequently, the value function).

4. An Active Learning Process, which uses the value function’s uncertainty achieved from utilized KTD in the
SR learning process to select the action that reduces the system’s uncertainty more than any other potential
actions.

Fig. 1 provides a block diagram of the proposed AKF-SR framework. The aforementioned four components of the
proposed AKF-SR framework are detailed in the following sub-sections.

3.1 RBF-based Feature Vector Construction

As mentioned earlier, in RL problems with large/continuous state spaces, we need to represent each pair (s, a) with
a state-action feature vector in order to approximate value function for all of the states in S. In this study, state s is
mapped into a NRBF-dimensional state feature vector φ(s) consisting of basis functions φn(s) as follows

φ(sk) =
[
φ1(sk), φ2(sk), . . . , φN−1(sk), φNRBF(sk)

]T
, (13)

where each element of vector φ(sk) in Eq. (13) is selected as a radial basis function given by

φn(sk) = e
−1
2 (sk−µn

k )
T
(
Σn

k

)−1
(sk−µn

k ), (14)

where the mean and covariance of the RBFs at step k are represented by µnk and Σn
k . The state-action feature vector

ψ(sk, ak = ad) for (1 ≤ d ≤ Nactions), where Nactions is the total number of actions, is then generated from φ(sk) by
assigning this state feature vector to the corresponding spot for action (ak = ad) while the feature vector values for the
remainder of the actions are set to zero, i.e.,

ψ(sk, ak = ad) = [0, . . . 0, φ1(sk), . . . , φNRBF(sk), 0, . . . 0]T . (15)

For each pair (s, a), the generated state-action feature vector ψ(s, a) is, therefore, a vector of size L = NRBF ×Nactions.

After construction of the state-action feature vector ψ(sk, ak) through Eq. (15), the reward weight vector θk in Eq. (9)
and the SR weight matrixW k in Eq. (11) need to be learned. Sub-sections 3.2 and 3.3 detail the learning process of the
reward function and the SR, respectively.

3.2 Reward Learning

As mentioned in Sub-section 2.3, the reward function can be approximated as a linear function of the state-action
feature vector ψ(sk, ak) with the weigh vector of θk. In the proposed AKF-SR framework, the reward’s weight vector
θk considered as a random variable, which can be estimated via KF with the following measurement model

R(sk, ak) = ψT (sk, ak)︸ ︷︷ ︸
hk

θk +Xk, (16)
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where hk is the measurement mapping function, and Xk is a zero-mean Gaussian noise with unknown variance of Ωk.
The evolution of the reward function is supposed to be determined by a so-called evolution equation, which connects
the current value θk with the previous one θk−1. However, true dynamic of the reward function cannot anyway be
obtained in a general case. Following earlier works[4, 15, 39], where the dynamic is assumed to be a random diffusion
process, such that the passage of time increases uncertainty without changing the mean belief/uncertainty about the
estimated θ, in this paper, a heuristic evolution model following Occam razor principle is adopted as follows

θk = F kθk−1 + bk, (17)

where F k = 0.9IL in order to make the filter stable, and bk is supposed to be a white Gaussian noise with zero
mean and covariance ofBk. Given the assumptions of the linear evolution model and additional noise with Gaussian
distribution, a KF is guaranteed to provide the optimal solution. For solving this KF problem, after the initialization
step, the weights and their associated covariance matrices are computed as follows

θ̂k|k−1 = F kθ̂k−1, (18)

and P k|k−1 = F kP k−1F
T
k +Bk. (19)

Then, the received reward rk = R(sk, ak) from the environment is utilized to update the estimates as follows

Kk = P k|k−1h
T
k

(
hkP k|k−1h

T
k + Ωk

)−1
, (20)

θ̂k = θ̂k|k−1 +Kk

(
rk − hkθ̂k|k−1

)
, (21)

and P k =
(
I −Kkhk

)
P k|k−1. (22)

Note that the performance of KF is highly affected by the filter’s parameters and improper selection of the parameters
can cause the instability of the process for applications in practical RL problems. Complete information about these
parameters is, typically, not available in practical scenarios. In most of previous studies, it has been supposed that
these parameters were fixed during the estimation and were manually adapted by trial and error. Due to changes of
noise levels in different contexts, however, it can be difficult to utilize such a method to set up the correct value of the
parameters. Within a KF framework, the measurement noise covariance matrix and the measurement mapping function
are the most critical parameters as they control flow of new information. Improper choices of theses parameters could
degrade performance of the KF, even cause divergence of the system, and are, therefore, considered for adaptation in
this work. In the following, we represent adaptation process of measurement noise covariance Ω. Adaptation of the
mapping function h is discussed in Sub-section 3.2.2.

3.2.1 Adaptation of Measurement Noise Covariance via MMAE

For adaptation of the measurement noise covariance, MMAE scheme is used via implementation of a set of KFs, where
different values for Ω is considered in each mode-matched filter. Eqs. (20)-(22) are then modified as follows

Ki
k = P k|k−1h

T
k

(
hkP k|k−1h

T
k + Ωik

)−1
(23)

θ̂
i

k = θ̂k|k−1 +Ki
k

(
rk − hkθ̂k|k−1

)
(24)

P i
k =

(
I −Ki

khk
)
P k|k−1, (25)

where superscript i for (1 ≤ i ≤ NKF), shows the ith filter within the bank of NKF Kalman filters. The ith mode-matched
filter, denoted by mi, exploits Ωik as its measurement noise covariance. The output posteriori of localized matched
filters are then averaged based on their associated normalized weights ωik as follows

Pr(θk|Y k) =

NKF∑
i=1

ωikPr(θk|Y k,Ω
i
k), (26)

where Y k shows the reward sequence {r1, r2, . . . , rk}. The weight of mode mi is calculated recursively using the
Bayesian rule as

ωik , Pr
(
mi
k|Y k

)
=

P
(
rk|Y k−1,m

i
k

)
P
(
mi
k|Y k−1

)∑NKF
j=1 P

(
rk|Y k−1,m

j
k

)
P
(
mj
k|Y k−1

) , (27)

where the denominator is just a normalizing factor to make sure that P (mi
k|Y k) is an appropriate probability density

function (PDF). Term Lik , Pr
(
rk|Y k−1,m

i
k

)
in the nominator is the likelihood function of mode i, which is calculated

8
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Fig. 2 – MMAE structure.

as a PDF of Kalman filter measurement residual (εk = rk − hkθ̂k|k−1) as follows

Lik = Pr(rk|θ̂k|k−1,Ωik) =
1√

det
[
2πZik

] .e−1
2 εTk

(
Zi

k

)−1
εk ,

where Zik = hkP θ,k|k−1h
T
k + Ωik. (28)

Eq. (27) for computing ωik is, therefore, reduced to

ωik =
ωik−1Lik∑M
j=1 ω

j
k−1L

j
k

. (29)

The initial value of the weights are set to ωi0 = 1/NKF for i = 1, 2, . . . ,M . The posteriori estimate θ̂k and its error
covariance are then obtained as

θ̂k =

NKF∑
i=1

ωikθ̂
i

k, (30)

P k =

NKF∑
i=1

ωik

(
P i
θ,k + (θ̂

i

k − θ̂k)(θ̂
i

k − θ̂k)T
)
. (31)

The MMAE process is shown in Fig. 2. This completes presentation of the proposed MMAE-based algorithm for
reward function learning. Next, we focus on adaptation of the measurement mapping function of the KF used for reward
function learning.

3.2.2 Adaptation of Measurement Mapping Function via RBFs’ Parameters Update

As already mentioned, the measurement mapping function needs to be properly set up in KF-based estimations as one
of the most important parameters in a Kalman filter. Such a priori knowledge, however, is usually not available, and;
consequently it has to be adapted to its correct value. The measurement mapping function employed for the reward
weight learning (i.e., h) is modeled by basis functions. Its adaptations, therefore, necessitates recursive update of
the basis functions, which is developed below. As the measurement mapping function depends on a large number of
parameters (i.e., 2×N ), a gradient descent adaptation approach is used instead of the MMAE model to adapt these
parameters. In this regard, we use the Restricted Gradient Descent (RGD) method [27], where partial derivations
are exploited to compute the gradient of a defined loss function (Lk) in terms of the underlying parameters of the
basis functions. We considered the proposed generalized robust lost function in [55] due to its robustness to outliers.
Based on Eq. (16), probability distribution of (rk − ψT (sk, ak)θk = Xk) is a Gaussian distribution. The value of
shape parameter of the proposed loss [55] is, therefore, considered as 2, and the loss for RBFs’ parameters update will

9
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approach to L2 loss function in the limit:

Lk =
(
rk −ψT (sk, ak)θk

)2
(32)

Here, the focus is on minimization of the loss function (Lk) defined in Eq. (32). To achieve this goal, the required
gradients with respect to the mean (µ) and covariance (Σ) of RBFs are computed using the chain rule as follows

∆µ =
∂Lk
∂µ

=
∂Lk
∂ψ

∂ψ

∂µ
, (33)

and ∆Σ =
∂Lk
∂Σ

=
∂Lk
∂ψ

∂ψ

∂Σ
, (34)

where the partial derivations are calculated as
∂Lk
∂ψ

= −2θk
T (Lk)

1
2 , (35)

∂ψ

∂µ
= ψΣ−1(sk − µ), (36)

∂ψ

∂Σ
= ψΣ−1(sk − µ)(sk − µ)TΣ−1. (37)

The partial derivatives are then used to update the means and covariances of RBFs as

µnk+1 = µnk − λµ∆µ = µnk + 2λµ(Lk)
1
2 θTkψ

(
Σn
k

)−1
(sk − µnk ), (38)

Σn
k+1 = Σn

k − λΣ∆Σ = Σn
k + 2λΣ(Lk)

1
2 θTkψ

(
Σn
k

)−1
(sk − µnk )(sk − µnk )T

(
Σn
k

)−1
, (39)

where λµ and λΣ shown adaptation rate of µ and Σ, respectively. For stability of the underlying system, according
to [27], at each step, we only execute one of the updates in Eqs. (38) and (39). More specifically, we update error
covariance matrices of the RBFs via Eq. (39) in scenarios where the covariance is decreasing in size (i.e., L

1
2

k (θTkψ) < 0).
Otherwise, the means are updated based on Eq. (38). It is worth mentioning that the above approach avoids unlimited
spread of the RBFs error covariance matrices.

3.3 KTD-based SR Learning

As explained in Section 3, we apply KTD algorithm, which is the combination of TD and Kalamn filter, for the SR
learning due to its advantages over DNN-based frameworks. The TD approach of Eq. (12) is, therefore, used to
approximate the SR as follows

mπ
new(sk, ak) ≈ ψ(sk, ak) + γmπ

old(sk+1, ak+1). (40)
By reordering terms in Eq. (40), state-action feature vector φ(sk, ak) can be considered as the measurement model
within the KTD framework as follows

ψ(sk, ak) = mπ
new(sk, ak)− γmπ

old(sk+1, ak+1) + ek, (41)
where ek is considered to be a zero-mean Gaussian noise with the covariance of Ek. By jointly considering Eqs. (11)
and (41), the feature vector φ(sk, ak) can be approximated as

ψ(sk, ak) = W k ψ(sk, ak)−γW kψ(sk+1, ak+1) + ek
= W k {ψ(sk, ak)−γψ(sk+1, ak+1)}︸ ︷︷ ︸

gk

+ek. (42)

To form a KF-based estimate of matrixW k, we construct a column vector wk by stacking the columns of matrixW k.
Based on the vector-trick property of Kronecker product, Eq. (42) can be rewritten as follows

ψ(sk, ak) = (gTk ⊗ I)wk + ek, (43)
where ⊗ denotes the Kronecker product and I is an identity matrix of a suitable dimension. Eq. (43) defines the
observation of the system

(
ψ(sk, ak)

)
as a linear function of vector wk, which is to be estimated. Similar to the

evolution model of the reward function’s parameter θ in Eq. (17), the following linear dynamic model is defined to
represent evolution of wk over time

wk = Akwk−1 + uk, (44)
where Ak = 0.9I and the forcing term, uk, is considered to be a white Gaussian noise with zero mean and design
covariance of Uk. In a similar fashion to that of the reward weight estimation approach of Eqs. (18)-(22), a priori
estimates ofwk and its covariance matrix Ck at time step k are obtained and then updated using measurement vector
ψ(sk, ak). MatrixW k can be then reconstructed via reshaping the estimated vector wk into a L× L matrix. Now, the
state-action value function for each pair (sk, ak) can easily be computed using Eq. (10).
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Table 1 – Parameters of the proposed AKF-SR framework.
Name Symbol
Discount factor γ
Number of possible actions Nactions
Number of states’ variables D
Order of RBFs ORBF
Number of RBFs NRBF
RBF’s mean µn

RBF’s covariance Σn

Length of the state-action feature vector L
Number of KFs in MMAE scheme NKF
Process noise covariance of reward learning B
Measurement noise variance of reward learning Ω
Posteriori estimate covariance of reward learning P
Process noise covariance of SR learning U
Measurement noise covariance of SR learning E
Posteriori estimate covariance of SR learning C
Adaptation rate for RBF’s mean update λµ
Adaptation rate for RBF’s covariance update λΣ

3.4 Active Learning Scheme

A critical existing challenge in RL problems is the exploration/exploitation trade-off, i.e., selection between exploiting a
familiar action for a known reward or exploring unfamiliar actions for unknown rewards. Computation of uncertainty
associated with the state-action value function is a key advantage of the proposed AKF-SR learning framework against
its DNN-based counterparts. Actions are selected based on computed uncertainty at each filtering step. In other words,
at each step, the action leading to the largest decrease in uncertainty of the state-action value function is selected. Since,
the state-action value function (Q(sk, ak)), has been modeled as a function of estimates θk (reward’s weight vector) and
W k (SR’s weight matrix), their uncertainty can be used to approximate uncertainty of the state-action value function.
Using the information form of KF (also referred to as information filter [52]), the information associated with θk and
W k, which are denoted by the inverse of their posteriori covariance matrices (i.e., P and C) are updated as follows

P−1k = P−1k|k−1 + hTk Ω−1k hk, (45)

C−1k = C−1k|k−1 + gTkE
−1
k gk (46)

The choice of actions only affects terms (hTk hk) and (gTk gk) in Eqs. (45) and (46) as it changes hk and gk. Therefore,
hk and gk can change uncertainty of the state-action value function by choosing different actions. Since the information
matrix hTk hk cannot be maximized; therefore, its trace (tr(hTk hk) = hkh

T
k ) will be maximized. As stated previously,

hk = ψ(sk, ak), where vector ψ(sk, ak) has been constructed by placing the action-independent vector φ(sk) in the
corresponding spot for action ak and setting the feature values for the other actions to zero. The value of hkhTk at the
specific state sk, therefore, would be the square norm of the state feature vector φ(sk) for different choices of actions
(i.e., action-independent). The action ak is then selected by maximizing the SR weight’s information as follows

ak = arg max
a

(
gTk (sk, a)gk(sk, a)

)
. (47)

This contribution is shown in the next section to effectively improve the performance of learning process in terms of
achieved rewards from the environment.

The proposed AKF-SR framework is briefed in Algorithm 1, and the model’s parameters are listed in Table 1.

4 Experimental Results

The proposed AKF-SR framework is evaluated in this section and compared to the state of the art RL algorithms:
Deep Q-Network [37], Substochastic Successor Representation (SSR) framework [36], and Universal Successor
Representations (USR) [2]. In order to demonstrate efficacy of the proposed AKF-SR framework in the learning
process as well as its rapid adaptation to the reward changes, the following popular RL benchmarks are considered: (1)
Mountain Car, (2) Inverted Pendulum, and; (3) Lunar Lander.
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Algorithm 1 THE AKF-SR FRAMEWORK

1: Learning Phase:
2: Input: γ,Bk,Uk, λµ, λΣ,Ek, and {Ωik} for i = 1, 2, . . . , NKF
3: Initialize: θ0,P 0,w0,C0,µ

n
0 , and Σn

0 for n = 1, 2, . . . , NRBF
4: Repeat (for each episode):
5: Initialize sk.
6: for k = 1, 2, ... do:
7: RBF-based Feature Vector Construction: Construct ψ(sk, a) through Eqs. (14) and (15).
8: Active Learning: ak = arg max

a

(
gTk (sk, a)gk(sk, a)

)
.

9: Take action ak , observe sk+1 and rk = R(sk, ak).
10: MMAE-based Reward Learning: Perform Eqs. (16)-(31) to estimate θk.
11: KTD-based SR learning: Perform KF on Eqs. (43)-(44) to update wk.
12: Reshape wk to construct matrixW k.
13: Calculate feature-based SR vector asmπ(sk, ak) = W kψ(sk, ak).
14: Calculate the state-action value function Q(sk, ak) = θTkm

π(sk, ak).
15: Update RBFs Parameters: Perform RGD, Eqs. (32)-(39), to achieve Σn

k+1 and µnk+1 for 1 ≤ n ≤ NRBF.
16: end for

The classical DQN described by [37], uses a convolutional neural network for calculation of state-action value function.
The TD error is then used to perform a gradient descent step with respect to the parameters of the network. The
SSR [36] computes the norm of the SR while it is being learned with combination of the TD learning and a DNN. It
has been shown that SSR implicitly counts state visitation, explaining some light for the uncertainty about that state
for exploration/exploitation trade-off. The state-action value function is then learned through a DNN model while it
considers the agent’s next state uncertainty as an exploration bonus obtained from the SSR. Similar to the proposed
AKF-SR, SSR estimates the uncertainty of the state (associated value function). But, there are two main differences
between AKF-SR and SSR: (i) SSR learns the SR through a DNN model while as previously mentioned, AKF-SR
learns the SR via KTD (i.e., incorporation of the TD and KF), and: (ii) SSR considers the norm of the estimated SR
as an exploration factor while AKF-SR uses the covariance of the estimated SR for exploration/exploitation trade-off.
The USR [2] uses a deep learning framework to approximate the SR and incorporate it with actor-critic method to
learn the SR. There are two key differences to highlight between the proposed AKF-SR and USR approaches. Firstly,
USR adopts actor-critic method, which is a TD method that has a separate memory structure to explicitly represent
the policy independent of the value function while our proposed AKF-SR framework is a value-based TD method that
estimates the policy by estimating the associated value function. The second key difference is that similar to DQN and
SSR schemes, USR uses a DNN for the SR learning while our proposed AKF-SR adopts KTD for the SR learning.

4.1 Choosing AKF-SR Parameters

For adaptation of RBFs’ parameters, generally, finding a proper shape parameter of RBFs is not easy. The centers of
RBFs are typically distributed evenly along each dimension of state vector, leading to ODRBF centers for D state variables
and an order ORBF given by user; variance of each state variable (σ2) is often initialized to 2

ORBF−1 . It has been shown
that RBFs only generalize locally-changes in one area of the state space and do not affect the entire state space [29].
The covariance between two different state variables is thus set as zero. Therefore, Σ0 = σ2 is a scalar if there is one
state variable (i.e., D = 1); otherwise, it is a D ×D diagonal positive definite matrix with the entries of 2

ORBF−1 . The
number of state variables for both the Inverted Pendulum (sk = [θ, θ̇]) and Mountain Car (sk = [x, ẋ]) environments
used in the manuscript are D = 2. Since we have selected (ORBF = 3), Σn

k for all 32 = 9 RBFs (i.e, NRBF = 9) are
initialized as Σn

0 = I2, which is a positive definite (invertible) matrix. For the Lunar Lander, D = 6 and the value of
ORBF is selected to be 2. Therefore, Σn

0 = 2I6 for all 64 RBFs.
As explained in Sub-section 3.2.2, the measurement mapping function in Eq. (16) (i.e., h) is constructed as a function
of state-action feature vector h = ψT (sk, ak), its adaptation, therefore, requires adaptation of the basis functions
parameters µnk ,Σ

n
k for (1 ≤ n ≤ NRBF). In this regard, a gradient descent adaptation approach is adopted to update

either of the means and covariances of the RBFs at each time step k based on Eqs. (38) and (39), respectively. The four
terms in the right-hand side of Eq. (39) (i.e.,

(
Σn
k

)−1
(sk − µnk )(sk − µnk )T

(
Σn
k

)−1
) form a positive semi-definite

matrix and the multiplication of four terms in the left-hand side of Eq. (39) (i.e., 2λΣ(Lk)
1
2 θTkψ) results in a scalar

positive number; therefore, (−λΣ∆Σ) is a positive semi-definite matrix. Since, the covariance matrix has been
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(a)

(b)

Fig. 3 – (a) The Inverted Pendulum environment. (b) The mean (solid lines) and standard deviation (shaded regions) of
cumulative episode’s reward on the Inverted Pendulum environment over the learning process.

initialized to a positive definite matrix ( 2
ORBF−1ID), the updated Σn

k for k ≥ 1 achieved from Eq. (39) is always a
positive definite matrix (consequently, invertible).

The values for λµ and λΣ are selected in such a way to keep the system stable. The discount factor denoted by γ affects
how much weight is given to the future rewards in the value function. A discount factor γ = 0 will result in state/action
values representing the immediate reward, while a higher discount factor will result in the values representing the
cumulative discounted future reward that an agent is expected to receive (behaving under a given policy). Commonly
(as is the case in the implemented environments), a large portion of the reward is earned upon reaching the goal. To
prioritize this final success, we expect an acceptable γ to be close 1. In our manuscript, γ is set to the high values of
0.95 and 0.99. In order to use the KFs implemented for reward learning and SR learning components of the proposed
AKF-SR framework, the parameters of two filters have to be chosen: the variances/covariances of the observation
noises, the priors and the variances/covariances of the process noise. The priors (θ0 andw0) should be initialized to the
values close to the ones looks optimal, or to a default value (i.e., the zero vector). The priors P 0 and C0 respectively
show the certainty in the prior guess of θ0 andw0, the lower the more certain. The process noise covariance of a KF is a
design parameter. If some knowledge about non-stationarity is available, it can be used to choose this matrix. However,
such a knowledge is generally difficult to obtain in advance. The proposed AKF-SR algorithm systematically allows to
use a set of different values of process noise covariance (B and U ). The priors θ0, w0, P 0, and C0 of the proposed
AKF-SR framework are chosen by trial and error. They may not be the best ones, but orders of magnitude are correct.
Finally, as stated previously, the measurement noise covariance of a KF, is one of the most important parameters to be
identified. To select this parameter for the KF used in reward function learning process (i.e., Ω), our intuition in the
proposed AKF-SR framework is to use MMAE scheme, which covers the potential range of the measurement noise
variance Ω using NKF mode-matched filters. The parameter NKF is set a-priori denoting the number of candidates
Ωi, for (1 ≤ i ≤ NKF). In the experiments, we have selected NKF to be equal to 11. It is worth mentioning that
measurement noise covariance of the KF used in KTD for the SR learning process (E), can be also selected via MMAE
in a similar way to Ω. But, since E is a square high dimensional matrix (L× L), applying MMAE comes with high
computational cost. The measurement noise covariance E is, therefore, selected by trial and error.

4.2 Inverted Pendulum

In the first experiment, Inverted Pendulum environment, shown in Fig. 3a, is considered. A pole is attached to a cart
moving along a friction-less track. At each time step, an agent can move the cart to the left or to the right. The goal is to
prevent it from falling over. The pendulum’s angle from upright position and its angular velocity (i.e., sk = [θ, θ̇]T )
constitute the state of the system. A reward of +1 is given at each step that the pendulum is above the horizontal
line. Reward 0 will be provided to the agent when |θ| > π/2, i.e., when the pendulum in the next state is beyond the
horizontal. Each episode terminates upon falling of the pendulum or when its length approaches 200 runs.
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For implementation of the proposed AKF-SR, we use 9 RBFs together with a bias parameter. The size of the state-
action feature vector ψ(sk, ak) is then equal 30 as A = {−50, 0,+50}, i.e., three actions are possible. Initialization is
performed as follows

µn0 ∈ {−π/4, 0,+π/4} × {−0.5, 0,+0.5} (48)
Σn

0 = I2, (49)

where I2 denotes an identity matrix of dimension of 2× 2. Based on the Eq. (15), the state-action feature vector is
given by

ψ(sk, ak = +50)=[1, φ1, . . . , φ9, 0, . . . 0, 0, . . . , 0]T (50)

ψ(sk, ak = −50)=[0, . . . , 0, 1, φ1, . . . φ9, 0, . . . , 0]T (51)

ψ(sk, ak = 0)=[0, . . . , 0, 0, . . . , 0, 1, φ1, . . . φ9]T , (52)

where the value of φn, for (1 ≤ n ≤ 9), is computed based on Eq. (14). We use the initial values of λu = 200 and
λΣ = 100 for initialization, which are obtained via trial and error to have a stable system. We use γ = 0.95 for the
discount factor. The process noise covariances for learning of the reward weight and the SR weight are selected as
time-invariant valuesBk = 10−3I30 and Uk = 10−2I900. The measurement noise covariance of SR learning (Ek) is
set to I30 and the measurement noise variance candidates for estimation of the reward’s weight comes from

Ωik ∈ {0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}. (53)

Finally, θ0 = 0 and w0 = 0 are used to initialize the weights, and P 0 = 10I30 and C0 = 10I900 are utilized to
initialize the posteriori covariance matrices.

A zero-mean Gaussian distribution with standard deviation of 0.1 is used to randomly select starting angle for each
episode. Learning process is performed over 1, 000 episodes. In order to evaluate effect of the proposed uncertainty-
based action selection process within the AKF-SR framework, we measure the averaged achieved rewards at each
episode over 50 runs to investigate how the proposed method helps the agent to choose the optimum action, which leads
to the least future penalties (maximum future rewards). By selecting such an action at each step, the agent will achieve
its goal by doing as few interactions as possible. The achieved reward at each episode, therefore, demonstrates how
far the selected actions at each step are from the optimum ones. To illustrate effectiveness of the proposed AKF-SR
framework, we compare the results obtained from that with those obtained from the DQN [37], SSR [36], and USR [2].
As Fig. 3b shows, AKF-SR algorithm performs better than others in terms of achieved rewards toward keeping the
inverted pendulum above the horizontal line. These results demonstrate the positive effect of uncertainty usage in action
selection process of AKF-SR. For a RL algorithm to be usable in different applications, it should be able to reproduce
consistent performances across multiple training runs (i.e., reproducibility). As it can be observed in Fig. 3b, at each
episode, DNN-based frameworks have a greater variance across 50 runs than AKF-SR, which can show sensitivity of
DNNs to different factors such as random initialization of the optimization and hyper-parameter setting. Such a high
sensitivity can lead to unpredictable performance in practical scenarios and also a large search (consequently, more
time and more cost) to find the best model. Another aspect for measuring the reliability of an algorithm is the ability
of the algorithm in generating stable performance across episodes (i.e., stability). As can be seen from the results,
AKF-SR has less sudden changes in its performance over episodes in comparison to others, which makes AKF-SR
framework more reliable to apply to different scenarios. For evaluating the reliability of an RL algorithm, the time
and effort spent for tuning of the algorithm’s parameters should also be considered. While a DNN has a large number
of parameters to be tuned (usually million number of parameters), the proposed filtering-based AKF-SR framework
only requires to tune the process and measurement noise covariances (B,U ,Ω,E), means and covariances of RBFs
(µn,Σn), and adaptation rates used for RBFs parameters tuning (λµ, λΣ). Much less time and effort is, therefore,
required for parameters tuning of AKF-SR framework as compared to its DNN counterparts.

In addition, the key advantage of the proposed SR-based method, which is the decomposition of state-action value
function into the SR and reward function, allows the proposed AKF-SR framework to rapidly adapt to changes in
the reward function. In order to investigate this strength, after convergence of both models, value of the reward upon
keeping the pendulum above the horizontal line is changed from +1 to +3 and the state-action value is relearned
through different frameworks. The estimated state-action value function in the SR context of AKF-SR and USR [2],
will converge to this change by just updating (relearning) the reward given the new external rewards (the SR remains
same and the agent does not need to learn the SR another time). However, adjustment of DQN and SSR algorithm to
changes comes with updating cached values at all states in the environment. Results shown in Fig. 4a confirm that the
computing the value function via a dot product between the SR and reward enables the agent to adapt itself rapidly to
the new value function by just updating the reward function.

Furthermore, to illustrate the stability of the RBFs in the manuscript, in the Inverted Pendulum task, we have fixed the
number of RBFs to be 10. We have performed proposed AKF-SR scheme for 200 episodes. The entire process have
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(a) (b)

Fig. 4 – (a) State-action value function after change of the reward’s value at the upright position of the Inverted
Pendulum. (b) Stability analysis of the RBFs.

been repeated 50 times for three different values of widths (Σ) of RBFs and the number of steps to goal was averaged
over 50 times. As Fig. 4b shows, by using the RBFs for the reward function and the SR approximations, we can achieve
a steady state performance.

4.3 Mountain Car

The Mountain Car benchmark RL platform shown in Fig. 5a is used to conduct the second experiment. In this classic
RL problem, one car is positioned on a 1-D track between two mountains. The objective of the RL model is to bring the
car to the top of the right mountain. It is assumed that the car cannot climb the right mountain in one single try. For
success in this scenario, therefore, the car needs to go back and forth building up momentum to reach its goal. Position
and velocity of the car (i.e., s = [x, ẋ]T ) constitute the state of the system. Available actions are “push left”, “push
right”, and “no push”, represented by set A = {0, 1, 2}. The objective of the RL model is to reach the top position
on the right mountain, i.e., car’s position becomes greater than or equal to 0.5m. In scenarios that the objective is not
achieved (i.e., car can not mount the right hill), a −1 reward will be given to the agent for each step. No penalty will be
assigned in case that the car reaches the left hill (this state is treated as hitting a wall). The starting state of each episode
is a random position within −0.6m to −0.4m range with zero velocity.

In a similar fashion to the Inverted Pendulum experiment in Sub-section 4.2, the state-action feature vector for Mountain
Car is also constructed based on 9 RBFs and a bias parameter (resulting in a feature vector of size 30). Initialization is
performed as follows

µ
(n)
0 ∈ {−0.775,−0.35,+0.775} × {−0.035, 0,+0.035} (54)

Σ
(n)
0 = I2 (55)

The process noise covariances for learning the reward’s weight and the SR weight are selected asBk = 10−2I30 and
Uk = 10−2I900. The discount factor γ is set to 0.95. Values θ0 = 0 and w0 = 0 are used to initialize the weights.
Values P 0 = 10I30 and C0 = 10I900 are exploited to initialize the posteriori covariance matrices. The measurement
noise covariance of SR learning (Ek) and the measurement noise variance candidates for estimation of the reward’s
weight are selected from the same set as the Inverted Pendulum environment. The model learns from 1, 000 episodes,
with a maximum steps of 200 at each episode. Each episode is repeated 50 times and averaged. Fig. 5b demonstrates
that AKF-SR outperforms DNN-based frameworks in the terms of performance criteria defined for Inverted Pendulum
environment, i.e., cumulative reward received at each episode, time and computational cost, and reproducibility and
stability aspects of the algorithms.
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(a)

(b)

Fig. 5 – (a) The Mountain Car environment. (b) The mean (solid lines) and standard deviation (shaded regions) of
cumulative episode’s reward on the Mountain Car environment over the learning process.

4.4 Lunar Lander

In the third experiment, we focus on the Lunar Lander environment, which is a more complicated environment compared
to the two previous ones. In the Lunar Lander environment, the goal for the RL agent is to learn to land successfully on
a landing pad located at coordinate (0, 0) in a randomly generated surface on the moon as shown in Fig. 6a. The state
space of the system consists of the agent’s position (x, y) in space, horizontal and vertical velocity (vx, vy), orientation
in space θ, and angular velocity θ̇. The agent has four possible actions, i.e., do nothing; firing the left engine, firing
the main engine, and; firing the right engine (A = {0, 1, 2, 3}). Reward for landing on the pad is about 100 to 140
points, varying on the lander placement on the pad. If the lander moves away from the landing pad it loses reward.
Each episode terminates if the lander lands or crashes, receiving additional +100 or -100 points, respectively. Each leg
ground contact worth +10 points. Firing the main engine results in a -0.3 point penalty for each frame. The problem is
considered solved if the agent receives +200 points over 100 iterations. The RBFs of order two are considered for each
state variable resulting in 64 RBFs for each action. Consequently, the size of the feature vector φ(sk, ak) will be 256.
Based on the useful range of each variable of state vector, the initial mean and covariance of the RBFs are chosen as
follows

un0 ∈ {−0.333,+0.333}6, (56)
Σn

0 = 2I6. (57)

The initial values of λmu and λΣ are both selected as 200 to keep the system stable. The discount factor is selected as
0.99. The noise covariances are selected asBk = 10−2I256 and Ek = I256. Candidate values for Ω are selected from
the same set as was used for the Inverted Pendulum environment. Like the two previous environments, the agent is
trained through different 1000 episodes and training process is repeated 50 runs. Fig. 6b depicts the cumulative reward
averaged over 50 runs reward per each episode for different approaches. Due to the complexity of the lunar lander
environment, the cumulative rewards achieved from AKF-SR has more fluctuations in comparison to inverted pendulum
and mountain car. But as it can be observed, AKF-SR still outperforms its counterparts in terms of cumulative reward
received at each episode, and reproducibility and stability of the algorithms.
In order to evaluate the linear assumptions of the reward function and the SR, the Mean Squared Error (MSE) loss of
the estimated reward and the SR for 1000 episodes over 50 training runs are calculated and are shown in Fig. 7. As
expected, both the reward and the SR losses decrease over training process. Despite the fluctuations in the loss values,
the linear model estimates seem to be good enough to achieve a better performance over model-free DQN method and
SR-based SSR and USR frameworks. The loss of state-action value function, which is summation of the SR loss and
the reward loss, are averaged over 1000 episodes and shown in Table 2 for different frameworks. As it can be seen in
Table 2, the average loss in the proposed AKF-SR is less than that of the DNN-based approaches.
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(a)

(b)

Fig. 6 – (a) The Lunar Lander environment. (b) The mean (solid lines) and standard deviation (shaded regions) of
cumulative episode’s reward on the Lunar Lander environment over the learning process.

(a) (b)

Fig. 7 – The calculated MSE loss of the estimated reward function and the SR in the AKF-SR framework over 1000 episodes for the
Lunar Lander: (a) MSE of the estimated reward, and (b) MSE of the estimated SR.

4.5 Algorithmic Complexity

As explained in the previous sections, the proposed AKF-SR framework consists of four main modules: (i) RBF-based
Feature Vector Construction, which maps each state sk to NRBF-dimensional state feature vector φ(sk) consisting of
basis functions achieved from Eq. (14). The state-action feature vector ψ(sk, ak) is then generated by assigning φ(sk)
to the corresponding spot for action ak while the feature vector values for the remainder of the actions are set to zero. The
whole construction process of state-action feature vector ψ(sk, ak) has a computational complexity of O(NRBF ×D3)
per iteration, (ii) Reward Learning, which first, estimates the reward weight vector θk via implementation of NRBF
parallel KFs. The global computational complexity (per iteration) of MMAE is O(NKF × L3). The measurement
mapping function of the reward weight vector is then adapted by updating the means and covariances of basis functions
through Eqs. (38) and (39). Since at each time step, only the mean or covariance is updated, this process results
in memory complexity of O(L+D

3

2 ), (iii) KTD-based SR Learning, which estimates the SR weight matrix W k via
KTD algorithm. This estimation procedure can be computed in O(L4) [34] per iteration, and; (iv) Active Learning
Scheme, which selects the action leading to the largest decrease in uncertainty of the state-action value function in
O(L×Nactions). The global computational complexity (per iteration) of the proposed AKF-SR scheme is, therefore,
in O(NRBF ×D3 +NKF × L3 + L4). It should be noted that the main focus of this paper is on the improvement of
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Table 2 – The MSE loss of state-action value function averaged over 1000 episodes.

Environment AKF-SR DQN SSR USR

Inverted Pendulum 6.43 11.98 7.36 7.69
Mountain Car 6.78 14.78 9.94 8.46
Lunar Lander 8.93 14.59 16.76 11.98

the performance of RL agents by considering their uncertainties/beliefs for choosing different actions. As it has been
shown in the manuscript, this uncertainty can be achieved by using KF for the reward function learning and KTD for
the SR learning. The proposed MMAE and RGD improve the performances of the used KF by adaptation of its two
most important parameters: measurement noise covariance and measurement mapping function. The computational
complexities of DQN [37], USR [2] and SSR [36] are not specified; however, based on our experiments and since the
proposed AKF-SR has much less trainable parameters than the DQN [37], USR [2], and SSR [36] frameworks, which
all use DNNs with large number of parameters for the learning process, AKF-SR has less computational cost compared
to its DNN-based counterparts. As an example, DQN with only one hidden layer of size 64 has 11140 parameters
resulting in high computational complexity and memory requirement. Training with a mini-batch of 32 on a typical
performance GPU shows that it needs over 3.5 GB of local DRAM.

5 Conclusion

This paper proposed a novel KTD-based SR framework, referred to as the AKF-SR, to learn goal reaching behavior in
RL problems. The AKF-SR learns the value function by computing the inner product of the SR and reward function’s
weight vector. This factorization of the value function, enables the learned SR to be reused for other tasks with the
same domains but different reward values. Moreover, we extended KTD framework of MF algorithms [34] to the
SR learning, which estimates uncertainty of the value function, and also deals with over-fitting, parameter sensitivity
(consequently, unreliability in reproducing consistent performances across multiple runs), and high memory requirement
problems of DNN-based algorithms. Another key advantage of the proposed AKF-SR algorithm is using RGD and an
innovative MMAE schemes for the reward function learning, which tackles the effect of improper selection of the filter’s
parameters on its performance and stability to make the framework more usable in practical problems. Furthermore, an
innovative active learning scheme, which considers uncertainty of the value function achieved from KTD algorithm
for actions selection, was adopted within the AKF-SR framework to deal with the exploration/exploitation dilemma.
The proposed AKF-SR framework was evaluated based on three continuous state space RL benchmarks: Inverted
Pendulum, Mountain Car, and Lunar Lander. The averaged accumulative reward and MSE loss for 1000 episode over
50 runs were calculated. The results showed that the proposed AKF-SR framework outperforms its counterparts in
terms of cumulative reward, reproducibility and stability aspects of reliability, and time and effort spent for finding
and learning the best model. To compare adaptation speed of AKF-SR with DNN-based frameworks to changes in the
reward function, the reward value of Inverted Pendulum environment was changed and all algorithms were relearned.
As it was expected, AKF-SR could adapt itself to the changes faster than other frameworks.

For estimating of the SR weight matrix W k through implemented Kalman filter within the KTD framework, we
mapped the matrix into a column vector by stacking its columns one underneath the other and proceed with standard
Kalman filter for vectors. However, it is often difficult to ensure that this vectorized estimation method does not
cause any consequential losses in the original structure of the problem. Furthermore, for high-dimensional estimation
models (e.g., a RL environment with a large number of states variables), such a method comes with an excessive
computational cost. A number of studies have investigated to develop estimation algorithms in terms of the original
system matrices [56, 57]. As future work, we plan to apply matrix-based filtering algorithms for estimation of the SR
weight matrix in order to extend the proposed AKF-SR framework to more complex RL tasks with high-dimensional
states in an efficient manner.
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