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A B S T R A C T

Learning hidden topics from data streams has become absolutely necessary but posed challenging

problems such as concept drift as well as short and noisy data. Using prior knowledge to enrich a

topic model is one of potential solutions to cope with these challenges. Prior knowledge that is de-

rived from human knowledge (e.g. Wordnet) or a pre-trained model (e.g. Word2vec) is very valuable

and useful to help topic models work better. However, in a streaming environment where data ar-

rives continually and infinitely, existing studies are limited to exploiting these resources effectively.

Especially, a knowledge graph, that contains meaningful word relations, is ignored. In this paper, to

aim at exploiting a knowledge graph effectively, we propose a novel graph convolutional topic model

(GCTM) which integrates graph convolutional networks (GCN) into a topic model and a learning

method which learns the networks and the topic model simultaneously for data streams. In each mini-

batch, our method not only can exploit an external knowledge graph but also can balance the external

and old knowledge to perform well on new data. We conduct extensive experiments to evaluate our

method with both a human knowledge graph (Wordnet) and a graph built from pre-trained word em-

beddings (Word2vec). The experimental results show that our method achieves significantly better

performances than state-of-the-art baselines in terms of probabilistic predictive measure and topic

coherence. In particular, our method can work well when dealing with short texts as well as concept

drift. The implementation of GCTM is available at https://github.com/bachtranxuan/GCTM.git .

1. Introduction

Topic modeling is a powerful approach to learn hidden

topics/structures inside data. Latent Dirichlet allocation (LDA)

[7] is one of the most popular topic models and has been used

widely in a variety of applications such as text mining [41],

recommender system [21], computer vision [13], bioinfor-

matics [37], etc. Recently, integrating external knowledge

into LDA emerges as an effective approach to improve the

origin. Prior knowledge, which is used in previous work, is

derived from human knowledge (such as seed words [26, 22],

Wordnet [2]) or pre-trained models like word embeddings

(Word2vec) [48, 24] learnt from big datasets. Therefore,

prior knowledge can enrich and improve the performances

of topic models.

Meanwhile, developing an effective learning method for

data streams has become absolutely necessary but posed chal-

lenging problems [38]. In this paper, we want to focus on two

challenges. First, a learning method must adapt well to new

data without revisiting past data. In order to solve this issue

effectively, it must deal with the stability-plasticity dilemma

[31, 32, 19, 36, 33]. Particularly, in the streaming environ-

ment, data is big, arrives continually, and concept drift in

which the statistics of data change dramatically can happen.

A method should have a mechanism to keep acquired knowl-

edge from learning on past data. This knowledge is useful to

work on new data whose characteristics or patterns are sim-

ilar to those from the past data. Simultaneously, it should

be more plastic to learn a new concept that can appear any

time. Second, noisy and sparse data that is prevailing in the

streaming environment makes a lot of difficulties for learn-
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ing methods [27, 14, 40]. While sparse or short data does not

provide a clear context, noisy data can mislead the methods.

As a result, the generalization of learnt model can be limited.

Exploiting a knowledge graph is one of the most poten-

tial solutions to cope with these challenges. It is obvious that

a knowledge graph that comes from global human knowl-

edge (e.g. Wordnet) or a pre-trained graph is valuable and

useful to enrich a topic model to cope with short and noisy

texts in the streaming environment. Moreover, a knowledge

graph (such as Wordnet or a graph trained on a big dataset)

contains meaningful word relations that seem to be static al-

though concept drift can happen. Therefore, incorporating

the graph into a topic model should be taken into considera-

tion for data streams to deal with concept drift.

Although existing studies [25, 42, 46, 9] can effectively

exploit a knowledge graph in a static environment, they do

not consider facing data streams and therefore do not work

in the streaming environment where data arrives continually

and infinitely. Meanwhile, several recent methods [8, 28, 32]

can cope with data streams without revisiting past data. But

they are limited to exploiting prior knowledge in general and

a knowledge graph in particular. An implicit idea behind

these methods is that a posterior distribution learnt in a mini-

batch is used as a prior for the following minibatch. As a

result, in each minibatch, there are two prior distributions:

The original prior distribution which is initialized in the first

minibatch and the new prior which is derived from the pos-

terior distribution learnt in the previous minibatch. Most

of existing methods [8, 32, 19, 36] only use the former in

the first minibatch, then the latter replaces the former in the

next minibatches. A few methods [28, 3] exploit them con-

currently. However, they do not provide a way to exploit a

knowledge graph.

There are two main issues that we want to address for
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an effective knowledge graph exploitation in the streaming

environment. First, existing streaming methods ignore prior

knowledge [8, 19, 32] or require prior knowledge of a vec-

tor form [3, 12]. In particular, they are unable to exploit

prior knowledge of a graph form such as Wordnet or a pre-

trained graph. For this problem, graph convolutional net-

works (GCN) [18] can provide a potential solution to embed

a knowledge graph in topic space. Thanks to which GCN can

encode high-order neighbourhood relationship/structure, it

can learn good graph embeddings to enrich topic models.

Second, an automatic mechanism which controls the impact

of a knowledge graph in each minibatch plays an impor-

tant role in balancing the knowledge graph and old knowl-

edge learnt from the previous minibatch. A suitable bal-

ancing mechanism can help exploit effectively both kinds of

knowledge in practice and provide a potential solution to the

stability-plasticity dilemma.

In this paper, we propose a novel model, namely Graph

Convolutional Topic Model (GCTM), which integrates graph

convolutional networks (GCN) [18] into a topic model for

data streams. We also develop a streaming method which

simultaneously learns a probabilistic topic model and GCN

in the streaming environment. GCTM has some benefits as

follows:

• GCTM can effectively exploit a knowledge graph, which

comes from human knowledge or a pre-trained model

to enrich topic models for data streams, especially in

case of sparse or noisy data. We emphasize that our

work first provides a way to model prior knowledge of

graph form in the streaming environment.

• We also propose an automatic mechanism to balance

the original prior knowledge and old knowledge learnt

in the previous minibatch. This mechanism can auto-

matically control the impact of the prior knowledge in

each minibatch. When concept drift happens, it can

automatically decrease the influence of the old knowl-

edge but increase the influence of the prior knowledge

to help our method deal well with the concept drift.

We conduct experiments1 to evaluate GCTM with both

a human knowledge graph (Wordnet) and a graph built from

pre-trained Word2vec. The extensive experiments show that

our method can exploit the knowledge graph well to achieve

better performances than the state-of-the-art baselines in terms

of probabilistic predictive measure and topic coherence. In

particular, our method outperforms significantly baselines

when dealing with short texts as well as concept drift.

In the rest of the paper, the related work and background

are briefly summarized in section 2. Section 3 presents our

proposed model and method along with some discussions

about them. We conduct experiments and analyse experi-

mental results in section 4. The conclusion is drawn in sec-

tion 5.

1The implementation of GCTM is available at

https://github.com/bachtranxuan/GCTM.git.

2. Related Work and Background

In this section, we review streaming learning methods

and graph convolutional networks, then present how some

streaming methods apply to LDA.

2.1. Related Work
Recently, learning from data streams has been studied in-

tensively and several methods have been proposed to solve

characteristic problems in streaming environments such as

avoiding revisiting all past data [15, 8, 29], adapting to con-

cept drift [28], reducing catastrophic forgetting [19, 32], etc.

They have achieved some good results in both practice and

theory [11].

With regard to learning manner, existing studies can be

divided into two major directions: Stochastic optimization

problem and recursive Bayesian learning. The first direc-

tion [15, 29, 16] uses stochastic natural Gradient ascent to

maximize the expectation of the likelihood. Stochastic vari-

ational inference (SVI) [15] optimizes an empirical expecta-

tion on the whole dataset and therefore requires the existence

of a full dataset with a fixed number of data instances. This

assumption is unsuitable for streaming environments where

the data can arrive infinitely. Population variational Bayes

(PVB) [29] alleviates this problem by another assumption.

It assumes that the data is generated from a population dis-

tribution and we can sample a fixed number (the size of the

population) S of data instances at a time for computing and

optimizing the expectation. However,S must be tuned man-

ually to achieve good performance. In the other direction,

the recursive Bayesian approach [8, 28, 3, 19, 32] bases on

an implicit idea that a posterior distribution learnt in the pre-

vious minibatch is used to form a new prior distribution in

the current minibatch. Several methods such as Streaming

variational Bayes (SVB) [8], Hierarchical power prior (HPP)

[28], Variational continual learning (VCL) [32] use the full

Bayesian approach to approximate the posterior distribution,

while Elastic weight consolidation (EWC) [19] and its vari-

ants [1, 36] base on the maximum a posterior (MAP) esti-

mate. Many methods [47, 19, 32, 36] in this direction are

proposed to make neural networks deal with the changes of

tasks over time in streaming environments. In our work, we

only consider methods that work well on topic models with-

out changing task.

Meanwhile, to mitigate the problems of noisy and short

texts, there are three main approaches: Exploiting external

knowledge, aggregating short texts, and developing new suit-

able models for short texts. The first approach [34, 48, 23]

uses word embedding to enrich information and therefore

achieves significant improvements in comparison with the

original models. However, existing studies in this approach

have not considered developing a method for data streams.

They merely focus on a static environment without chang-

ing data. Moreover, a knowledge graph is also ignored. In

the second approach, several methods [30, 35, 6, 27] mod-

ify the document input of conventional topic models to en-

hance word co-occurrence information. A strategy of ag-

gregating short texts to a longer text is widely used in prac-

Linh Ngo Van et al.: Preprint submitted to Elsevier Page 2 of 17



Graph Convolutional Topic Model

tice. The third approach [10, 44, 43, 45, 40] aims to pro-

pose a new model which is more suitable to model word-

occurrence information for short texts instead of utilizing

conventional topic models. However, both the second and

third approaches ignore external knowledge in the streaming

environment. In our work, we focus on developing an effec-

tive method to exploit a knowledge graph for data streams.

We emphasize that our method can apply to not only LDA

but also a wide range of existing topic models. It means that

our method can improve performances of existing models in

both the second and third approaches.

In terms of exploiting prior knowledge in the stream-

ing environment, KPS (Keeping prior in streaming Bayesian

learning) [3, 12] takes external knowledge into considera-

tion, while the remaining methods neglect it. In the stan-

dard view of Bayesian approach, a prior distribution does

not play an important role when data is big enough. It seems

to be the main reason why almost existing methods ignore

prior knowledge in streaming environments. Although KPS

shows a vital role of prior knowledge for data streams, it re-

mains two main drawbacks: The limit of prior knowledge

form and a lack of balancing mechanism between prior knowl-

edge and old knowledge learnt from previous data. Recently,

our other work [4] aims to exploit external knowledge of dif-

ferent forms (such as vector, matrix) for data streams. How-

ever, it lacks an effective solution to capture relation between

nodes in a knowledge graph.

Recently, graph convolutional networks (GCN) [18] emerges

as an effective and efficient solution to learn graph embed-

dings. In practice, many previous studies show that GCN can

work well in a wide variety of applications such as node clas-

sification [18], text classification [45], machine translation

[5], etc. In a recent work [49], GCN is used in an inference

network to learn a representation of a word co-occurrence

graph for inferring local variables (the topic proportion of a

biterm subset) better in the biterm topic model. However,

this work does not consider using prior knowledge to enrich

a topic model. Our work aims at a different goal. We exploit

a knowledge graph to infer directly global variables (topics)

instead of local variables. We emphasize that our work pro-

vides a general solution with a knowledge graph to improve

existing models.

2.2. Overview of Streaming Learning Methods for

LDA
In this subsection, we briefly present LDA and learning

methods that help LDA work in the streaming environment.

Suppose that a documentd in a dataset containsNd words.

A topic is defined by a distribution over V words of the vo-

cabulary. LDA models K hidden topics in the dataset and

topic proportion of each document. Let �1, ..., �K be K hid-

den topics, �d be topic proportion of document d, and zdn be

topic assignment of word n in document d. LDA uses two

Dirichlet distributions with hyerparameters � and � to gen-

erate topics and topic proportions respectively. Both � and �

are often selected manually. The graphical representation of

LDA is shown in Figure 1. The generative process of LDA

� �d zdi wdi �k �

Nd

D

K

Figure 1: The graphical representation of Latent Dirichlet Al-
location (LDA)

is as follows:

1. Draw topics �k ∼ Dirichlet(�) for k ∈ [1, K]

2. For each document d:
(a) Draw topic proportions �d ∼ Dirichlet(�)
(b) For each word wdn:

i. Draw topic assignmentzdn ∼ Multinomial(�d)
ii. Draw word wdn ∼ Multinomial(�zdn)

Training LDA is often divided into two phases: Inferring

local variables (zd and �d) for each document d and learn-

ing global variable (�) shared among all documents. Almost

streaming learning methods for LDA are the same in the for-

mer but are different in the latter. SVB [8], PVB [29], and

HPP [29] approximate the posterior distribution of � by a

variational distribution q(�|�) in full Bayesian manner. Note

that VCL and SVB are the same [39, 32, 11] when they are

applied to a conjugate model like LDA. Moreover, VCL [32]

focuses on the problem of task changing, therefore, we do

not consider in this paper. We will briefly present the learn-

ing algorithms of SVB, PVB and SVB-PP (a simple version

of HPP) for LDA.

Suppose that in the streaming environment, the docu-

ments arrive continually and are collected in subsets (mini-

batches) with D documents. For each minibatch t, mean-

field variational inference is used to approximate the true

posterior distributions of variables by variational distribu-

tions:

q(�, �d , zd) =

K∏

k=1

q(�k|�k)
D∏

d=1

(
q(�d|
d)

Nd∏

n=1

q(zdn|�dn)
)

(1)

where: q(�k|�k) = Diricℎlet(�k), q(�d|
d) = Diricℎlet(
d)

and q(zdn|�dn) = Multinomial(�dn) (�, 
 , and � are vari-

ational parameters). Let ndv be the frequency of words v

in document d. The learning process of SVB, SVB-PP, and

PVB are presented in Algorithms 2, 3, and 4 respectively,

whereEq[log �dk] =  (
dk)− (
∑K

k=1
(
dk)) andEq[log �kv] =

 (�kv) −  (
∑V

v=1
(�kv)) ( is a digamma function). The

three methods have the same algorithm (Algorithm 1) for

doing inference local variables.

3. Graph Convolutional Topic Model

(GCTM) for Data Streams

In this section, we first present a our proposed model,

then develop a learning method that learns our model from

the streaming environment. Finally, we discuss some advan-

tages of our model.
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Algorithm 1 LocalVB(d,�)

Initialize: 
d
while (
d , �d) not converged do

∀(k, v) set �dkv ∝ exp(Eq[log �dk] + Eq[log �kv])

(normalized across k)

∀k, 
dk ← �k +
∑V

v=1
�dkvndv

end while

return 
d , �d

Algorithm 2 SVB

Require: Hyper-parameter �, �

Ensure: A sequence �(1), �(2),…

Initialize: ∀(k, v), �
(0)

kv
← �kv

for t = 0, 1,… do

Collect new data minibatchD

for each document d in D do

(
d , �d) ← LocalV B(d, �)

end for

∀(k, v), �t
kv

← �t−1
kv

+
∑
d inC �dkvndv

end for

Algorithm 3 SVB-PP

Require: Hyper-parameter �, �, �t
Ensure: A sequence �(1), �(2),…

Initialize: ∀(k, v), �
(0)

kv
← �kv

for t = 0, 1,… do

Collect new data minibatchD

for each document d in D do

(
d , �d) ← LocalV B(d, �)

end for

Compute: �̃ = �t�
t−1
kv

+ (1 − �t)�kv
∀(k, v), �t

kv
← �̃ +

∑
d inC �dkvndv

end for

Algorithm 4 PVB

Require: Hyper-parameter �, �, �t, �0, �, B

Ensure: A sequence �(1), �(2),…

Initialize: ∀(k, v), �
(0)

kv
← �kv

for t = 0, 1,… do

Collect new data minibatchD

for each document d in D do

(
d , �d) ← LocalV B(d, �)

end for

Compute: �t = (�0 + t)
−�

Compute: �̃ = �kv +
�

B

∑
d inC �dkvndv

∀(k, v), �t
kv

← �t�̃kv + (1 − �t)�
t−1
kv

end for

3.1. Proposed Model
In this subsection, we describe how to integrate GCN

[18] into LDA to exploit a knowledge graph. Given prior

knowledge of graph form G = (V , E) where V is a set of

�̃t−1�t−1

W̃ t−1
ℎt−1

wz

��

N

M

�̃t�t

W̃ t ℎt

wz

��

G,X

N

M

Figure 2: The graphical representation of GCTM. Single lines
demonstrate stochastic processes while double lines show de-
terministic processes

nodes which are words in the vocabulary and E is a set of

edges which encode particular relationships between words,

we use graph convolutional networks with L layers to learn

the representation of nodes (words) in the graph. In detail,

let A (A ∈ ℝ
V ×V ) be the adjacency matrix of G and X

(X ∈ ℝ
V ×M ) be a feature matrix in which each row Xi

(i ∈ {1, ..., V }) is an M-dimensional feature vector of each

word i. In GCN, each layer can encode neighbourhood rela-

tionship to learn a representation for all nodes in the graph.

The representation ℎl of the nodes in layer l is computed as

follows:

ℎl = f

(
D̃

−
1

2 ÃD̃
−

1

2 (ℎl−1Wl + bl)
)

where Ã = A+IV (IV is the identity matrix), D̃ii =
∑
j Ãij ,

W̃l = {Wl, bl} is the weight matrix of parameters. ℎ0 is

the feature matrixX and the activation function f is usually

ReLU function. In the output layer, the dimension of word

representation is set byK in order to fit the number of topics

K in LDA (ℎL is a V × K matrix and each K-dimensional

vector ℎLv is the representation of word v). Then, we use a

transpose operator on ℎL to be able to integrate with topic

matrix � of size K × V . This deterministic process is sum-

marized concisely as: ℎ = GCN(ℎ0, G; W̃ ) where ℎ0 is an

input, W̃ is a weight matrix of GCN, and ℎ is an output (ℎ

is a transpose matrix of ℎL).

Moreover, we need a mechanism to connect � and ℎ.

In general, this mechanism can be represented by a func-

tion F (�, ℎ; �) where � and ℎ are inputs, and � is parameter.

For simplicity, we use a linear function to combine � and

ℎ on each topic k. Then, topic distribution �̃k is generated

by using the softmax function. In detail, for each topic k

Linh Ngo Van et al.: Preprint submitted to Elsevier Page 4 of 17
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(k ∈ {1, ..., K}),

�̃k = softmax(�k�k + (1 − �k)ℎk)

where �k is a scalar to balance �k and ℎk. In training, we

must learn �, W̃ , and �.

For data streams, we base on the recursive Bayesian ap-

proach to keep the impact of learnt model from the previous

minibatch to the current one. We assume that the models at

two consecutive minibatches are connected by the following

transition:

p(�t|�t−1, ��) =  (�t; �t−1, �2
�
I)

p(W̃ t|W̃ t−1, �w) =  (W̃ t; W̃ t−1, �2
w
I)

where �� and �w are parameters that relate to the change of

�t and W̃ t around �t−1 and W̃ t−1 respectively.

The generative process (Figure2) of documents in a mini-

batch t is described explicitly as below:

1. Draw W̃ t ∼  (W̃ t; W̃ t−1, �2
w
I)

2. Calculate ℎt = GCN(ℎ0, G; W̃
t)

3. Draw �t ∼  (�t; �t−1, �2
�
I)

4. Calculate topic distribution:

�̃t = softmax(�t�t + (1 − �t)ℎt)) (2)

5. For each document d:

(a) Draw topic mixture: �d ∼ Diricℎlet(�)

(b) For the ntℎ word of d:

i. Draw topic index: zn ∼Multinomial(�d )

ii. Draw word: wn ∼Multinomial(�̃t
zn
)

3.2. Learning GCTM
At a minibatch t, new documents arrive and are collected

in a set of D documents. The posterior

p(�t, W̃ t|Dt, �t−1, W̃ t−1, G,X, �t, �, �� , �w)

is expressed as follows:

log p(�t, W̃ t|Dt, �t−1, W̃ t−1, G,X, �t, �, �� , �w)

∝ log p(�t, W̃ t, Dt|�t−1, W̃ t−1, G,X, �t, �, �� , �w)

∝ log p(W̃ t|W̃ t−1, �w) + log p(�t|�t−1, ��)
+ log p(Dt|�t, W̃ t, G,X, �t, �) = L (3)

We learn GCTM based on maximizing L (Eq 3). We

apply �̃t = softmax(�t�t−1+(1−�t)GCN(X,G; W̃ t)) into

Eq 3:

L = log p(W̃ t|W̃ t−1, �w) + log p(�t|�t−1, ��)
+ log p(Dt|�̃t, �)

= −
1

2�2
�

||�t − �t−1||2
F
−

1

2�2
w

||W̃ t − W̃ t−1||2
F

+ log p(Dt|�̃t, �)

Because p(Dt|�̃t, �) is intractable to compute, we use

variational inference as in [7] to do inference local variables

z and �. After applying Jensen inequality, we get evidence

lower bound (ELBO):

L = −
1

2�2
�

||�t − �t−1||2
F
−

1

2�2
w

||W̃ t − W̃ t−1||2
F

+ log∫
∑

z

p(Dt, �, z|�̃t, �)
q(�, z)

q(�, z)d�

≥ −
1

2�2
�

||�t − �t−1||2
F
−

1

2�2
w

||W̃ t − W̃ t−1||2
F

+ ∫
∑

z

q(�, z) log
p(Dt, �, z|�̃t, �)

q(�, z)
d�

≥ −
1

2�2
�

||�t − �t−1||2
F
−

1

2�2
w

||W̃ t − W̃ t−1||2
F

+ Eq(�,z)[log p(D
t, �, z|�̃t, �)] − Eq(�,z)[log q(�, z)]

= ELBO

where q(�, z) is a factorized variational distribution:

q(�, z) =

D∏

d=1

(
Diricℎlet(�d|
d)

Nd∏

n=1

Multinomial(zdn|�dn)
)

(4)


 and � are variational parameters. When �, �� and �w are

fixed, we maximize ELBO with respect to local parameters

(
 and �) and global parameters (�t, �t, and W̃ t). According

to [7], the update equations of local parameters are:


dk ← �k +

Nd∑

n=1

�dnk for k = 1, ..., K (5)

�dnk ∝ exp(Eq[log �dk] +

V∑

v=1

I[wdn = v] log �̃kv)

(6)

where I[⋅] is an indicator function andEq[log �dk] =  (
dk)−

 (
∑K

k=1
(
dk)) ( is a digamma function).

Regarding global parameters, we extract the part of ELBO

w.r.t �t, �t, and W̃ t:

ELBO(�t, �t, W̃ t)

= −
1

2�2
�

||�t − �t−1||2
F
−

1

2�2
w

||W̃ t − W̃ t−1||2
F

+

M∑

d=1

Nd∑

n=1

V∑

v=1

K∑

k=1

I(wdn = v)�dnk log(�̃
t
kv
) (7)

where �̃t = softmax(�t�t−1+(1−�t)GCN(X,G; W̃ t)).

We use Adam [17] to maximize ELBO(�t, �t, W̃ t).

The whole learning process of GCTM is presented in Al-

gorithm 5.
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Algorithm 5 Learning GCTM

Require: Graph G, hyper-parameter �, data sequence

{D1, D2, ...}

Ensure: W̃ , �, �

Initialize W̃ 0, �0 randomly

for minibatch t with data Dt do

Compute �̃ by Equation (2)

for each document d in Dt do

Infer 
d and �d by iteratively updating (5) and (6)

until convergence

end for

Update W̃ t, �t, �t by using Adam [17] to maximize (7)

end for

3.3. Discussion
In this subsection, we discuss the advantages of GCTM

and compare it with other methods. GCTM can well exploit

an external knowledge graph for data streams. Therefore, we

discuss some aspects of this topic.

First, GCN, which is an effective model to encode rela-

tionships between edges in a graph, can learn graph embed-

ding to fit the form of topic matrix in LDA. Therefore, our

method can utilize the graph embedding to enrich informa-

tion for learning topics better. To the best of our knowledge,

this is the first work which can exploit a prior knowledge

graph for LDA in the streaming environment. Meanwhile,

almost existing streaming methods ignore prior knowledge;

and KPS aims to use but is limited to prior knowledge of

vector form.

Second, in each minibatch, our method provides a mech-

anism to automatically balance old knowledge (that is ob-

tained from the previous minibatch) and a prior knowledge

graph. Meanwhile, KPS [3] must manually control the im-

pact of prior knowledge in each minibatch, and it is difficult

to tune this impact in streaming environments.

Third, our method can deal with concept drift well when

data arrives continually. Using external knowledge that cov-

ers or relates to new concepts is an effective solution to han-

dle concept drift. However, it is difficult to guarantee that

prior knowledge contains information about new concepts.

Fortunately, this is possible with a knowledge graph such

as Wordnet or a graph trained on a big dataset. Especially,

when new topics occur, a set of new words can be used to

describe them. However, the words and their relations are

also included in the knowledge graph. As a result, exploiting

the graph helps our method to learn new topics in new arriv-

ing documents. On the other hand, many streaming methods

suffer from concept drift because they only use old knowl-

edge learnt from the previous minibatch as prior in the cur-

rent minibatch. It means that emphasizing the old knowl-

edge prevents the model from adapting to new data. HPP

[28] also has a mechanism to combine old knowledge and

initial prior. It deals well with concept drift in cases that the

prior is good enough and the mechanism helps to forget the

old knowledge. In our work, we also use a similar mecha-

nism, but exploit better external knowledge.

Table 1

Some statistics about the datasets.

Dataset Vocab Training Evaluation words/doc

Agnews 32,483 110,000 10,000 24.9
TMN 11,599 31,604 1,000 24.3
NYT-title 46,854 1,664,127 10,000 5.0
Yahoo-title 21,439 517,770 10,000 4.6
Agnews-title 15,936 108,400 10,000 4.9
TMN-title 2,823 26,251 1,000 4.6
Irishtimes 28,816 1,364,669 10,000 5.0
Twitter 35072 1247321 10000 6.2

Finally, our method learns both GCN and LDA simul-

taneously in the streaming environment. More generally, it

can be extended to train a hybrid model of a neural network

and a probabilistic model for data streams.

4. Evaluation

In this section, we conduct intensive experiments to eval-

uate the performance of our method in terms of log predic-

tive probability and topic coherence on several datasets (both

short and regular text datasets) in the streaming environment.

We also examine how our method deals with concept drift.

Finally, we investigate the sensitivity of our method w.r.t hy-

perparameters.

4.1. Datasets and Baselines
We conduct experiments on 6 short text datasets (NYT-

title 2, Yahoo-title3, TagMyNews-title (TMN-title), Irishtimes4),

Agnews-title, Twitter5 and 2 regular text datasets (Agnews6,

TagMyNews (TMN)7). The Yahoo-title and Twitter datasets

[27, 40] are crawled from a forum and a social network re-

spectively, therefore they often contain noisy texts. The datasets

are preprocessed with some steps such as: tokenizing, re-

moving stopwords and low-frequency words (which appear

in less than 3 documents) to build the corresponding vocab-

ularies, and removing extremely short documents (less than

3 words). The statistics of these datasets are described in

Table 1. Experimenting on the short text corpora, in which

each document contains about 5 words, helps us to examine

the role of a knowledge graph in case of short and sparse

data.

Knowledge graphs: In these experiments, we exploit ex-

ternal knowledge which is derived from both human knowl-

edge (Wordnet8) and a pre-trained model (Word2vec9) on

a big dataset. Wordnet and Word2vec are used to create

2 knowledge graphs respectively. In terms of building the

Wordnet graph, for each word in the vocabulary of each dataset,

2http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
3https://answers.yahoo.com/
4https://www.kaggle.com/therohk/ireland-historical-news/
5http://twitter. com/
6https://course.fast.ai/datasets
7http://acube.di.unipi.it/tmn-dataset/
8https://Wordnet.princeton.edu/
9http://nlp.stanford.edu/projects/glove/
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we get all words that have either synonym or antonym rela-

tionships with it from Wordnet to create a set of its word

neighbors. However, in order to avoid a big graph, we re-

move neighbors that are out of vocabulary. Then, an edge

is built based on neighbor relation and the weight of each

edge is the Wu-Palmer similarity of the corresponding pair

of words. We emphasize that we take neighbors with all dif-

ferent meanings for each word. Therefore, although concept

drift happens or a word is used in a different meaning from

previously appearing meanings, the Wordnet graph includes

this meaning to enrich a topic model. For the other graph,

we base on Word2vec to compute cosine similarity between

a pair of words in the vocabulary. Then, for each word, we

select the top 200 words with highest similar score to build a

graph. The 2 graphs are used as prior knowledge for GCTM.

First, we ignore node features to focus on evaluating the

impact of a knowledge graph in streaming environments. It

means that X is set to be the identity matrix IV . Then, we

investigate the combination of both a knowledge graph from

Wordnet and node features from Word2vec to enrich a topic

model.

Baselines: We use 3 state-of-the-art baselines to learn LDA

from data streams in comparison with our method. We briefly

describe these methods as follows:

• Population variational Bayes (PVB) [29] uses stochas-

tic natural Gradient ascent to maximize the expecta-

tion of the likelihood of data.

• Streaming variational Bayes (SVB) [8] bases on recur-

sive Bayesian approach. SVB can only use external

knowledge encoded in the prior at the first minibatch,

then ignores it in the next minibatches.

• Power prior (SVB-PP)10[28] is an extension of SVB.

It can exploit the original prior distribution through all

minibatches and provides a mechanism to control the

impact of the prior in each minibatch.

• GCTM-WN: GCTM uses a knowledge graph from Word-

net.

• GCTM-W2V: GCTM exploits a knowledge graph from

Word2vec.

The same hyperparameters in all methods are set the same.

In detail, we set the hyperparameter of Dirichlet distribution

� = 0.01 for topic proportion of each document, the number

of topics K = 50 for Agnews, Agnews-title, TMN, TMN-

title and K = 100 for Yahoo-title, NYT-title, Irishtimes.

We note that the baselines cannot exploit a prior knowledge

graph, they only use a Dirichlet prior with a hyperparameter

� = 0.01 for each topic as in the original papers. For other

hyperparameters, we use grid search to determine the best

hyperparameter for each method on each dataset. In detail,

10Due to requiring non-trivial efforts, SVB-HPP is not included in this

paper. However, the original work [28] showed that if SVB-PP is tuned

well, it is often comparable to SVB-HPP.

the range of each hyperparameter is set as follows: the mul-

tiple power prior � ∈ {0.6, 0.7, 0.8, 0.9, 0.99} for SVB-PP,

the population size S in {103, 104, 105, 106} and the forget-

ting factor � in {0.7, 0.8, 0.9, 0.99} for PVB, and variance

�� = �w = � ∈ {0.1, 1, 10}, the number of GCN layers

L = 2 for GCTM. We list the best hyperparameters of the

methods from grid search in appendix C.

Performance measure: We use 2measures to evaluate the

methods: Log predictive probability (LPP) [15] which con-

siders the generalization of a model and Normalized point-

wise mutual information (NPMI) [20] which exams the co-

herence of topics. We measure the LPPs of the methods after

every minibatch. However, due to computing on all docu-

ments of each dataset, NPMI is only measured after finish-

ing the whole training process. We describe these measures

in appendices A and B.

4.2. Experiments on datasets with fixed batchsize
Due to the lack of time information on almost datasets

(except Irishtimes dataset), we simulate the streaming envi-

ronment by following experimental designs in [8, 29]. We

conduct experiments with the scenarios on 6 datasets (TMN,

TMN-title, Agnews, Agnews-title, Yahoo-title, and NYT-

title). In each dataset, we randomly select a holdout test

set (which contains documents with more than or equal to

5 words) and then shuffle the remaining documents and di-

vide them into minibatches with fixed batchsize for training.

Based on the size of each dataset, we set batchsize to 500 for

TMN, TMN-title, 1000 for Agnews, Agnews-title, and 5000

for Yahoo-title, NYT-title. The information of training and

test sets is described in Table 1.

In terms of LPP, Figure 3 shows the experimental re-

sults. We have some noticeable observations from these re-

sults. First, both GCTM-WN and GCTM-W2V significantly

outperform the baselines. Providing an external knowledge

graph from Wordnet or Word2vec is the main reason why

the GCTM-based methods achieve better performances than

the baselines which do not exploit prior knowledge. Sec-

ond, both GCTM-WN and GCTM-W2V are inferior to the

baselines in a few beginning minibatches on NYT-title and

Yahoo-title datasets, while they need more minibatches to

catch up with the baselines on the remaining datasets. Due

to having to learn a lot of parameters in graph convolutional

networks, the GCTM-based methods need more data to learn

the model. Moreover, the differences of batchsize among

datasets lead GCTM-WN and GCTM-W2V to require the

different numbers of minibatches to overcome the baselines.

Third, the performances of the baselines only increase in a

few beginning minibatches, then gradually decrease on short

text datasets. It means that the baselines deal badly with

short texts even though the data is big. In contrast, the GCTM-

based methods with external knowledge can work well on

short texts. Finally, in comparison with the baselines, the

improvements of the GCTM-based methods on the short text

datasets (Agnews-title and TMN-title) are more remarkable

than those on the regular text datasets (Agnews and TMN re-

spectively). This provides convincing evidence of exploiting
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Figure 3: Performance of the methods in terms of generalization as learning from more data. Higher is better.

Table 2

Performance of the methods in terms of topic coherence. Higher is better.

Dataset GCTM-WN GCTM-W2V SVB SVB-PP PVB

Agnews 0.287 0.263 0.005 0.005 0.018
Agnews-title -0.026 -0.067 -0.114 -0.111 -0.107
TMN 0.0791 0.073 -0.015 -0.054 -0.019
TMN-title 0.032 0.021 -0.103 -0.105 -0.090
NYT-title 0.266 0.246 -0.069 -0.065 -0.069
Yahoo-title 0.171 0.173 -0.087 -0.088 -0.076

external knowledge for data streams.

Regarding NPMI, Table 2 shows the experimental re-

sults. Both GCTM-WN and GCTM-W2V also outperform

the baselines by noticeable margins. Because Wordnet and

Word2vec, which encode the information of word semantic

and local contexts, help LDA to learn coherent topics. The

regular text datasets (Agnews and TMN) contain more infor-

mation of word co-occurrence than the short ones, therefore,

the methods work better on the regular datasets. Moreover,

the GCTM-based methods also perform more significantly

on the short text datasets.

The different graphs from Wordnet and Word2vec have

different impacts in terms of LPP and NPMI. It seems that

the word-embeddings-based graph improves LDA slightly

better than the Wordnet-based graph in terms of LPP on all

the datasets (Figure 3). However, GCTM-W2V performs

worse than GCTM-WN in terms of topic coherence (Table

2).

4.3. Experiments on dataset with timestamp
Since only the Irishtimes dataset has information about

time, we only conduct experiments with timestamp on this

dataset. We get the documents over period of each month to

create a minibatch. GCTM is trained on a minibatch and the

next minibatch is used to measure LPP. We use this scenario

to evaluate the methods in a real streaming environment. We

also conduct extra experiments with the previous scenario on

this dataset to investigate the differences between the scenar-

ios. For the extra experiments, we fix batchsize to 5000 and

the size of test set to 10000. In both scenarios, we evaluate

NPMI on all documents in the dataset.

The LPP results are reported in Figure 4. While Figure

4(a) shows the results on the dataset with timestamp, Figure

4(b) illustrates the results on the dataset with fixed batchsize.

It is obvious that the behaviours of lines in both scenarios

are similar. In the timestamp scenario, the performances of

the GCTM-based methods are significantly better than the

baselines in terms of LPP. However, the lines in Figure 4(a)

Linh Ngo Van et al.: Preprint submitted to Elsevier Page 8 of 17



Graph Convolutional Topic Model

0 100 200
Minibatch

−9.6

−8.8

LP
P

(a)

0 100 200
Minibatch

−10.2

−9.6

−9.0

LP
P

(b)

SVB SVB-PP PVB GCTM-WN GCTM-W2V

Figure 4: Performance of the methods on the Irishtimes dataset. While Figure (a) shows the results on the dataset with
timestamp, Figure (b) reports the results on the dataset with fixed batchsize.

Table 3

Performance of the methods in terms of topic coherence on the Irishtimes with both time stamp and fixed batchsize.

Dataset GCTM-WN GCTM-W2V SVB SVB-PP PVB

Timestamp 0.127 0.124 -0.068 -0.083 -0.082
Fixed batchsize 0.002 0.002 -0.068 -0.072 -0.065

are more curved than the ones in Figures 4(b). Since test

set in each minibatch is the next one in the experiments with

timestamp, the results are not as smooth as those in the other

experiments with fixed holdout test set. Meanwhile, Table

4 shows that the GCTM-based methods also achieve better

NPMI results than the baselines in both the scenarios.

4.4. Experiments on noisy data
In this subsection, we consider how the methods deal

with noisy texts. We conduct experiments on Yahoo-title

and Twitter datasets. While the Twitter dataset is a collection

of tweets from a social network11, the Yahoo-title dataset is

crawled from a question and answer forum12 where users

freely post questions and others help to answer. Because

texts from both the forum and social network are informal

and contain noises, we can use them to evaluate performance

of the methods when dealing with noisy data.

Figure 5 and Table ?? show the performancesof the meth-

ods in terms of generalization and topic coherence respec-

tively. It is straightforward to see that short and noisy texts

not only rarely provide the baselines with enough word-occurrence

information but also mislead them. As a result, the LPPs

of the baselines decrease when more texts arrive after each

11http://twitter.com/
12https://answers.yahoo.com/

minibatch. Moreover, NPMIs of the baselines do not obtain

positive results. By using external knowledge graphs, both

GCTM-WN and GCTN-W2V achieve better results than the

baselines on both measures. These results provide experi-

mental evidence why exploiting external knowledge in gen-

eral and knowledge graph in particular is an effective solu-

tion to deal with noisy and short data.

4.5. Experiments on dataset with concept drift

and catastrophic forgetting
Concept drift: We design a scenario to evaluate the

methods when dealing with concept drift. We simulate con-

cept drift dataset on the Irishtimes dataset in which docu-

ments are categorized in 6 classes whose labels are "News",

"Opinion", "Sport", "Lifestyle", "Business", "Culture". We

divide the dataset into minibatches with constraints as fol-

lows: Documents in the same minibatch have the same class

label and the minibatches of the same class are used consec-

utively to train the model. Due to data imbalance in classes,

batchsize is only set to 2000. After training the model in a

minibatch, we use the next one to measure LPP. In this sce-

nario, concept drift arises when data changes from a particu-

lar class to a new one. It requires the model to adapt quickly

to data of a new class. We conduct experiments with 2 sce-

narios which are different in the order of labels. The number
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Figure 5: Performance of the methods in terms of generalization when dealing with noisy texts. Higher is better.

Table 4

Performance of the methods in terms of topic coherence when dealing with noisy texts. Higher is better.

Dataset GCTM-WN GCTM-W2V SVB SVB-PP PVB

Yahoo-title 0.171 0.173 -0.087 -0.088 -0.076

Twitter -0.009 -0.010 -0.062 -0.060 -0.047

of texts in "News" is significantly bigger than those of other

labels. We will change the order of this label. In detail, the

first scenario uses the order of labels: "News", "Opinion",

"Sport", "Lifestyle", "Business", "Culture" while in the other

scenario, labels are utilized sequentially in the following or-

der: "Sport", "Opinion", "News", "Lifestyle", "Business",

"Culture".

Figures 6 and 7 illustrate the performances of the meth-

ods in the first and second scenarios respectively. Each fig-

ure includes 5 subfigures: The main figure and 4 small extra

figures (which are extracted from the main figure to zoom in

when concept drift happens). The main figures in both Fig-

ures 6 and 7 show that GCTM-WN and SVB-PP achieve bet-

ter results than PVB and SVB. Thanks to a balancing mech-

anism, both GCTM-WN and SVB-PP reduce the impact of

old knowledge learnt from data of previous classes to work

well on new data of the current class when concept drift

happens. It is obvious that using a knowledge graph helps

GCTM-WN outperform SVB-PP. Furthermore, the extra fig-

ures illustrate that the performances of the methods drop dra-

matically when concept drift arises. However, GCTM-WN

increases significantly in a few minibatches, then remains

stable. These results demonstrate that GCTM-WN can adapt

quickly to concept drift.

Catastrophic forgetting: We examine the catastrophic

forgetting phenomenon in which the methods forget the learnt

knowledge when training on new data. We follow the mea-

sure of continual learning studies [32, 19, 36] to consider the

forgetting problem. In detail, we again use 2 experimental

scenarios in concept drift, however, we create a hold-out test

set for each class. Each hold-out test set of each class con-

sists of 2000 texts. After finishing training all texts of a class,

we calculate the average LPP on the hold-out test sets of the

current and previous classes. The higher the average LPP of

a method is, the better this method deals with the forgetting

problem.

Figure 8 and Figure 9 show the average LPPs of the meth-

ods after each class in both the scenarios. It is obvious that

GCTM-WN and GCTM-W2V still achieve better results than

the baselines at almost evaluation times. They are only infe-

rior to the baselines a few times such as at the class "Sport"

in Figure 8 and the classes "News" and "Lifestyle" in Figure

9. Therefore, in both the scenarios, GCTM not only adapts

more quickly to concept drift but also reduces more notice-

ably the catastrophic forgetting phenomenon in comparison

with the baselines. It means that GCTM can deal better with

the plasticity-stability dilemma than the baselines. However,

it seems that GCTM deals with concept drift better than for-

getting problem. The LPPs of GCTM in Figures 6 and 7 are

significantly higher than those in Figures 8 and 9.
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Figure 6: Performance of the methods when dealing with concept drift

4.6. Ablation studies
In this subsection, we investigate the effectiveness of en-

riching Wordnet graph with node features from Word2vec as

well as analyze the sensitivity of GCTM w.r.t hyperparame-

ters.

4.6.1. Enriching Wordnet graph with node features

from Word2vec in GCTM

We exploit both the Wordnet graph and the features of

nodes from Word2vec to create GCTM-WN-W2V. We con-

duct experiments to compare this combination with GCTM-

WN and GCTM-W2V which ignore node features. Figure 10

shows that GCTM-WN-W2V outperforms both GCTM-WN

and GCTM-W2V with significant magnitudes in 3 datasets:

Yahoo-title, Agnews, and TMN-title. It achieves compara-

ble results with the others in the TMN and NYT-title datasets.

It is merely inferior to GCTM-W2V, but is superior to GCTM-

WN on the Agnews-title. In particular, it is obvious that

GCTM-WN-W2V is better than GCTM-WN. It means that

exploiting good features of nodes in a knowledge graph can

improve the effectiveness of GCTM.

4.6.2. Sensitivity of GCTM w.r.t. hyperparameters

In this subsection, we examine the sensitivity of GCTM

w.r.t. � and the number of topics K . We use the scenario

with fixed batchsize (1000) to conduct experiments on two

datasets: Agnews and Agnews-title. We measure the LPP of

GCTM-WN when one of these parameters is changed and

the other is fixed.

The sensitivity of GCTM-WN w.r.t. �: Figure 11 illus-

trates the experimental results when K is fixed to 100 and

� is varied. It is obvious that the different values of � only

make GCTM-WN vary in terms of LPP. Moreover, the effect

of � is different between the short and regular text datasets.

GCTM-WN on the short texts is more sensitive than itself on

the regular texts. However, � = 0.1 (�2 = 0.01) makes the

performances of GCTM-WN on both Agnews and Agnews-

title the worst. � provides a way to adjust the impact of the

global variables (� and W̃ ) from a minibatch to the next one.

The smaller � is, the stricter the constraint of the variables

between two consecutive minibatches becomes. Therefore,

a small value of � (� = 0.1) causes GCTM-WN to badly

learn new knowledge from the current minibatch.

The sensitivity of GCTM-WN w.r.t. K: Figure 12 illus-

trates the experimental results when the number of topicsK

is varied and � is fixed to 1. The LPPs of GCTM-WN are
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Figure 7: Performance of the methods when dealing with concept drift

stable on the Agnews dataset when K is changed. On the

Agnews-title dataset, only K = 50 makes the performance

of GCTM-WN decrease. The more information of word co-

occurrence leads LDA to reduce ambiguous topics, there-

fore, GCTM-WN on the regular texts is less sensitive than

itself on the short texts. Moreover, when the short dataset

is big, the number of topics K should be large enough to

achieve better performances.

5. Conclusion

In conclusion, this paper proposes a novel model which

integrates graph convolutional networks into a topic model

to exploit a knowledge graph well. Moreover, a novel learn-

ing method is presented to simultaneously train both the net-

works and the topic model in streaming environments. It is

worth noting that our method can be extended for a wide

class of probabilistic models. The extensive experiments

show that our method can work well when dealing with short

texts and concept drift. Our method significantly outper-

forms the state-of-the-art baselines in terms of generaliza-

tion ability and topic coherence.
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A. Log Predictive Probability

We calculate log predictive probability on a test set as in

[15]. Let Dtrain and Dtest be training and test sets respec-

tively. The model parameter � of LDA is learnt on Dtrain.

Each document in the test set Dtest is divided randomly into

two disjoint parts wobs and who with a ratio of 80:20. LPP

examine how a model predicts the words who when giving

the words wobs for every document in the test set. The pre-

dictive probability is calculated as below:

p(who ∣ wobs, �) =
∏

w∈who

p(w ∣ wobs, �)

≈
∏

w∈who

p(w ∣ �obs, �)

=
∏

w∈who

K∑

k=1

p(w ∣ z = k, �)p(z = k ∣ �obs)

=
∏

w∈who

K∑

k=1

�obs
k
�kw

where �obs is inferred from wobs and the learnt model �.

Then LPP of each document d is computed:

LPPd =
log p(who ∣ wobs, �)

|who|
(8)

where |who| is the length of d in who). Then, the LPP of

Dtest is averaged on all documents in the test set. We also

run 5 times with 5 random splits to average.

B. Normalized Pointwise Mutual Information

This metric was computed as in [20]. After training LDA,

we pick top t = 20 words with the highest probabilities in

topic distribution (wk = {wk
1
, wk

2
, ..., wk

t
}) for each topic k.

We calculate NPMI of a topic k as follows:

NPMI(k,wk) =
2

t(t − 1)

t∑

i=2

i−1∑

j=1

log
p(wk

i
,wk
j
)

p(wk
i
)p(wk

j
)

− log p(wk
i
, wk

j
)

≈
2

t(t − 1)

t∑

i=2

i−1∑

j=1

log
D(wk

i
,wk
j
)+10−2

D
− log

D(wk
i
)D(wk

j
)

D2

− log
D(wk

i
,wk
j
)+10−2

D

=
2

t(t − 1)

t∑

i=2

i−1∑

j=1

−1 +
2 logD − logD(wk

i
) − logD(wk

j
)

logD − log(D(wk
i
, wk

j
) + 10−2)

where D is the total number of documents, D(wk
i
) is the

number of documents that containwk
i
,D(wk

i
, wk

j
) is the num-

ber of documents that contain both wk
i

and wk
j
). Finally,

NPMI is averaged on all K topics.

C. The effective settings of the methods

In this section, we list the best hyperparameter for the

methods from grid search.

C.1. Experiments on datasets in terms of fixed

batchsize, timestamp, and noisy data
PVB:

Yahoo-title: � = 0.9, S = 106

NYtimes-title: � = 0.9, S = 105

Agnews: � = 0.9, S = 104

Agnews-title: � = 0.9, S = 106

TMN: � = 0.9, S = 103

TMN-title: � = 0.9, S = 103

Irishtimes (with timestamp): � = 0.5, S = 105

Irishtimes (with fixed batchsize): � = 0.9, S = 105

Twitter: � = 0.9, S = 106

SVB-PP:

Yahoo-title: � = 0.99

NYtimes-title: � = 0.99

Agnews: � = 0.99

Agnews-title: � = 0.99

TMN: � = 0.99

TMN-title: � = 0.99

Irishtimes (with timestamp): � = 0.5

Irishtimes (with fixed batchsize): � = 0.9

Twitter: � = 0.99

GCTM-WN:

Yahoo-title: � = 0.01

NYtimes-title: � = 100.0

Agnews: � = 1.0

Agnews-title: � = 1.0

TMN: � = 1.0

TMN-title: � = 1.0

Irishtimes (with fixed batchsize): � = 0.01

Irishtimes (with fixed batchsize): � = 0.01

Twitter: � = 1

GCTM-W2V:

Yahoo-title: � = 100.0

NYtimes-title: � = 1.0

Agnews: � = 1.0

Agnews-title: � = 1.0

TMN: � = 100.0

TMN-title: � = 100.0

Irishtimes (with fixed batchsize): � = 0.01

Irishtimes (with fixed batchsize): � = 0.01

Twitter: � = 1
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C.2. Experiments on datasets in terms of concept

drift and catastrophic forgetting
PVB: � = 0.9, S = 106

SVB-PP: � = 0.9

GCTM-WN: � = 100

GCTM-W2V: � = 0.01
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