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Abstract

Although video summarization has achieved tremendous success benefiting from

Recurrent Neural Networks (RNN), RNN-based methods neglect the global dependen-

cies and multi-hop relationships among video frames, which limits the performance.

Transformer is an effective model to deal with this problem, and surpasses RNN-based

methods in several sequence modeling tasks, such as machine translation, video cap-

tioning, etc. Motivated by the great success of transformer and the natural structure

of video (frame-shot-video), a hierarchical transformer is developed for video summa-

rization, which can capture the dependencies among frame and shots, and summarize

the video by exploiting the scene information formed by shots. Furthermore, we argue

that both the audio and visual information are essential for the video summarization

task. To integrate the two kinds of information, they are encoded in a two-stream

scheme, and a multimodal fusion mechanism is developed based on the hierarchical

transformer. In this paper, the proposed method is denoted as Hierarchical Multimodal

Transformer (HMT). Practically, extensive experiments show that HMT achieves (F-

measure: 0.441, Kendall’s τ : 0.079, Spearman’s ρ: 0.080) and (F-measure: 0.601,

Kendall’s τ : 0.096, Spearman’s ρ: 0.107) on SumMe and TVsum, respectively. It sur-

passes most of the traditional, RNN-based and attention-based video summarization

methods.
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1. Introduction

Video has become the most popular data format in our daily life, including com-

munication, interaction and entertainment. The wide applications lead to the explosion

of video data. Statistics show that video data has occupied over 90% of current Inter-

net traffic [1, 2]. It also takes the leading position in mobile Internet, and still keeps

growing rapidly. Moreover, it is widely used in the tasks of artificial intelligence, such

as automatic driving, intelligent monitoring, and interactive robot [3]. Under this cir-

cumstance, the automatic video analysis techniques are demanded urgently. Video

summarization is one of the techniques rising for the explosion of video data [4, 5].

It highlights the main video content and removes redundancy by selecting a subset of

key-frames or key-shots, denoted as video summary. In this paper, we focus on the key-

shot based video summary, which is a brief version of the original video. It can ease

the way of viewers to browse the video content, and can also boost the efficiency of

other video-based computer vision tasks, such as video captioning, action recognition,

anomaly detection, etc. [6].

Video is the typical sequence data. Video summarization is a sequence-to-sequence

task, i.e., from a long sequence to short sequence [7]. Recurrent Neural Network

(RNN) is one of the effective and widely used tools for sequence modeling, which

has also made tremendous success in video summarization [8]. Most of the recently

proposed methods are developed based on the variant of RNN, i.e., Long Short-Term

Memory (LSTM) [9], and achieve the state-of-the-art performance. It mainly benefits

from the great ability of LSTM in temporal dependency exploiting, which is essential

for the video summarization task. However, the video structure is quite complex. It

is not a smooth stream, especially for those edited videos, the multi-hop relationships

occur frequently among shots [10]. Thus, the temporal dependency captured by LSTM

is not enough to model such complex video structure. Worse still, LSTM processes the

video sequentially. It requires the previous hidden states and current feature in each

step, which limits its parallelization.
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Transformer can remedy the above problems, which surpasses the performance of

LSTM in various tasks, both in computer vision and natural language processing [11].

Specifically, it is designed based on the self-attention mechanism, and processes the

sequence as a whole rather than step-by-step. In this case, the recursion in RNN is

avoided and the parallel computation can be achieved. Moreover, it can also capture

the global dependency among sequence, so that the multi-hop relationships among

shots can be modeled [12]. Inspired by this, we devote to introducing transformer to

the video summarization task.

To better utilize the transformer to summarize videos, the characteristics of video

data are analyzed in this paper: 1) Video is composed of several shots recording certain

activities, and each shot contains several frames varying smoothly. In this case, video

data contain the two-layered hierarchical structure. 2) Videos are multimodal data.

They contain both the visual and audio modalities, so as to provide viewer the sense of

reality. The hierarchical and multimodal characteristics of video data are essential to

the performance of video summarization.

In this paper, we develop a Hierarchical Multimodal Transformer (HMT) for the

video summarization task. Specifically, a hierarchical structure for the transformer

model is developed according to the video structure. Rather than processing the whole

frame sequence directly, the frame sequence is separated into shots. The hierarchical

transformer encodes the shot features by capturing the frame-level dependency of each

shot in the first layer, and encodes the scene information by capturing the shot-level

dependency in the second layer, so that the lengthy video frames are processed hierar-

chically. Meanwhile, the memory and computation burden are reduced. Furthermore,

a multimodal fusion mechanism is developed based on the hierarchical structure, in

order to jointly utilize the audio and visual information for summarizing the video. To

achieve this, the transformer in the first layer is modified as two branches, i.e., audio

branch and visual branch. The two information flows are fused in the second layer to

predict the candidate summary.

Overall, the novelties and contributions of the proposed HMT are:

• The transformer model is introduced to video summarization, where the global
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dependency and the multi-hop relationships among shots are captured.

• The hierarchical structure is developed for the transformer model, so that it can

model the two-layered structure of video data in the summarization task.

• The multimodal fusion mechanism is introduced to the transformer model, which

can boost the performance by jointly utilizing the audio and visual information

to summarize the video.

In the following, the related works in video summarization are reviewed in Section

2. The overview of the proposed hierarchical multimodal transformer is presented in

Section 3. The experiment setup and results are discussed in Section 4, including the

ablation study and comparison with the state-of-the-art methods. The conclusions and

future works are described in Section 5.

2. Related Works

In this section, we first review the literature of video summarization, and then in-

troduce the applications of multimodal learning in video analysis.

Traditional methods tackle video summarization as a subset selection task [13, 14].

Clustering algorithms are widely adopted in earlier methods, including delaunay clus-

tering [15], k-means [16] and so on. The frame sequence is allocated into several

clusters. The cluster centers are determined as representatives. Dictionary learning is

another tool for subset selection. The regularization term defined by l0 norm, l0,1 norm

and rank norm are usually integrated into the dictionary learning process to guarantee

the sparsity of selected key-frames or key-shots [17, 18]. Other constraints are also

employed to model the priors of the video data, such as local similarity and smooth-

ness [19, 20]. Clustering algorithms and dictionary learning select summary based on

low-level video features. To employ high-level features, different score functions are

designed to rank video shots [21, 22]. They are developed based on the object-level

information (size, location, occurrence frequency, etc.), smoothness of video storyline,

distribution of key-shots, diversity of the key-shot set, and so on [23, 24]. By utilizing

high-level features, the performances are improved.
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In recent years, RNN-based methods are rising rapidly with the development of

deep learning. The plain LSTM is firstly utilized in [8] to encode the temporal depen-

dency among frame sequence. The frame-wise probability is predicted by the multi-

layer perception. Compared to traditional methods, better results are obtained by taking

advantage of the temporal dependency captured by RNN. To adapt to the video data,

the hierarchical structure is developed for RNN to extend the long sequence modeling

ability [7]. The hierarchical transformer in our work is inspired from it. The boundary-

aware RNN is also proposed to jointly detect shot boundaries and select key-shots [25].

To provide more priors for the summarizer, the generative adversarial network is uti-

lized in [26], and the discriminative loss is used for optimization. The score functions

are borrowed from traditional methods as the reward, in order to conduct reinforcement

learning to optimize the summary generator [27]. Dual learning is also adopted in a

similar way, which summarizes the video under the supervision of the reverse task, i.e.,

video reconstruction [28]. With the help of discriminator, reinforcement learning and

dual learning, the video can be summarized unsupervisedly. Although great success

is achieved by RNN-based methods, they can only capture the temporal dependencies,

while the global dependencies are neglected. In this case, the multi-hop relationships

among shots cannot be captured [10].

Researchers have realized the limitations of RNN in the video summarization task.

They try to introduce attention models to capture the global dependencies [29, 30]. On

the one hand, the attention model is integrated into the RNN model. Specifically, the

attentive encoder-decoder network is proposed in [31]. The decoder is composed with

two bidirectional LSTMs equipped with the attention model. An attentive and distri-

bution consistent method is proposed in [32], where the self-attention is applied on the

encoder, and the additive and multiplicative attention is exploited on the decoder. The

whole network is optimized jointly by the regression loss and distribution loss. On the

other hand, the pure attention model is utilized for video summarization, which means

RNN is abandoned. The global diverse attention is explored in [33] by capturing the

pairwise relation among video frames. It can compute the representativeness of each

frame to the whole video content and lead to diverse attention. The user’s preference

are considered in [34] by developing a query-focused video summarization framework,
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Figure 1: The full architecture of the proposed hierarchical multimodal transformer, where the first layer is

composed of a visual transformer and an audio transformer, and the second layer is a multimodal transformer

taken the fused audiovisual information as input. Note that Visual guidance means the audio feature is

encoded under the guidance of visual feature. The lines in different color denote the information from

different video shots.

where both self-attention and query-aware attention are employed.

Finally, we want to emphasize the development of multimodal learning in video

analysis. Video captioning, sounding object localization, audiovisual representation

are typical tasks of multimodal learning, where the audio, visual and textual modalities

are utilized for video analysis [35, 36, 37]. A temporal fusion mechanism is developed

in [38] to fuse the audio and visual data for emotion classification. The multimodal

latent topics are mined in [39] to generate video captions. Similar to the video sum-

marization task, an automatic curation method of sports highlights is conducted by

combining multimodal excitement features [40]. Similarly, the audiovisual features

are jointly utilized to summarize baseball videos in [41]. Moreover, a neural multi-

modal cooperative learning framework is developed in [42] for video understanding

tasks. Generally, most above multimodal works show superiority than those methods

just utilizing visual features.
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3. The Proposed Method

In this paper, a Hierarchical Multimodal Transformer (HMT) is proposed for the

video summarization task. As depicted in Figure 1, the transformer is utilized to en-

code the global dependency in the video stream. The hierarchical structure is developed

to model the video in frame-level and shot-level successively. The multimodal fusion

mechanism is presented to integrate the audio and visual information for video sum-

marization. In the following subsections, each component is elaborated in detail.

3.1. The Plain Transformer Encoder

Transformer is originally proposed for the machine translation task, which trans-

lates the sentence from source language to target language. It contains an encoder and

a decoder. They share similar architectures with a multi-head self-attention layer and a

feed-forward network. In this work, only the encoder is utilized for video summariza-

tion.

Given the input sequence X = [x1, x2, . . . , xn], each element is transformed into

three kinds of vectors,

Q =WQX, K =WKX, V =WVX, (1)

where Q, K, V ∈ Rd×n denote the query, key and value matrices, respectively. WQ,

WK , WV are the linear mapping parameters. Then, the self-attention is conducted by

SA = softmax

(
Q ·K>√

d

)
· V, (2)

where Q · K> computes the pairwise relationship (similarity) in the sequence. The

softmax function transforms the similarity to attention weights.

To jointly model dependencies from different representation subspaces at differ-

ent positions, the multi-head attention is adopted. The above self-attention can be

viewed as single-head attention. The multi-head attention is achieved by conducting

self-attention in different representation subspaces. By utilizing different linear map-

ping matrices, WQ
i , WK

i , WV
i , i = 1, 2, . . . , h, the representations of query, key and

value can be obtained as {Qi,Ki, Vi}hi=1. h is a hyper-parameter denoting the number
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of heads in the multi-head attention. The self-attention can be conducted in different

subspaces, i.e.,

SAi = softmax

(
Qi ·K>i√

d

)
· Vi, i = 1, 2, . . . , h, (3)

then, the multi-head attention is formulated as

MHA = [SA1, SA2, . . . , SAh] ·W o, (4)

where W o is the training parameter.

After that, a feed-forward network and a layer-norm operation are stitched after the

multi-head attention layer. The frame features are further encoded as

E = LN
(
W 2ReLU

(
W 1MHA

))
, (5)

whereE is the encoded feature matrix. W 1 andW 2 are the training parameters. ReLU

is the activation function. LN denotes the layer-norm operation.

3.2. Hierarchical Multimodal Transformer

According to [43, 44], videos are naturally two-layered data, i.e., frame-shot-video.

Inspired by this, the hierarchical structure is fixed as two layers, where the first layer

processes the frames in each shot, and the second layer processes all the shots in the

video.

The first step for conducting the hierarchical structure is to separate the frame se-

quence into shots. Kernel-based Temporal Segmentation (KTS) [45] is the most widely

used shot boundary detection method. Following existing protocols, it is also adopted

in our method for fairness. Given the frame sequence [f1, f2, . . . , fn], it is separated

into shots by KTS, and the subsequences are obtained as
[
fbi , fbi+1, . . . , fbi+1−1

]
, i =

0, 1, . . . ,m−1, wherem denotes the number of shots in the video, {bi}mi=0 are the shot

boundaries. Note that b0 = 1 and bm = n stands for the start frame and end frame of

the video. The audio data is segmented temporally according to the same boundaries.

3.2.1. Frame-level Transformer

To encode the visual and audio information jointly, the first layer of the hierarchical

transformer is modified as two branches, i.e., the visual branch and audio branch.
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In the visual branch, the frames are encoded by a plain transformer for each shot.

Without loss of generality, the encoding of the i-th shot is formulated as

E1
i = FTrans

([
fbi−1

, fbi−1+1, . . . , fbi
])
, (6)

where FTrans denotes all the computations in the frame-level transformer, as depicted

in Section 3.1. E1
i is the encoded features of frames in shot i. To obtain the visual

representation vector of the shot, the mean pooling operation is carried out on E1
i ,

svi =MP
(
E1

i

)
, (7)

where MP stands for the mean pooling operation. In this case, the visual representa-

tions for each shot can be obtained as [sv1, s
v
2, . . . , s

v
m].

There are inconsistency between audio and visual information, e.g., the sounding

objects are not recorded in the video frames. To encode the visual-related audio infor-

mation, in the audio branch, the audio feature is encoded under the guidance of visual

feature. It is formulated as

SAa
i = softmax

(
Qv

i ·Ka>
i√

d

)
· V a

i , i = 1, 2, . . . , h, (8)

where Qv is the query matrix of the visual feature. Ka and V a denote the key and

value matrices of the audio feature. Under the guidance of visual features, Eqn. (8)

can explore the consistency between audio and visual features, so as to reduce the

interference caused by the inconsistency. With the exception of self-attention, the audio

and visual branches in the first layer share the same architecture. The final computed

audio feature of each shot is denoted as [sa1 , s
a
2 , . . . , s

a
m].

To jointly utilize the visual and audio information for summarization, the two kinds

of features are concatenated together to form the final shot representation, i.e.,

si = [svi ; s
a
i ], i = 1, . . . ,m, (9)

where [·; ·] stands for the concatenation of two vectors. Taking the audio-visual features

as input, the multimodal fusion process is carried out in the second layer.

3.2.2. Shot-level Transformer

The shot representations are input to the second layer, in order to capture the global

dependencies among video shots. Specifically, the transformer in the second layer
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share similar architectures with the one in the first layer. The computation is formulated

as

E2 = STrans ([s1, s2, . . . , sm]) , (10)

where STrans denotes the computations of the shot-level transformer, and E2 is the

encoded shot features.

Finally, the video features are encoded in the hierarchical transformer. The proba-

bility of each shot to be selected into the summary is computed as

P = softmax
(
WPE2

)
. (11)

3.3. Optimization

In this paper, the Mean Square Error (MSE) is employed for the optimization of the

hierarchical multomodal transformer, i.e.,

MSE =
1

n

∥∥∥P̃ −G∥∥∥2
2
, (12)

where P̃ andG are the frame-level probability vector predicted by the proposed method

and annotated by human beings. Note that P̃ is extended from the shot-level proba-

bility P computed by Eqn. (11), where each frame is assigned with the probability of

corresponding shot.

4. Experiments

The proposed HMT is evaluated on two datasets, SumMe [46] and TVsum [47].

The results are compared with several state-of-the-art methods to verify its superiority.

Besides, the ablation study is conducted to show the improvements of each component

of HMT.

4.1. Setup

4.1.1. Dataset Introduction

Four datasets are employed in this paper, including SumMe [46], TVsum [47],

YouTube [16] and OVP [16]. They are all collected from the Internet and share similar

video topics, such as traveling, cooking, news, etc. Their statistics are displayed in
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Table 1: The statistics of datasets.

Name Number of videos Average duration

SumMe [46] 25 1-6min

TVsum [47] 50 2-10min

YouTube [16] 39 1-10min

OVP [16] 50 1-4min

Table 1. Following existing protocols [8, 45, 20], SumMe and TVsum are utilized for

evaluation. The summarization rate is fixed as 15%, where the key-shots are selected

by dynamic programming [27] as the knapsack problem. The training/test rate is 80%

and 20%. The training set also plays the role of validation. To make the results more

convincing, 5 random splits of training/test set are evaluated, and the average results

are reported in this paper. YouTube and OVP are used in the augmented setting to

augment the training data.

Both the visual features and audio features are taken as the input of the proposed

HMT. The 1024-dim feature in the pool-5 layer of GoogLeNet [48] is adopted as the

visual feature of frames. The 128-dim feature of VGGish [49] is employed as the audio

feature. To align the visual and audio feature temporally, the visual feature is extracted

for 2 frames per second. The audio data is segmented with the duration of 1 second

and the overlap of 0.5 second.

4.1.2. Evaluation Metrics

Two kinds of evaluation metrics are employed in the experiment. F-measure is

the most popular metric in video summarization. It measures the summary quality by

the temporal overlap between the summaries generated automatically and annotated

by human. Besides, the rank-based evaluation metrics, Kendall’s τ and Spearman’s

ρ [50] are adopted. They measure the similarity between predicted probabilities and

annotated importance scores, which provide a more fine-grained evaluation of the sum-

mary quality. Practically, there are multiple annotated summaries and important scores

for each video. The pairwise evaluation is conducted for each annotation. Following

existing protocols [8, 51, 31, 43], the average results are reported for the two kinds of

metrics on each dataset, except for the F-measure on SumMe whose maximum results
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Table 2: Comparisons between HMT and baselines (mean(std) of F-measure).

Baselines SumMe TVsum

Audio LSTM 0.354(0.062) 0.539(0.025)

Visual LSTM 0.397(0.034) 0.556(0.021)

Audio Transformer 0.378(0.051) 0.548(0.023)

Visual Transformer 0.403(0.023) 0.569(0.020)

Two-stream Transformer 0.394(0.027) 0.562(0.018)

Multimodal Transformer 0.415(0.022) 0.579(0.021)

Hierarchical Transformer 0.434(0.031) 0.591(0.015)

Hierarchical Multimodal Transformer 0.441(0.021) 0.601(0.016)

are reported.

4.1.3. Optimization Details

The proposed HMT is implemented with PyTorch 1.6 on Python 3.7. Specifically,

HMT is optimized by minimizing the MSE loss via the Adam optimizer, where the

learning rate is initialized as 1e-4, with the decay rate 0.1. The dimensionality of the

hidden state in the transformer is fixed as 1024. The number of heads in the multi-head

attention is 4. The number of layers of the transformer is fixed as 1. The dimensionality

in each subspace is 64.

4.2. Comparison with Baselines

The proposed HMT can be split into three folds: 1) The transformer can capture the

global dependency. 2) The hierarchical structure is more suitable for the two-layered

video structure. 3) The multimodal fusion mechanism can integrate the visual and

audio information. To verify the effectiveness of the above three parts, several baselines

are developed according to HMT, which are depicted as follows:

• Audio LSTM and Visual LSTM: The plain LSTM is utilized to predict the sum-

mary. They take the audio feature and visual feature as the input, respectively.

• Audio Transformer and Visual Transformer: They encode the audio feature and

visual feature by the plain transformer model, respectively.
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• Two-stream Transformer: Two transformers are employed to encode the visual

and audio features individually, where the visual feature provides no guidance to

the audio transformer. The probability is predicted by simply concatenating the

encoded visual and audio features.

• Multimodal Transformer: The two-branch transformer in the first layer of HMT

is utilized to encode the visual and audio features. It should be emphasized that

the audio feature is encoded under the guidance of visual feature.

• Hierarchical Transformer: The proposed hierarchical structure is utilized to en-

code the video and predict the summary just with the visual feature.

• Hierarchical Multimodal Transformer: The full model of the proposed method.

The comparisons of different baselines are shown in Table 2. It can be observed

that the plain LSTMs get satisfactory results by taking audio or visual information as

input, which shows the contributions of both audio and visual information to video

summarization. The large standard deviation of audio LSTM is mainly because two

videos in SumMe do not contain audio data. Transformers surpass plain LSTMs by

modeling the frame or audio sequence as a whole and capturing global dependency.

The improvements meet our expectations. It also demonstrates the superiority of trans-

former than LSTM in video summarization. Surprisingly, the two-stream transformer

performs slightly worse than the plain transformer, but the multimodal transformer

performs much better. It is because there are modal gaps between the audio and visual

information. The interference caused by concatenating them directly without exploit-

ing the consistency may surpass the gains from them. As a result, the performance

is decreased. On the opposite side, the better performance of multimodal transformer

indicates the effectiveness of fusing visual and audio information for video summariza-

tion.

The hierarchical transformer outperforms the plain models, including LSTM, trans-

former, two-stream transformer and multimodal transformer. It mainly benefits from

the hierarchical structure. It is more suitable for the video data, since frames form shot,

shots form the video. The two-layered hierarchical transformer matches the key-shot

13



Table 3: Parameter analysis on transformer about the number of heads.

heads SumMe TVsum

1 0.414 0.579

2 0.425 0.585

4 0.441 0.601

8 0.439 0.597

16 0.439 0.596

Table 4: Parameter analysis on transformer about the number of layers.

layers SumMe TVsum

1 0.441 0.601

2 0.433 0.592

3 0.414 0.578

based video summarization task well. Besides, the full method, hierarchical multi-

modal transformer, can further improve the performance by fusing the visual and audio

information.

Furthermore, the parameter analysis is conducted on the backbone transformer,

including the number of layers and heads. The results are depicted in Table 3 and 4. It

can be observed that the proposed HMT performs stably with the variation of heads and

layers of the backbone transformer, which shows the robustness of HMT. Carefully, we

can see that HMT performs the best when the number of heads and layers are fixed as

4 and 1, respectively. In this case, they are fixed in all the following experiments.

4.3. Comparison with State-of-the-art Methods

To verify the superiority of the proposed HMT in video summarization, the compar-

isons are in three aspects, i.e., traditional methods, RNN-based methods and attention-

based methods.

The comparisons of HMT and traditional methods are depicted in Table 5. The

clustering appproaches (i.e., k-medoids, Delauny, VSUMM) and dictionary learning

methods (i.e., SALF, LiveLight and Block Sparse) are developed based on low-level

features. Generally, dictionary learning methods select key-shots via reconstructing
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Table 5: Comparisons between HMT and traditional methods (F-measure).

Datasets SumMe TVsum

k-medoids [52] 0.334 0.288

Delauny [15] 0.315 0.394

VSUMM [16] 0.335 0.391

SALF [53] 0.378 0.420

LiveLight [54] 0.384 0.477

Block Sparse [20] 0.401 0.526

CSUV [46] 0.393 0.532

LSMO [55] 0.403 0.568

Summary Transfer [56] 0.409 –

HMT 0.441 0.601

the video from summary. It can be viewed as the global dependency modeling. How-

ever, the clustering methods focus more on the local similarity among frames. That

is why dictionary learning methods perform better than clustering methods. CSUV,

LSMO and Summary Transfer are developed based on high-level features. They de-

velop various models to measure the property of generated summaries. Obviously, they

outperform those methods with low-level features. The proposed HMT is a deep learn-

ing based method. It performs much better than traditional methods compared in Table

5, which shows the great learning ability.

The comparisons of HMT and RNN-based methods are depicted in Table 6. The

results of both the canonical and augmented settings are presented in Table 6. In the

canonical setting, the training/test split is 80% and 20% on SumMe and TVsum, and

they are trained separately. In the augmented setting, the training set is formed by

80%*SumMe+YouTube+OVP+TVsum, and the rest 20%*SumMe is used for testing.

Similarly, 80%*TVsum+YouTube+OVP+SumMe is utilized as the training set, and

the rest 20%*TVsum is used for testing. It can be observed from Table 6 that the

performances of most methods are promoted by the augmentation of training data.

RNN-based methods process the video data with a plain model (i.e., vsLSTM, dp-

pLSTM) or hierarchical model (i.e., H-RNN, HSA-RNN). It can be observed that the

hierarchical model performs much better than the plain models, which indicates the
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Table 6: Comparisons between HMT and RNN-based methods.

Datasets SumMe TVsum

Organizations Canonical Augmented Canonical Augmented

vsLSTM [8] 0.376(0.022) 0.416 0.542(0.016) 0.579

dppLSTM [8] 0.386(0.023) 0.429 0.547(0.018) 0.596

SUM-GAN [26] 0.387 0.417 0.508 0.589

SUM-GANsup [26] 0.417 0.436 0.563 0.612

H-RNN [57] 0.421 0.438 0.579 0.619

HSA-RNN [25] 0.423(0.026) 0.421 0.587(0.017) 0.598

DR-DSN [27] 0.414(0.036) 0.428 0.576(0.022) 0.584

DR-DSNsup [27] 0.421(0.041) 0.439 0.581(0.024) 0.598

SMIL [58] 0.412 – 0.513 –

WS-HRL [59] 0.436 0.445 0.584 0.585

HMT 0.441(0.021) 0.448 0.601(0.016) 0.603

superiority of hierarchical model. The hierarchical structure of transformer is also in-

spired from it. To make up for the deficiency of plain models, SUM-GAN utilizes the

generative adversarial network to boost the performance. DR-DSN conducts a rein-

forcement learning framework to reward the summary generator with summary prop-

erties. The reinforcement learning is also adopted in SMIL and WS-HRL, and better

performances are achieved. However, they are all developed based on LSTM, where

only the temporal dependencies are captured. Fortunately, the proposed HMT can bet-

ter capture the global dependency, which is more suitable for the video summarization

task. Besides, all the compared methods just utilize visual features for summariza-

tion, while the multimodal fusion mechanism in HMT integrates the visual and audio

information together. The multimodal information also contributes to the performance.

The comparisons of HMT and attention-based methods are depicted in Table 7.

Note that there are several blanks. It is because the results are not reported in those

papers and the source codes are not available. vsLSTM-att and dppLSTM-att are mod-

ified from pure RNN-based methods by adding the attention model in the encoder. By

comparing with the results of vsLSTM and dppLSTM in Table 6, we can clearly see

the improvements of the attention model. It meets our motivation to exploit the global
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Table 7: Comparisons between HMT and attention-based methods.

Datasets SumMe TVsum

Organizations Canonical Augmented Canonical Augmented

vsLSTM-att[60] 0.432(0.028) – – –

dppLSTM-att[60] 0.438(0.022) – 0.539(0.051) –

A-AVS [31] 0.439 0.446 0.594 0.608

VASNet [61] 0.424 0.425 0.589 0.585

SASUM [62] 0.406 – 0.539 –

SASUMsup [62] 0.453 – 0.582 –

HMT 0.441(0.021) 0.448 0.601(0.016) 0.603

dependencies for video summarization. VASNet1 and A-AVS are pure attention-based

methods designed based on the self-attention model. Carefully, we can see that the per-

formance of VASNet goes down from the canonical setting to the augmented setting. It

is mainly because that the interference cause by the difference among training set ex-

ceeds the benefit of training data augmentation. In fact, the self-attention model is also

adopted in the proposed method. The proposed transformer-based method exceeds it

by taking advantage of the multi-head setting. SASUM is a caption-aided multimodal

video summarization method. It summarizes the video under the supervision of video

captions. Although better performance is achieved by SASUMsup on SumMe, the cap-

tions are hardly available in most occasions, which limits its applications. Fortunately,

the visual and audio data are aligned naturally in videos. The proposed HMT is more

applicable to the video summarization task.

4.4. Rank-based Evaluation

F-measure evaluates the summary quality by measuring the overlap between pre-

dicted summary and reference summary. Different from F-measure, rank-based metrics

evaluate the performance by computing the correlation between the probability curves

predicted automatically and annotated by human. Therefore, the two kinds of met-

1For fair comparison, the results of VASNet are reproduced by keeping its experimental settings the same

with ours.
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Table 8: Comparisons based on the metrics of Kendall’s τ and Spearman’s ρ.

Datasets SumMe TVsum

Metrics Kendall’s τ Spearman’s ρ Kendall’s τ Spearman’s ρ

dppLSTM [8] – – 0.042 0.055

DR-DSN [27] 0.047 0.048 0.020 0.026

HSA-RNN [25] 0.064 0.066 0.082 0.088

vsLSTM-att[60] 0.062 0.063 0.074 0.083

dppLSTM-att[60] 0.066 0.065 0.076 0.081

VASNet [61] 0.054 0.058 0.082 0.088

WS-HRL [59] – – 0.078 0.116

Transformer 0.060 0.062 0.081 0.095

HMT 0.079 0.080 0.096 0.107

Random selection 0.000 0.000 0.000 0.000

Human 0.205 0.213 0.177 0.204

rics can cooperate with each other so as to provide comprehensive evaluation of the

summary quality.

Two rank-based metrics are employed in this paper, including Kendall’s τ and

Spearman’s ρ. The results are shown in Table 8. The metric values are positively corre-

lated to the performance. It can be observed that the performances of random selection

and human annotation are the lowest and highest, respectively, which meet the expecta-

tions. HMT outperforms most of the compared methods. Particularly, HMT performs

much better than the plain transformer. Overall, the results in Table 8 demonstrate the

advantages of the proposed HMT: 1) Transformer can model the global dependencies

among frames, which is essential for video summarization. 2) The hierarchical struc-

ture is more suitable for the two-layered video structure, and can extend the ability

of plain transformer in long sequence modeling. 3) The multimodal fusion mecha-

nism can further promote the performance by integrating visual and audio information

together.

4.5. Runtime Comparison and Visualization

The computation time of different methods are compared in Figure 2. For fairness,

all the compared methods and the proposed HMT are operated on Nvidia GTX 1080Ti.
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Figure 2: Computation time (ms) of different methods.

It records the test time from feature input to summary generated, which is further nor-

malized by the video duration (in minutes) to reveal the influence of sequence length.

We can see that the proposed HMT is more efficient than the compared RNN-based

methods, even though HMT contains a hierarchical structure and a two-branch struc-

ture in the first layer. It demonstrates the efficiency of transformer than RNN, and the

effectiveness of transformer in parallel computation.

To provide a comprehensive understanding of the performance, some video sum-

maries and probability curves predicted by HMT are visualized in Figure 3. We can see

that the predicted curves fit well with the human-annotated importance scores. Most of

the shots with higher scores are selected into the summary, which shows the effective-

ness of HMT in summarizing the video. Finally, we want to emphasize that the second

and fourth shots in Figure 3(b) are quite similar visually, but they display different

audio information. It is mainly benefit from our multimodal strategy in the proposed

hierarchical multimodal transformer, so that it can recognize the importance and differ-

ence of these two shots and select them together. Beside, the very last selected key-shot

in Figure 3(b) is a failure case, since it records no important objects. It is because the

proposed method focuses on the global audio and visual features, while neglects the

local object features. It inspires us to design an object-aware feature encoding scheme

in the future work.
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Figure 3: Example summaries generated by HMT. The green curves are predicted by HMT. The black curves

are ground truth. The red histograms denote the selected key-shots.

5. Conclusions and Future Work

In this paper, a hierarchical multimodal transformer is proposed for the video sum-

marization task. It employs the transformer to capture the global dependency among

frame sequence, which is more superior than the temporal dependency captured by

RNN. According to the two-layered video structure, a hierarchical structure is devel-

oped by stacking two transformers. They process the frames-level dependency and

shot-level dependency hierarchically. Furthermore, a multimodal fusion mechanism

is designed to integrate the visual and audio information together to summarize the

video. The results have demonstrated the superiority of the proposed method than ex-

isting traditional, RNN-based and attention-based methods, both in the performance

and efficiency.
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Audio and visual information are both important for the video summarization task.

However, most videos suffer from the asynchronism problem of audio and visual infor-

mation, which is not considered in this paper. Besides, object-aware features are essen-

tial to maintain important objects in the summarization process, which is neglected in

this paper. In the future work, we plan to address the above problems by developing ef-

fective audiovisual registration strategies and object-aware feature encoding schemes,

so as to promote the quality of video summary.
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