
FADER: Fast Adversarial Example Rejection

Francesco Crecchia, Marco Melisb, Angelo Sotgiub, Davide Bacciua, Battista Biggiob

aDipartimento di Informatica, Università di Pisa, Italy.
bDip. di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, Italy.

Abstract

Deep neural networks are vulnerable to adversarial examples, i.e., carefully-crafted inputs that mislead classification at test time.
Recent defenses have been shown to improve adversarial robustness by detecting anomalous deviations from legitimate training
samples at different layer representations - a behavior normally exhibited by adversarial attacks. Despite technical differences, all
aforementioned methods share a common backbone structure that we formalize and highlight in this contribution, as it can help
in identifying promising research directions and drawbacks of existing methods. The first main contribution of this work is the
review of these detection methods in the form of a unifying framework designed to accommodate both existing defenses and newer
ones to come. In terms of drawbacks, the overmentioned defenses require comparing input samples against an oversized number
of reference prototypes, possibly at different representation layers, dramatically worsening the test-time efficiency. Besides, such
defenses are typically based on ensembling classifiers with heuristic methods, rather than optimizing the whole architecture in an
end-to-end manner to better perform detection. As a second main contribution of this work, we introduce FADER, a novel technique
for speeding up detection-based methods. FADER overcome the issues above by employing RBF networks as detectors: by fixing
the number of required prototypes, the runtime complexity of adversarial examples detectors can be controlled. Our experiments
outline up to 73× prototypes reduction compared to analyzed detectors for MNIST dataset and up to 50× for CIFAR10 dataset
respectively, without sacrificing classification accuracy on both clean and adversarial data.

Keywords: adversarial machine learning; adversarial examples; detection; evasion attacks; rbf networks; deep learning

1. Introduction

In recent years, Deep Neural Networks (DNNs) achieved
state-of-the-art performances in a wide variety of pattern recog-
nition tasks, including (but not limited to) image classification
[1], natural language processing [2] and reinforcement learn-
ing [3]. These impressive results, made DNNs appealing for
building smart applications, i.e. software embedding an intelli-
gent component in a form of a DNN to perform pattern recog-
nition, planning, and recommendations. Today, deep learning
is a core component for software spanning from consumer to
safety-critical applications like autonomous driving [4], mal-
ware and intrusion detection [5], homeland security [6], and
medical diagnosis [7].

Deep learning (DL) models, as other machine learning al-
gorithms, are designed to work under the so-called stationarity
assumption: the training data distribution and that of the test
samples are assumed to be the same. However, distribution
drifts can happen naturally, e.g., missing data due to sensor
failure, or adversarially, i.e., an adversary that tampers with
data purposely to cause failures during system operation [8,
9]. While DNNs are known to be robust to random noise, it
has been shown that the accuracy of DNNs and, in general,

Email addresses: francesco.crecchi@di.unipi.it (Francesco
Crecchi), marco.melis@unica.it (Marco Melis),
angelo.sotgiu@unica.it (Angelo Sotgiu), bacciu@di.unipi.it
(Davide Bacciu), battista.biggio@unica.it (Battista Biggio)

of machine-learning algorithms, can dramatically deteriorate
in face of gradient-based adversarial attacks [10, 11], includ-
ing adversarial examples, i.e., carefully-perturbed input sam-
ples that mislead classification at test time [12, 13]. A plethora
of methods has been proposed to find adversarial examples [14,
15, 16, 17, 18, 19, 20, 21]. These often transfer across different
architectures, enabling black-box attacks even for inaccessible
models [22]. The vulnerability of DL models to adversarial
samples has the potential to make them the weakest link in the
security chain of smart applications. A great number of coun-
termeasures to adversarial examples have been deployed during
recent years, still leaving this as an open research problem.

We can categorize defense mechanisms against adversarial
examples into two main complementary groups: robust learn-
ing and detection methods [9]. The former typically employ
adversarial training [13], i.e., retrain the model on adversarial
examples to improve classifier robustness against specific at-
tack algorithms. This requires, however, generating attack sam-
ples during model training, which may be very computationally
demanding for state-of-the-art DNNs.

Detection approaches, instead, include explicit detection or
rejection strategies for adversarial samples, i.e., they provide an
additional class for anomalies and potential out-of-distribution
attacks. Typically, these defenses are designed to work under
the so-called manifold hypothesis: in several domains, natural
data are assumed to lie in a low-dimensional manifold embed-
ded in a high-dimensional space (e.g., grayscale digits image

Preprint submitted to Neurocomputing October 20, 2020

ar
X

iv
:2

01
0.

09
11

9v
1

 [
cs

.L
G

]
 1

8
O

ct
 2

02
0

domain). Remarkably, not every high-dimensional representa-
tion belongs to the natural data manifold (e.g., salt and pepper
noise). Assuming adversarial examples to be out-of-manifold
data, manifold-based defenses work by identifying adversar-
ial points from their distance to the manifold and, optionally,
by “pulling them back” onto the data manifold before clas-
sification. These defenses are based on a distance-based re-
jection strategy: as far as a sample moves away from class
prototypes, classifier support decreases till zero. If an input
sample is not supported by any class, then it is rejected. Re-
markable instances of this approach in the literature are found
in [14, 15, 16, 17, 20, 23, 19, 18]. Apart from technical differ-
ences, all these rejection-based defenses share a common back-
bone structure which can be abstracted as a framework.

The first main contribution of this work is to provide a com-
prehensive review of such adversarial examples detection meth-
ods in the form of a unifying framework. Each proposed detec-
tor defense can be obtained by correctly instantiating our frame-
work components. Subsuming each analyzed detector defense
in the framework allowed us to identify common drawbacks,
leading us to the second main contribution of this paper.

The vast majority of detector defenses in literature are a
form of instance-based classifiers: when a new sample is fed to
the classifier, it is compared with a set of prototypes to produce
an output prediction. The number of selected training proto-
types is thus crucial for the runtime efficiency of the detector,
which we found to be not properly tuned in literature solutions.
A second issue we found in existing approaches is that, for mul-
tilayered defenses, classifiers are optimized to maximize detec-
tion separately, i.e. they are not jointly trained to perform re-
jection. They are typically based on ensembling classifiers with
heuristic methods, rather than optimizing the whole architec-
ture in an end-to-end manner to better perform detection.

To overcome these limitations, in this paper, we propose
FADER, a technique for speeding up detection methods. It
works by replacing the detector’s distance-based classifiers with
size-constrained RBF networks, to reduce computational over-
head at test time. The proposed solution is capable of enforc-
ing adversarial robustness even in presence of adaptive attacks
specifically designed to defeat such defense (see Section 4).

In summary, we make the following contributions:

• Comprehensive literature review of the detector-based de-
fenses to provide a unified view in the form of a frame-
work, which helps identify current defenses limitations.

• Overcoming such limitations by proposing FADER, i.e.,
a technique to obtaining an end-to-end differentiable de-
tector capable of an up to 80× prototypes reduction with
respect to analyzed competitors.

• Novel adaptive attack algorithm designed for the pro-
posed defense method to avoid security by gradient ob-
fuscation.

The rest of the paper is structured as follows. In Section 2
we present our adversarial examples detector framework. Sec-
tion 3 introduces FADER, our proposed fast detection method.

h3h2h1

o

y

σ

S

x

s3s2s1

s3

s2

s1

z3

z2

z1

φ3

φ2

φ1

ỹ

ω

Figure 1: Adversarial examples detection framework architecture. It extends
a pre-trained deep network by attaching several layer-detectors φ whose goal
is to determine distribution drifts in the representation of an input x at a given
layer. Multiple layer detectors predictions are combined and fed to a combiner
classifier σ which outputs the final detector prediction. Unprotected network
and detector outputs are combined in ω for final predictions.

Section 4 devises how to perform a reliable security evaluation
properly and the adaptive attack specifically designed to eval-
uate our proposed fast detector. FADER-based solutions are
empirically evaluated in Section 5, testing adversarial attack
detection in different image recognition tasks. Section 6 dis-
cusses complementary methods for addressing adversarial ex-
amples than detection strategies. We conclude the paper by dis-
cussing the main contributions of this work and its limitations,
along with promising future research directions (Section 7).

2. Adversarial Examples Detection Framework

In Fig. 1 we schematize the proposed detection framework,
which assumes an already-trained DNN classifier to be pro-
tected against adversarial examples, denoted as a function f :
X −→ Y with X ∈ Rd and Y ∈ Rc for a d-dimensional space
of input samples (e.g. image pixels) and being c the number
of classes. Assuming the network to be composed by m layers,
then the prediction function f can be expressed as a series of
nested functions f (hm(hm−1(. . . h1(x; w1)); wm−1); wm), where h1
and hm denote the mapping function learned, respectively, by
the input and the output layer, and w1 and wm are their weight
parameters (learned during training).

Detector setup starts by selecting a set of network layers,
allowing to inspect internal DNN representations for a given
input sample to identify adversarial patterns.

Let zi = hi(hi−1(. . . (h1(x; w1)); wi−1); wi) be the representa-
tion learned by the network of an input sample x at layer hi. A
layer detector function φi : Zi −→ S i is applied to each zi pro-
ducing a score vector si of size c. Intuitively, it represents the
probability for x to be a natural sample (i.e. on-manifold) for
each class, as it appears at i-th layer of the network.

Multiple layer detector predictions are combined in the form
of a scoring matrix S and processed by the mean of a multi-
layer detector function σ : S k

i −→ O, for k being the number
of layers inspected by the detector and o ∈ O being the detec-

2

tor final prediction score vector. Intuitively, for a given natural
sample x of class t ∈ Y , a well-behaving detector is expected
to produce reliable, high confidence layer detector predictions
for class t, namely S k

i [t] ≈ 1, and close to zero scores for other
classes. This trend is captured by the multilayer detector which
produces a high confidence output score oy for x to be a natural
sample of class y. On the contrary, unreliable or low confidence
scores S k

i [t] produced by layer detectors should drive toward
sample rejection, by having the multilayer detector σ produc-
ing a low confidence output score for each possible output class.

Finally, multilayer detector predictions and original DNN
ones have to be combined to produce a final prediction for an in-
put sample x. This can be formalized as a function ω : Y ×O −→
Ỹ , for y ∈ Y and o ∈ O being the DNN and the detector predic-
tions respectively, and ỹ ∈ Ỹ being a c + 1 output vector with an
additional rejection class reserved for the detected adversarial
examples. Without loss of generality, ω can be defined as

ω(y, o, θ) = [o + α · y; θ] , (1)

with α being a parameter regulating the contribution of original
DNN output for the final predictions ỹ and θ being a suitable
threshold value tuned on clean training samples. It is worth to
remark that, in all analyzed defenses original DNN predictions
are not taken into account for final classification, i.e., α is zero.

For single layer defenses, no combiner is clearly needed. In
our framework this corresponds to instantiatingσ as the identity
function. This way, given a single layer detector φi at layer i,
S = [si] and o = σ(S) = si.

In the remainder of the section, we will rephrase existing
adversarial examples defenses in terms of the proposed frame-
work. As already mentioned, we are considering only rejection-
based defenses against adversarial attacks. To ease the reader,
evaluated defenses are schematized in terms of framework com-
ponents in Table 1.

2.1. Neural Reject

Inspired by the concept of open set recognition, Melis et
al. [15] proposed a method called Neural Reject (NR), which
attaches a Support Vector Machine with an RBF kernel (SVM-
RBF) on the last hidden layer of a DNN to perform rejection of
samples showing an outlying behavior. In particular, the choice
of the RBF kernel implies that the prediction scores provided
by the SVM are proportional to the distance of the input sam-
ple to the reference prototypes (i.e., the support vectors), thus
enabling rejection of samples which fall far away from the train-
ing data in the given representation space. This single-layered
defense can be expressed in our framework, instantiating φm−1
as an SVM-RBF.

2.2. Kernel Density Estimation

Feinman et al. [14] proposed an adversarial examples de-
tector exploiting a Kernel Density Estimator (KDE) on the em-
beddings obtained from the last hidden layer of the neural net-
work to identify low confidence input regions. As for NR, such
defense can be obtained by instantiating φm−1 as a KDE.

2.3. DNN Binary Classifier

The idea of a layer-wise detector is further developed in
[23] providing a single detector subnetwork connected to an
arbitrary layer of the DNN which is intended to protect. This
subnetwork is trained to perform a binary classification task to
distinguish genuine data from samples containing adversarial
perturbations. In our framework, φi is the detector subnetwork
at a given layer i.

2.4. Dimensionality Reduction

Multiple-layers inspection has been performed by Crecchi
et al. [19], who proposed a detection method combining non-
linear dimensionality reduction techniques (i.e. t-SNE [24]) and
density estimation to detect adversarial samples. For a given
layer i of the network, the classifier obtained by performing
density estimation on top of the embeddings produced by t-SNE
represents φi, whereas the support vector machine combiner is
a realization of σ.

2.5. Deep Neural Reject

Sotgiu et al. [16] proposed to apply NR to multiple in-
ternal layer representations to form a Deep Neural Rejection
(DNR) detector, empirically demonstrating improvements upon
the single-layered solution. As for NR, φi is obtained through
SVM-RBF classifiers at layer i, whereas σ is again an SVM-
RBF, trained via stacked generalization [25].

2.6. Deep k-Nearest Neighbour

Papernot & McDaniel proposed a detection method named
Deep k-Nearest Neighbour (DkNN) [17], which employs a k-
nearest neighbor classifier on the representations of the data
learned by each layer of the DNN. When a test input is fed to
DkNN, it is compared to its neighboring training points accord-
ing to the distance that separates them in the representations to
estimate the nonconformity, i.e. the lack of support, for a pre-
diction in the training data. If the input sample is not conformed
with the training data, it is rejected as an adversarial example.
This defense can be obtained by employing kNNs for φi for
layer i of the DNN. Statistical hypothesis test for combiner pre-
dictions in the realm of conformal predictions [26, 27, 28] can
be used as σ.

2.7. Generative Models

As generative models are trained to approximate the data
generating distribution (which is typically unknown), they are
a natural candidate for manifold-based defenses against adver-
sarial examples. Meng & Cheng proposed MagNet [18] for
defending neural network classifiers against adversarial sam-
ples leveraging generative models. MagNet works in the input
space and employs one or more separate detector networks in
the form of a denoising autoencoder (DAE) exploiting the re-
construction error to estimate how far a test sample is from the
manifold of normal samples and to reform it to a natural sample
lying on the data manifold, which is used for classification.

3

Defense Adv. Training φ σ

Feinman et al. [14] 7 KDE -
Melis et al. [15] 7 SVM-RBF -
Sotgiu et al. [16] 7 SVM-RBF SVM-RBF

Papernot et al. [17] 7 k-NN Statistical Test
Lamb et al. [20] 7 DAE -

Metzen et al. [23] 3 DNN -
Crecchi et al. [19] 3 t-SNE + KDE SVM

Meng & Cheng [31] 3 DAE -

Table 1: Detector-based defenses against adversarial examples framed in our
proposed detector framework (− for unnecessary components).

Fortified Networks [20] exploit this very same idea but on
the learned hidden representation distribution: DAEs are in-
serted at crucial points between layers of the original DNN to
clean-up the adversarial sample lying away from the original
data manifold, arguing that this provides stronger protection
against adversarial examples than acting in the input space.

Magnet and Fortified Network defenses can be obtained in
our framework by instantiating φi as a DAE, for layer i. By hav-
ing σ as the identity function, threshold-based detection (ω) on
input sample reconstruction error can be used to identity out-
liers to the expected input distribution.

However, despite the promising theoretical background, all
these methods are still vulnerable [29, 30].

3. Fast Adversarial Example Rejection

In this section, we present our proposal for speeding-up ex-
isting detection methods for adversarial examples by control-
ling the number of reference prototypes they make use of. Pre-
vious instance-based detectors [15, 16, 14, 17, 19], in fact, do
not allow one to specify the number of prototypes (e.g. sup-
port vectors for SVM-based ones) used for identifying adver-
sarial examples. Selecting a large number of reference proto-
types, possibly at different representation layers, dramatically
increases classification time, as the input sample has to be com-
pared with each prototype at each selected representation layer
to compute the corresponding prediction. Thus, controlling
the number of prototypes employed by detectors is crucial for
runtime efficiency. With FADER, we propose to replace ex-
isting classifiers in such detectors with size-constrained RBF
networks designed for an optimal accuracy vs. speed tradeoff.

RBF networks are shallow artificial neural networks that
use radial basis functions (RBF) as activation functions. The
output of the network is a linear combination of radial basis
functions of the inputs and neuron parameters. Despite their
architectural simplicity, they have been shown to possess struc-
tural resistance to adversarial attacks [13, 32, 33, 34], thanks
to their localized nature, thus they are a natural candidate for
building fast and secure detectors. The use of RBF activation
functions enforces the classifier to assume a desirable compact
abating probability property for open set recognition [35, 36].
Being s1, . . . , sc the output scores produced by the classifier for
an input sample x, such property ensures that for each given
class, scores decrease while x moves away from input regions
densely populated by training samples of that class. This prop-
erty allows us to easily implement a distance-based rejection

mechanism as the one required in our case to detect adversarial
examples, as in [37, 35, 16].

3.1. FADER

The central idea of FADER is to speedup instance-based ad-
versarial examples detectors by controlling the number of pro-
totypes used for comparison while maintaining at least com-
parable performances with original solutions. To this end, we
replace detector classifiers with RBF network-based ones, al-
lowing for the joint optimization of prototypes and network pa-
rameters. Suppose to take NR as a reference detector we intend
to speedup, given zm−1 as the input representation obtained at
the logits layer of the DNN, NR decision function can be for-
mulated as follows:

f (zm−1) = sgn

(
n∑

i=1

yiαi exp
Å
−
||zm−1 − zi||

2

γ

ã
+ b

)
(2)

that is, classifier output is computed by comparing zm−1 with
each support vector zi (identified by αi > 0). Remarkably, the
number of support vectors is automatically determined by the
SVM training procedure, in a data-driven way, and reference
prototypes zi are drawn from training samples, meaning they are
not optimized by the training procedure. Kernel bandwidth γ is
typically determined using cross-validation and not tuned for
each reference prototype separately. As a result, over-specified
solutions in terms of deployed prototypes are typically obtained
(as in Section 5.2).

Replacing the NR classifier with an RBF network can be
beneficial in reducing the number of prototypes employed, while
maintaining the desired detector behaviour, i.e., nearly the same
decision regions of unoptimized solutions (see Fig. 2). The new
detector decision function can be formulated as follows:

f (zm−1) = sgn

(
n∑

i=1

wi exp
Å
−
||zm−1 − zi||

2

γi

ã
+ b

)
(3)

Although the two definitions really look alike, they substan-
tially differ in practical terms. Reference prototypes zi can now
be tuned during RBF network training procedure, as well as
kernel bandwidths γi in order better fit training data. This im-
proved flexibility allows to control the number of reference pro-
totypes, e.g., to speed-up kernel computation. Moreover, opti-
mizing prototypes (zi), kernel bandwidths (γi) and network pa-
rameters (wi, b) all-together, allows for accounting prototypes
reduction, while maintaining comparable performances with re-
spect to overspecified solutions, as demonstrated in our experi-
ments (see Section 5).

In terms of the proposed adversarial detector framework in
Section 2, FADER can be represented as follows: the layer de-
tector function φ can be instantiated as an RBF network. In the
case of multilayered detectors, the combiner σ can be instanti-
ated again as an RBF network. Default rejection-based strategy
(see Eq. 1) is employed to mark adversarial examples.

4

2 0 2
0

2

4

6
SVM (no reject, m=34)

(a)

2 0 2
0

2

4

6
SVM (reject, m=34, th=0.67)

(b)

2 0 2
0

2

4

6
RBF Network (no reject, r=3)

(c)

2 0 2
0

2

4

6
RBF Network (reject, r=3, th=0.86)

(d)

Figure 2: Comparison of classifiers decision regions on a two-dimensional classification example with three classes (green, blue, and red points), using multiclass
SVMs with RBF kernels (SVM) and RBF Networks. a) SVM without reject option, the solution found exploits m = 34 support vectors (circled in black). b) SVM
with reject option using a threshold th = 0.67 to obtain 10% FPR, rejected samples are highlighted with black dots. c) RBF Network without rejecting option, the
solution found properly separates all classes using only r = 3 bases (black circles). d) RBF Network with reject option using a threshold th = 0.86 to obtain 10%
FPR, rejected samples are highlighted with black dots. Notably, r = 3 is the minimum number of bases to ensure each class is correctly enclosed.

2 0 2
0

2

4

6
RBF Network (no reject, = 3)

0.8

0.4

0.0

0.4

0.8

2 0 2
0

2

4

6
RBF Network (reject, = 3)

0.8

0.4

0.0

0.4

0.8

Figure 3: Conceptual representation on a 3-class bi-dimensional classification
problem of the evasion attack against an RBF Network without (left) and with
reject-based defense (right). The initial sample x0 (red hexagon) has been mod-
ified to obtain the adversarial sample x? (green star) which is wrongly recog-
nized as an observation from the green class by the standard classifier, while
it is correctly rejected when employing our defense. The values of the attack
objective Ω(x) are shown in the background for both cases.

4. Adversarial Robustness Evaluation

A correct evaluation of proposed detection methods against
adversarial examples is essential [9, 30], and it is not sufficient
to evaluate such defenses against previous defense-unaware at-
tacks that are likely to fail (see, e.g. [38, 39, 18]), leading to
overly optimistic results in term of classifier robustness. To
perform a fair defense evaluation, attacks should take into ac-
count the defense mechanism. Under this condition, many de-
fenses were shown not to be as effective as claimed [29, 40,
30]. For instance, many defenses take advantage of gradient
masking, i.e. they learn functions which are harder to opti-
mize for gradient-based attacks; however, they can be easily
bypassed by constructing smoother, differentiable approxima-
tions of their functions, e.g., learning surrogate models [9, 11,
41, 42] or replacing network layers which obfuscate gradients
with smoother mappings [29, 40, 30].

When a defense exploits rejection, a defense-unaware at-
tack may craft adversarial examples belonging to rejection re-
gions, making it very difficult to evade such defense (Fig. 3).
To perform a fair robustness evaluation of the proposed defense
method an adaptive defense-aware attack is required.

In this work we adopt the security evaluation procedure pro-
posed in [9, 30, 43], constructing security evaluation curves
which show how the accuracy of attacked systems degrades un-
der attacks crafted with increasing strength, i.e. the amount of
perturbation. The more robust a defense method is, the more
gracefully the curve decreases. It is remarkably important that
accuracy curves should reach zero under a sufficiently large per-
turbation, for all evaluated defense - in an extreme ideal case,
with an unbounded perturbation, the attacker can replace the
source sample with a sample of another class. If this does not
happen, then it may be that the attack algorithm is not able to
perform correctly the optimization, and this in turn means that
we are probably overestimating the defense robustness.

We formulate here an adaptive white-box attack suitable
for all defenses considered in this work, and that takes into
account rejection. Starting from a sample x, the attacker can
compute a maximum-allowed ε-sized adversarial perturbation
obtaining the adversarial example x?, by solving the following
constrained optimization problem:

x? ∈ arg min
x′:‖x−x′‖≤ε

Ω(x) = sy(x′) − max
j<{0,y}

s j(x′) (4)

being x′ the modified input sample, ‖x − x′‖ ≤ ε is an `p-norm
constraint (typical norms used for crafting adversarial examples
are `1, `2 and `∞, for which efficient projection algorithms ex-
ist [44]), y ∈ Y is the true class, and 0 is the rejection class.

Intuitively, to perform an untargeted (error-generic) evasion
the output of the true class must be minimized, and the output of
one competing class (excluding the reject class) must be max-
imized. The resulting objective function is negative in case of
successful evasion, and its absolute value increases with the in-
creasing classification confidence on the competing class. The
algorithm does not simply search for a minimum-distance ad-
versarial example, but it maximizes the confidence of the attack.
Although in this work we focus only on untargeted attacks, the
proposed formulation can be easily extended to account for tar-
geted (error-specific) evasion, as in [15].

To solve the optimization problem above, we use a pro-
jected gradient descent (PGD) algorithm with variable step size,
as given in Algorithm 1. The initial step size η0 is doubled for

5

Algorithm 1 PGD-based Maximum-confidence Adversarial
Examples with exponential line search

Require: x0: the input sample; η0: the initial step size; Π: a
projection operator on the `p-norm constraint ‖x0−x′‖ ≤ ε;
t > 0: a small positive number to ensure convergence.

Ensure: x′: the adversarial example.
1: x′ ← x0
2: repeat
3: x← x′
4: x′′0 ← Π (x − η0∇Ω(x))
5: for k = 1 to k < 10 do
6: ηk ← 2kη0
7: x′′k ← Π (x − ηk∇Ω(x))
8: if Ω(x′′k) < Ω(x′′k−1) then
9: η′ ← ηk

10: end if
11: end for
12: x′ ← Π (x − η′∇Ω(x))
13: until |Ω(x′) −Ω(x)| ≤ t
14: return x′

ten times, computing the objective function at each step and
choosing the step size which minimizes the function. The se-
lected step size is then used to update the point x′. Choosing a
different η at each step gives two main advantages:

• Speeding-up the optimization: using larger step sizes (when
possible) allows us to reach the convergence with a re-
duced number of iteration steps.

• Escaping local minima which may hinder the optimiza-
tion process, using the larger step sizes.

While attacking DNR, we found that the optimization often
got stuck in local minima inside reject decision regions, where
the objective function gradient reaches very small values close
to zero. The magnitude of these gradients strongly depends on
the value of the γ parameter of SVM-RBF classifiers used by
DNR, which is a negative exponent used in the kernel computa-
tion that controls the shape of decision regions around training
samples. Larger values of γ produce more complex decision re-
gions and smaller gradient magnitude, smaller values of gamma
conversely produce smoother decision regions.

To overcome this limitation we introduce gamma smooth-
ing, i.e., we perform the attack on a surrogate DNR classifier
that computes the gradient using a smaller γ which is easier to
attack, as discussed in [45].

5. Experimental analysis

In this section, we empirically evaluate the security of the
proposed FADER defense mechanism (i) against defense-aware
adversarial examples, and (ii) in a black-box setting where the
attacker is essentially unaware of the defense mechanism used
to protect the DNN classifier. After detailing our experimental
setup (Sec. 5.1), we report the classifier’s performance under
attack by comparing it with NR and DNR detectors (Sec. 5.2).

Id Layer Type Dimension

relu1 Conv. + ReLU 64 filters (5x5)
relu2 Conv. + ReLU 64 filters (3x3)
relu3 Conv. + ReLU 64 filters (3x3)
relu4 Fully Connected + ReLU 32 units
dropout Dropout (p = 0.5)
softmax Softmax 10 units

Table 2: Model architecture of the MNIST Neural Network [47]. The layers
used by DNR and FADER detectors are highlighted in bold.

We use secml [46] as a Python framework to implement
the classification systems and the attack algorithms, planning to
extend it soon to include an implementation of FADER-based
detectors presented hereafter.

5.1. Experimental setup

We discuss here the datasets we use to evaluate our defense
method and the classifiers we compare the performance with.
Datasets. Our analysis is performed on MNIST handwritten
digits and CIFAR10 datasets. MNIST consists of 60,000 train-
ing and 10,000 test gray-scale samples of shape 28x28. CI-
FAR10 consists of 50,000 training and 10,000 test RBG sam-
ples of shape 32x32. All images are normalized in [0, 1] by
dividing the input pixel values by 255.
Classifiers. We compare the performance of an undefended
DNN (i.e. not implementing any rejection mechanism), which
represents our baseline, with NR and DNR defense methods
and their fast variants, i.e. FADER technique is applied.

To implement the undefended DNNs for the MNIST dataset,
we use the same architecture suggested by Carlini et al. [47].
For CIFAR10, instead, we consider a lightweight network that,
despite its size, allows obtaining high performances. The two
architectures under consideration are shown in Tables 2 and 3.

As for the detectors, we consider the single-layer rejection
mechanism on top of the pre-softmax activation layer, in the
form of an SVM-RBF for NR [15] and the DNR defense ap-
proach [16] employing SVMs with RBF kernel as both layer
detectors and the top combiner. For both NR and DNR we
provide fast variants, employing size-controlled RBF networks,
denoted as NR-RBF and DNR-RBF, respectively (more in Sec-
tion 5.1).

For experimental sake, we limit the number of inspecting
layers for deep detectors to three, by considering the last three
layers for the network trained on MNIST, and the last layer plus
the last batch norm layer and the second to the last max-pooling
layer for the one trained on CIFAR10 (choice aimed at obtain-
ing a reasonable amount of features). To ease the reader, we
marked the selected layers in bold in Table 2 and 3.
Training-test splits. We assume the DNNs used in our ex-
periments to be pre-trained on separate training sets of 30,000
MNIST digits and 40,000 CIFAR10 samples. The rest of the
data is then used for training the NR and DNR classifiers in
both the SVM-based and RBF neurons-based configurations.
We average the security evaluation results on five different runs.
In each run, we consider 10,000 training samples and 1000 test

6

Id Layer Type Dimension

relu1 Conv. + Batch Norm. + ReLU 64 filters (3x3)
relu2 Conv. + Batch Norm. + ReLU 64 filters (3x3)
drop1 Max Pooling + Dropout (p = 0.1) 2x2
relu3 Conv. + Batch Norm. + ReLU 128 filters (3x3)
relu4 Conv. + Batch Norm. + ReLU 128 filters (3x3)
drop2 Max Pooling + Dropout (p = 0.2) 2x2
relu5 Conv. + Batch Norm. + ReLU 256 filters (3x3)
relu6 Conv. + Batch Norm. + ReLU 256 filters (3x3)
drop3 Max Pooling + Dropout (p = 0.3) 2x2
relu7 Conv. + Batch Norm. + ReLU 512 filters (3x3)
drop4 Max Pooling + Dropout (p = 0.4) 2x2
linear Fully Connected 512 units
softmax Softmax 10 units

Table 3: Model architecture of the CIFAR10 Neural Network. The layers used
by DNR and FADER detectors are highlighted in bold.

sample, randomly drawn from the corresponding datasets. As
previously done in [16], to avoid overfitting, the DNR com-
biner is trained by concatenating the outputs of the base SVMs
detectors computed on separate validation sets, extracted from
the training set using a 3-fold cross-validation procedure. This
procedure is known as stacked generalization [25].
Parameter setting. Table 4 reports the hyperparameters used
for DNN pre-training. DNR detectors’ best configuration is
looked for in C ∈ {10−2, . . . , 102} and γ ∈ {10−4, . . . , 102} per-
forming a 3-fold cross-validation procedure to maximize accu-
racy on unperturbed training data. The optimal configurations
we found for MNIST and CIFAR10 datasets are reported in Ta-
ble 5. As DNR layer classifiers and combiners are not indepen-
dently optimized during training, NR best configuration can be
obtained by lookup Table 5 for the layer of interest.

FADER-based solutions architectures are designed to maxi-
mize prototype reduction rate, while achieving comparable per-
formances on clean test samples (see Tables 6 and 7). In terms
of training, RBF neurons based solutions are optimized using
pytorch1 Adam optimizer with default settings for 250 epochs.
Rejection threshold θ is set, in all the considered cases, to reject
10% of the samples when no attack is performed (at ε = 0).

Parameter MNIST CIFAR10

Learning Rate 0.1 0.01
Momentum 0.9 0.9
Dropout 0.5 (see Table 3)
Batch Size 128 100
Epochs 50 75

Table 4: Parameters used to train the MNIST and CIFAR10 DNNs.

Security Evaluation. We compare the aforementioned unde-
fended neural networks and the rejection-based architectures
in terms of their security evaluation curves [9], reporting clas-
sification accuracy against an increasing `2-norm perturbation
size, used to perturb all the test samples. In particular, under

1Website: https://pytorch.org/

MNIST CIFAR10

Layer C γ

relu2 10 1e-3
relu3 10 1e-2
relu4 1.0 1e-2
combiner 1e-1 1.0

Layer C γ

drop3 10 1e-3
relu7 1.0 1e-3
linear 1.0 1e-2
combiner 1e-4 1.0

Table 5: DNR configurations for MNIST (left) and CIFAR10 (right) datasets.

attack (i.e., for ε > 0), all the tested samples are adversarial
examples and are considered correctly classified if either as-
signed to the rejection class or to their true class. We consider
a significant interval of ε ∈ [0, 5] and ε ∈ [0, 2] for the attacks
against MNIST and CIFAR10 datasets, respectively. The rejec-
tion rates, computed by dividing the number of rejected samples
by the number of test samples, are also reported for all defense-
aware classifiers (in absence of defense, the rejection rate will
be zero). It is worth noting that, under this setting, the fraction
of adversarial examples at each ε > 0 which are correctly as-
signed to their true class is given by the difference between the
accuracy and the rejection rate.

5.2. Experimental results

The security evaluation curves for both white-box (defense-
aware) and black-box settings, against MNIST and CIFAR10
datasets, are reported in Figures 4 and 5, top subplots. In the
bottom subplots, we report the corresponding rejection rates at
increasing `2-norm perturbation size.

In absence of an attack (ε = 0), the undefended DNN slightly
outperforms all rejection-based detectors, due to a portion of
samples that are incorrectly flagged as positives. Under attack,
(ε > 0) all detectors show improved robustness to adversar-
ial examples compared to the standard DNN, as their accuracy
decreases more gracefully. Notably, the performance of all de-
tectors even increases for low values of ε, as the slightly modi-
fied testing images immediately become blind-spot adversarial
examples, ending up in a region which is far from the rest of
the data. As the input perturbation increases, such samples are
gradually drifted inside a different class, making them indistin-
guishable for the rejection-based defense [15]. Interestingly, for
the MNIST case, we notice a similar increase of accuracy for
NR, DNR, and NR-RBF detectors tested in black-box setting at
the highest values of ε. Due to the limited knowledge of the at-
tacker, at high `2 distances the adversarial samples end up again
once farther from the rest of the data and are rejected by the de-
fenses. This behavior is also confirmed by the corresponding
rejection rate, which increases jointly with ε.

By comparing the average adversarial robustness of the dif-
ferent defense architectures, we show that FADER variants suc-
cessfully provide a detection accuracy comparable to original
DNR and NR counterparts, while dramatically reducing the
computational complexity at runtime. Tables 6 and 7, report
for MNIST and CIFAR10 datasets respectively, the number of
prototypes employed in each detector component along with the
estimated prototypes reduction rate for FADER-based defenses.

7

0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0
dmax

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

White-box evasion attack (MNIST)

DNN
NR
NR-RBF
DNR
DNR-RBF

0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0
dmax

0.0

0.2

0.4

0.6

0.8

Re
je

ct
io

n
ra

te

0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0
dmax

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Black-box evasion attack (MNIST)

NR
NR-RBF
DNR
DNR-RBF

0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0
dmax

0.2

0.4

0.6

0.8

Re
je

ct
io

n
ra

te

Figure 4: Security evaluation curves for MNIST data, under white-box (top)
and black-box (bottom) settings. Mean accuracy at increasing `2-norm pertur-
bation size is reported in the top subplots, while the bottom subplots show the
corresponding rejection rates.

Notably, up to 73× prototypes reduction rate can be achieved
for NR and 20× for DNR without performance drops on both
natural and adversarial data for MNIST dataset. For CIFAR10
dataset, faster NR (up to 50× prototypes reduction rate) and
DNR (28× prototype reduction rate) are obtained employing
FADER with no performance drops on both clean and adver-
sarial data.

Detector # prototypes Accuracy

relu2 relu3 relu4 combiner total reduction

NR - - 736 - 736 - 0.984
NR-RBF - - 10 - 10 ∼ 73× 0.985

DNR 2304 2375 736 9152 11527 - 0.961
DNR-RBF 250 250 50 10 560 ∼ 20× 0.989

Table 6: Comparison of the number of prototypes used by each component of
the rejection-based defense architectures (FADER in bold) on MNIST dataset.
We also report the mean accuracy of each detector at ε = 0.

0.0 0.05 0.1 0.2 0.4 1.0 2.0
dmax

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

White-box evasion attack (CIFAR10)

DNN
NR
NR-RBF
DNR
DNR-RBF

0.0 0.05 0.1 0.2 0.4 1.0 2.0
dmax

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
je

ct
io

n
ra

te

0.0 0.05 0.1 0.2 0.4 1.0 2.0
dmax

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Black-box evasion attack (CIFAR10)

NR
NR-RBF
DNR
DNR-RBF

0.0 0.05 0.1 0.2 0.4 1.0 2.0
dmax

0.1

0.2

0.3

0.4

Re
je

ct
io

n
ra

te

Figure 5: Security evaluation curves for CIFAR10 data, under white-box (top)
and black-box (bottom) settings. Mean accuracy at increasing `2-norm pertur-
bation size is reported in the top subplots, while the bottom subplots show the
corresponding rejection rates.

Detector # prototypes Accuracy

relu2 relu3 relu4 combiner total reduction

NR - - 5257 - 5275 - 0.915
NR-RBF - - 100 - 100 ∼ 50× 0.911

DNR 7198 3100 5257 10000 25555 - 0.913
DNR-RBF 500 300 100 100 900 ∼ 28× 0.892

Table 7: Comparison of the number of prototypes used by each component
of the rejection-based defense architectures (FADER in bold) on CIFAR10
dataset. We also report the mean accuracy of each detector at ε = 0.

6. Related Work

The problem of reactively or proactively countering adver-
sarial attacks is far from being new. The first adversary-aware
classification algorithm against evasion attacks has been pro-
posed in 2004, which is based on simulating attacks and itera-

8

tively retraining the classifier on them [48]. More recently, sim-
ilar techniques took the name of adversarial training and were
employed to counter adversarial examples in DNNs [12, 13], or
to harden decision trees and random forests [49].

As retraining-based techniques are founded on heuristics,
with no formal guarantees on convergence and robustness prop-
erties, more structured approaches rely on game theory. Zero-
sum games learn invariant transformations like feature inser-
tion, deletion and rescaling [50, 51, 52]. Also, other works
introduced Nash and Stackelberg games for secure learning,
deriving formal conditions for existence and uniqueness of the
game equilibrium, under the assumption that each player knows
everything about the opponents and the game [53, 54], or by
randomizing players [55] and uncertainty on the players’ strate-
gies [56]. Regrettably, however, machine learning in adversar-
ial scenarios is not a board game with well-defined rules, thus
understanding the extent to which the resulting attack strategies
are representative of practical scenarios remains an open issue
[57, 58]. Also, the scalability of these methods to large datasets
and high-dimensional feature spaces is in doubt, as it may be
too computationally costly to generate a sufficient number of
attack samples to correctly represent their distribution.

Another line of research on adversarial defenses takes the
name of robust optimization. It formulates machine learning in
adversarial settings as a min-max problem in which the inner
problem maximizes the training loss by manipulating the train-
ing points under worst-case, bounded perturbations, while the
outer problem minimizes the corresponding worst-case training
loss [13, 59]. A direct result derived from these techniques is
the equivalence between regularized learning problems and ro-
bust optimization, which has enabled approximating computa-
tionally demanding secure learning models, like the aforemen-
tioned ones based on game theory, with more efficient strategies
based on regularizing the objective function in a specific man-
ner [60]. The main effect of these methods is to smooth out the
decision function of the classifier reducing the norm of the input
gradients, making it less sensitive to worst-case input changes.
To achieve this, few works proposed to improve the so-called
evenness of the classifier’s parameters [61, 62, 63].

7. Conclusions and Future Work

In this work, we presented FADER (Fast Adversarial Ex-
ample Rejection), a technique to speedup rejection-based de-
fenses against adversarial examples. FADER exploits RBF net-
works to control the number of reference prototypes required
for predictions, resulting in accuracy vs. detection time effi-
ciency gain. In our experiments, we demonstrated a 73× proto-
types reduction with respect to analyzed detectors for MNIST
dataset, and up to an 80× prototypes reduction for CIFAR10
image recognition task, while maintaining comparable perfor-
mance on both clean and adversarial data. This can have a
strong impact on real-world scenarios involving adversarial ex-
amples detection on low capability (e.g., edge) devices.

We further provided a comprehensive review of multiple
detector-based adversarial detection techniques from the liter-
ature, framing them in the form of a proposed adversarial ex-

amples detection framework designed to accommodate both ex-
isting and newer methods to come (Section 2). To demonstrate
this, we could frame FADER as well as existing detector meth-
ods in literature in terms of our framework easily.

To properly evaluate FADER’s response to adversarial at-
tacks, we designed a novel attack algorithm that takes into ac-
count the defense to not overestimate performances under at-
tack (see Section 4). Experimental results on different image
classification tasks highlight FADER-based defenses as more
efficient solutions than original ones in terms of required pro-
totypes, while maintaining comparable performances both on
clean data and under attack.

As future work, we aim to improve FADER performance
under attack by employing proper input gradient regularization
[60, 64] and to test novel FADER architectural variants to fur-
ther reduce detectors computational overhead.

Acknowledgements

This work has been partially supported by the PRIN 2017
project RexLearn (grant no. 2017TWNMH2), funded by the
Italian Ministry of Education, University and Research; and by
BMK, BMDW, and the Province of Upper Austria in the frame
of the COMET Programme managed by FFG in the COMET
Module S3AI.

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Im-
age Recognition, in: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016. doi:10.1109/CVPR.2016.90.
arXiv:1512.03385.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in Neural
Information Processing Systems, 2017.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Mas-
tering the game of Go with deep neural networks and tree search, Nature
(2016).

[4] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
K. Zieba, End to end learning for self-driving cars, CoRR abs/1604.07316
(2016).

[5] D. Gibert, C. Mateu, J. Planes, The rise of machine learning for detec-
tion and classification of malware: Research developments, trends and
challenges, Journal of Network and Computer Applications 153 (2020)
102526.

[6] L. R. Carlos-Roca, I. H. Torres, C. F. Tena, Facial recognition application
for border control, in: 2018 International Joint Conference on Neural Net-
works (IJCNN), 2018, pp. 1–7. doi:10.1109/IJCNN.2018.8489113.

[7] A. R. Vaka, B. Soni, S. R. K., Breast cancer detection by leveraging
machine learning, ICT Express (2020).

[8] L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein, J. D. Tygar, Adversar-
ial machine learning, in: 4th ACM Workshop on Artificial Intelligence
and Security (AISec 2011), Chicago, IL, USA, 2011, pp. 43–57.

[9] B. Biggio, F. Roli, Wild patterns: Ten years after the rise of adversarial
machine learning, Pattern Recognition 84 (2018) 317–331.

[10] B. Biggio, B. Nelson, P. Laskov, Poisoning attacks against support vector
machines, in: J. Langford, J. Pineau (Eds.), 29th Int’l Conf. on Machine
Learning, Omnipress, 2012, pp. 1807–1814.

9

http://dx.doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1109/IJCNN.2018.8489113

[11] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Gi-
acinto, F. Roli, Evasion attacks against machine learning at test time, in:
H. Blockeel, K. Kersting, S. Nijssen, F. Železný (Eds.), Machine Learning
and Knowledge Discovery in Databases (ECML PKDD), Part III, volume
8190 of LNCS, Springer Berlin Heidelberg, 2013, pp. 387–402.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
R. Fergus, Intriguing properties of neural networks, in: International
Conference on Learning Representations, 2014. URL: http://arxiv.
org/abs/1312.6199.

[13] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing ad-
versarial examples, in: International Conference on Learning Represen-
tations, 2015.

[14] R. Feinman, R. R. Curtin, S. Shintre, A. B. Gardner, Detecting adversarial
samples from artifacts, arXiv preprint arXiv:1703.00410 (2017).

[15] M. Melis, A. Demontis, B. Biggio, G. Brown, G. Fumera, F. Roli, Is
deep learning safe for robot vision? Adversarial examples against the
iCub humanoid, in: ICCVW Vision in Practice on Autonomous Robots
(ViPAR), IEEE, 2017, pp. 751–759.

[16] A. Sotgiu, A. Demontis, M. Melis, B. Biggio, G. Fumera, X. Feng,
F. Roli, Deep neural rejection against adversarial examples, EURASIP J.
Information Security 2020 (2020).

[17] N. Papernot, P. McDaniel, Deep k-Nearest Neighbors: Towards Confi-
dent, Interpretable and Robust Deep Learning (2018).

[18] D. Meng, H. Chen, MagNet: a two-pronged defense against adversarial
examples, in: 24th ACM Conf. Computer and Comm. Sec. (CCS), 2017.

[19] F. Crecchi, D. Bacciu, B. Biggio, Detecting adversarial examples through
nonlinear dimensionality reduction, in: ESANN ’19, 2019.

[20] A. Lamb, J. Binas, A. Goyal, D. Serdyuk, S. Subramanian, I. Mitliagkas,
Y. Bengio, Fortified Networks: Improving the Robustness of Deep Net-
works by Modeling the Manifold of Hidden Representations (2018).

[21] P. Samangouei, M. Kabkab, R. Chellappa, Defense-gan: Protecting clas-
sifiers against adversarial attacks using generative models, arXiv preprint
arXiv:1805.06605 (2018).

[22] N. Papernot, P. D. McDaniel, I. J. Goodfellow, Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples, ArXiv e-prints abs/1605.07277 (2016).

[23] J. H. Metzen, T. Genewein, V. Fischer, B. Bischoff, On detecting
adversarial perturbations, in: 5th International Conference on Learn-
ing Representations, ICLR 2017 - Conference Track Proceedings, 2017.
arXiv:1702.04267.

[24] L. Van Der Maaten, G. Hinton, Visualizing Data using t-SNE, Tech-
nical Report, 2008. URL: http://www.jmlr.org/papers/volume9/
vandermaaten08a/vandermaaten08a.pdf.

[25] D. H. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241–
259.

[26] C. Saunders, A. Gammerman, V. Vovk, Transduction with confidence
and credibility, in: IJCAI International Joint Conference on Artificial
Intelligence, 1999.

[27] V. Vovk, A. Gammerman, C. Saunders, Machine-learning applications of
algorithmic randomness, in: Proceedings of the Sixteenth International
Conference on Machine Learning, ICML ’99, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1999, p. 444–453.

[28] G. Shafer, V. Vovk, A tutorial on conformal prediction, Journal of Ma-
chine Learning Research (2008).

[29] N. Carlini, D. A. Wagner, Adversarial examples are not easily detected:
Bypassing ten detection methods, in: B. M. Thuraisingham, B. Biggio,
D. M. Freeman, B. Miller, A. Sinha (Eds.), 10th ACM Workshop on Ar-
tificial Intelligence and Security, AISec ’17, ACM, New York, NY, USA,
2017, pp. 3–14.

[30] A. Athalye, N. Carlini, D. A. Wagner, Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,
in: ICML, volume 80 of JMLR Workshop and Conference Proceedings,
JMLR.org, 2018, pp. 274–283.

[31] D. Meng, H. Chen, MagNet: a Two-Pronged Defense against Adversarial
Examples (2017).

[32] L. De Alfaro, Neural Networks with Structural Resistance to Adver-
sarial Attacks, Technical Report, 2018. URL: https://github.com/
lucadealfaro/rbfi. arXiv:1809.09262v1.

[33] P. Habib Zadeh, R. Hosseini, S. Sra, Deep-RBF Networks Revis-
ited: Robust Classification with Rejection, Technical Report, ????
arXiv:1812.03190v1.

[34] J. Chenou, G. Hsieh, T. Fields, Radial basis function network: Its robust-
ness and ability to mitigate adversarial examples, in: Proceedings - 6th
Annual Conference on Computational Science and Computational Intel-
ligence, CSCI 2019, Institute of Electrical and Electronics Engineers Inc.,
2019, pp. 102–106. doi:10.1109/CSCI49370.2019.00024.

[35] A. Bendale, T. E. Boult, Towards open set deep networks, in: IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016, pp. 1563–
1572.

[36] W. J. Scheirer, A. Rocha, R. Michaels, T. E. Boult, Meta-recognition: The
theory and practice of recognition score analysis, IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 33 (2011) 1689–1695.

[37] M. Melis, L. Piras, B. Biggio, G. Giacinto, G. Fumera, F. Roli, Fast image
classification with reduced multiclass support vector machines, in: Image
Analysis and Processing—ICIAP 2015, Springer, 2015, pp. 78–88.

[38] J. Lu, T. Issaranon, D. Forsyth, Safetynet: Detecting and rejecting ad-
versarial examples robustly, in: The IEEE International Conference on
Computer Vision (ICCV), 2017.

[39] N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami, Distillation as a
defense to adversarial perturbations against deep neural networks, in:
2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 582–597.
doi:10.1109/SP.2016.41.

[40] N. Carlini, D. A. Wagner, Towards evaluating the robustness of neural
networks, in: IEEE Symposium on Security and Privacy, IEEE Computer
Society, 2017, pp. 39–57.

[41] P. Russu, A. Demontis, B. Biggio, G. Fumera, F. Roli, Secure kernel
machines against evasion attacks, in: 9th ACM Workshop on Artificial
Intelligence and Security, AISec ’16, ACM, New York, NY, USA, 2016,
pp. 59–69.

[42] M. Melis, D. Maiorca, B. Biggio, G. Giacinto, F. Roli, Explaining black-
box android malware detection, in: 26th European Signal Processing
Conf., EUSIPCO, IEEE, Rome, Italy, 2018, pp. 524–528.

[43] B. Biggio, G. Fumera, F. Roli, Security evaluation of pattern classifiers
under attack, IEEE Transactions on Knowledge and Data Engineering 26
(2014) 984–996.

[44] J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections
onto the l1-ball for learning in high dimensions, in: Proceedings of the
25th International Conference on Machine Learning, ICML ’08, ACM,
New York, NY, USA, 2008, pp. 272–279.

[45] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea,
C. Nita-Rotaru, F. Roli, Why do adversarial attacks transfer? Explaining
transferability of evasion and poisoning attacks, in: 28th USENIX Secu-
rity Symposium (USENIX Security 19), USENIX Association, 2019.

[46] M. Melis, A. Demontis, M. Pintor, A. Sotgiu, B. Biggio, secml: A Python
Library for Secure and Explainable Machine Learning (2019).

[47] N. Carlini, D. Wagner, Adversarial examples are not easily detected: By-
passing ten detection methods, in: Proceedings of the 10th ACM Work-
shop on Artificial Intelligence and Security, 2017, pp. 3–14.

[48] N. Dalvi, P. Domingos, S. Sanghai, D. Verma, Adversarial classification,
in: Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2004, pp. 99–108.

[49] A. Kantchelian, J. D. Tygar, A. D. Joseph, Evasion and hardening of tree
ensemble classifiers, in: 33rd ICML, volume 48 of JMLR Workshop and
Conference Proceedings, JMLR.org, 2016, pp. 2387–2396.

[50] A. Globerson, S. T. Roweis, Nightmare at test time: robust learning by
feature deletion, in: W. W. Cohen, A. Moore (Eds.), Proceedings of the
23rd International Conference on Machine Learning, volume 148, ACM,
2006, pp. 353–360.

[51] C. H. Teo, A. Globerson, S. Roweis, A. Smola, Convex learning with
invariances, in: J. Platt, D. Koller, Y. Singer, S. Roweis (Eds.), Advances
in Neural Information Processing Systems 20, MIT Press, Cambridge,
MA, 2008, pp. 1489–1496.

[52] O. Dekel, O. Shamir, L. Xiao, Learning to classify with missing and cor-
rupted features, Machine Learning 81 (2010) 149–178. 10.1007/s10994-
009-5124-8.

[53] M. Brückner, C. Kanzow, T. Scheffer, Static prediction games for adver-
sarial learning problems, J. Mach. Learn. Res. 13 (2012) 2617–2654.

[54] W. Liu, S. Chawla, Mining adversarial patterns via regularized loss min-
imization., Machine Learning 81 (2010) 69–83.

[55] S. Rota Bulò, B. Biggio, I. Pillai, M. Pelillo, F. Roli, Randomized pre-
diction games for adversarial machine learning, IEEE Transactions on
Neural Networks and Learning Systems 28 (2017) 2466–2478.

10

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1702.04267
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://github.com/lucadealfaro/rbfi.
https://github.com/lucadealfaro/rbfi.
http://arxiv.org/abs/1809.09262v1
http://arxiv.org/abs/1812.03190v1
http://dx.doi.org/10.1109/CSCI49370.2019.00024
http://dx.doi.org/10.1109/SP.2016.41

[56] M. Großhans, C. Sawade, M. Brückner, T. Scheffer, Bayesian games
for adversarial regression problems, in: Journal of Machine Learning
Research - Proc. 30th International Conference on Machine Learning
(ICML), volume 28, 2013, pp. 55–63.

[57] M. Wooldridge, Does game theory work?, Intelligent Systems, IEEE 27
(2012) 76–80.

[58] G. Cybenko, C. E. Landwehr, Security analytics and measurements, IEEE
Security & Privacy 10 (2012) 5–8.

[59] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep
learning models resistant to adversarial attacks, in: International Confer-
ence on Learning Representations, 2018.

[60] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, F. Roli, Yes, machine learning can be more se-
cure! a case study on android malware detection, IEEE Transactions on
Dependable and Secure Computing 16 (2019) 711–724.

[61] A. Kolcz, C. H. Teo, Feature weighting for improved classifier robustness,
in: Sixth Conference on Email and Anti-Spam (CEAS), Mountain View,
CA, USA, 2009.

[62] B. Biggio, G. Fumera, F. Roli, Multiple classifier systems for robust
classifier design in adversarial environments, Int’l J. Mach. Learn. and
Cybernetics 1 (2010) 27–41.

[63] M. Melis, M. Scalas, A. Demontis, D. Maiorca, B. Biggio, G. Giacinto,
F. Roli, Do gradient-based explanations tell anything about adversarial
robustness to android malware?, arXiv preprint arXiv:2005.01452 (2020).

[64] C.-J. Simon-Gabriel, Y. Ollivier, L. Bottou, B. Schölkopf, D. Lopez-
Paz, First-order adversarial vulnerability of neural networks and input
dimension, volume 97 of Proceedings of Machine Learning Research,
PMLR, Long Beach, California, USA, 2019, pp. 5809–5817. URL:
http://proceedings.mlr.press/v97/simon-gabriel19a.html.

11

http://proceedings.mlr.press/v97/simon-gabriel19a.html

	1 Introduction
	2 Adversarial Examples Detection Framework
	2.1 Neural Reject
	2.2 Kernel Density Estimation
	2.3 DNN Binary Classifier
	2.4 Dimensionality Reduction
	2.5 Deep Neural Reject
	2.6 Deep k-Nearest Neighbour
	2.7 Generative Models

	3 Fast Adversarial Example Rejection
	3.1 FADER

	4 Adversarial Robustness Evaluation
	5 Experimental analysis
	5.1 Experimental setup
	5.2 Experimental results

	6 Related Work
	7 Conclusions and Future Work

