
DBC-Forest: Deep forest with binning confidence screening

Pengfei Maa, Youxi Wua,b,∗, Yan Lic, Lei Guod, Zhao Lie

aSchool of Artificial Intelligence, Hebei University of Technology,Tianjing, 300401, China
bHebei Key Laboratory of Big Data Computing,Tianjing, 300401, China

cSchool of Economics and Management, Hebei University of Technology,Tianjing, 300401, China
dState Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology,Tianjing, 300401, China

eAlibaba Group,Hangzhou, 310000, Zhejiang Province, China

Abstract

As a deep learning model, deep confidence screening forest (gcForestcs) has achieved great success in various applications. Com-
pared with the traditional deep forest approach, gcForestcs effectively reduces the high time cost by passing some instances in the
high-confidence region directly to the final stage. However, there is a group of instances with low accuracy in the high-confidence
region, which are called mis-partitioned instances. To find these mis-partitioned instances, this paper proposes a deep binning
confidence screening forest (DBC-Forest) model, which packs all instances into bins based on their confidences. In this way, more
accurate instances can be passed to the final stage, and the performance is improved. Experimental results show that DBC-Forest
achieves highly accurate predictions for the same hyperparameters and is faster than other similar models to achieve the same
accuracy.

Keywords: deep learning; deep forest; confidence screening; binning strategy

1. Introduction

As an important field of artificial intelligence, deep learn-
ing has become a topic of research interest in various domains
[1, 2, 3]. Deep neural networks (DNNs) [4] has better perfor-
mance than traditional learning models [5, 6, 7], and rely on
two main concepts: firstly, representation learning via layer-by-
layer processing is used to extract effective features, and sec-
ondly, in-model feature transformation such as via a convolu-
tional neural network (CNN) is exploited for its powerful abil-
ity to express the relationship between the original features and
the transformed features [8, 9]. Since DNNs are differentiable
models, the key aspect of this method is parameter adjustment
by backpropagation [10]. However, one of the disadvantages of
DNNs is that there are too many hyperparameters, all of which
need to be set manually for different datasets. More impor-
tantly, some schemes give better performance than DNNs for
certain applications [11, 12], such as XGBoost [13, 14] or ran-
dom forest [15]. For example, in the data science competitions
run by Kaggle, models based on decision trees have achieved
better results than DNNs.

To tackle these issues, Zhou and Feng [16] proposed a novel
deep learning model named gcForest, which was based on de-
cision trees. gcForest utilizes two important characteristics of
DNNs: representation learning and in-model feature transfor-
mation. First, gcForest applies the classical machine learning
method of the decision tree, thus realizing the function of layer-
by-layer processing. Next, it adopts multi-grained scanning,

∗Corresponding author
Email address: wuc567@163.com (Youxi Wu)

which is effective for processing instances with high numbers
of dimensions and spatial or sequential relationships between
features [17]. Unlike DNN, gcForest is a non-differentiable
model that does not require backpropagation training, and it
also has fewer parameters. More importantly, gcForest is ro-
bust to hyperparameter settings, which means that users can
obtain excellent performance on many datasets by using the
default hyperparameters. A large number of numerical ex-
perimental results show that gcForest gives better performance
than DNNs for the default hyperparameters [16], and gcForest
has therefore been applied in many fields. For example, Ren
et al. [18] proposed a deep forest algorithm for multiple in-
stance learning, which achieved superior performance. Yang et
al. [19] proposed a multi-label learning deep forest technique,
which employed measure-aware feature reuse and layer growth
to solve a multi-label learning problem. Utkin et al. [20] pro-
posed a novel model called adaptive weighted deep forest, in
which each training instance was given a weight at each cas-
cade level of the model. Recently, gcForest has been applied
in the classification of schizophrenia data [21], disease classifi-
cation [22] and cancer detection [23, 24, 25]. gcForest has not
only achieved great success in the medical field, but has also
been applied in other domains such as remote sensing [26, 27],
facial age estimation [28] and EEG processing [29].

The experimental results show that a model with more grains
and a larger number of forests can achieve better accuracy.
However, the actual results of the application are not ideal due
to the constraints of time costs. There are two main reasons for
this phenomenon: firstly, gcForest passes all instances through
all levels of the cascade; and secondly, multi-grained scanning
typically converts one (original) instance into hundreds or even

Preprint submitted to Neurocomputing December 28, 2021

ar
X

iv
:2

11
2.

13
18

2v
1

 [
cs

.L
G

]
 2

5
D

ec
 2

02
1

thousands of new instances, producing a high-dimensional in-
put for the cascade structure. To address these issues, Pang et
al. [30] proposed a model called gcForestcs with a confidence
screening mechanism, the principle of which is as follows. At
each cascade level, each instance is screened using a threshold
based on confidence. If the confidence of an instance is larger
than the threshold, the final prediction of the instance can be
obtained at the current level; otherwise, the results will con-
tinue to be input to the next level for training to achieve better
performance. The framework of gcForestcs is shown in Figure
1.

Figure 1: The framework of gcForestcs.

gcForestcs gives better performance in terms of training time
than the original model on many datasets, and especially high-
dimensional datasets such as those seen in image processing ap-
plications. However, gcForestcs relies more on the adjustment
of hyperparameters than the original model, meaning that it has
poorer prediction accuracy than the original model on many
datasets when the default hyperparameters are used. The reason
for this is that there is a group of instances with low accuracy in
the high-confidence region, which refer to mis-partitioned in-
stances. To address this issue, this paper proposes an algorithm
called deep binning confidence screening forest, which adopts
a strategy in which instances are binned based on their confi-
dences. In this way, mis-partitioned instances can be detected.
Our experiments show that for the same training hyperparame-
ters, the DBC-Forest model gives better accuracy than gcForest
and gcForestcs. More importantly, to achieve the same accu-
racy, DBC-Forest model is faster than the other models.

The rest of the paper is organized as follows. Section 2
briefly reviews the method used to produce the threshold in gc-
Forestcs. Section 3 introduces the DBC-Forest model. Section
4 verifies the performance of this model on different datasets,
and Section 5 summarises the contributions of this paper.

2. Producing threshold of gcForestcs

The confidence value, generated by the 3-fold cross-
validation at each level, is used as a criterion to divide the data
into two subsets in gcForestcs, and is the maximum value in
the estimated class vector for the instance. For example, in a
three-class classification problem, each level outputs a three-
dimensional estimated class vector. If an estimated class vec-
tor is (0.6, 0.3, 0.1), then the confidence is 0.6. Each level
of the cascade structure will generate a confidence value for

each instance. If a certain level has n instances, we obtain
(M1, M2, . . . Mn) confidences. The confidence Pi of the i-th
(1 ≤ i ≤ n) instance Mi is:

Pi = max(Mix1, Mix2, . . . Mixc) (1)

where Mixc is the c-th estimated class of Mi. gcForestcs cal-
culates the confidences of all the training instances, and sorts
them in descending order based on their values.

(P1, P2, . . . Pn) = sort


max(M1x1, M1x2, . . . M1xc)

...
max(Mnx1, Mnx2, . . . Mnxc)

(2)

The threshold calculation in gcForestcs can be divided into
two parts: ranking the instances and producing the threshold.
The ranking of instances (A1, A2, . . . An) can be obtained by
ranking the confidences (P1, P2, . . . Pn). The production of
threshold Gate needs to calculate the accuracy of the regional
instances. This region is obtained based on the confidence rank-
ing of the instances. The upper bound of the region is the in-
stance with the highest confidence, A1, and the lower bound
slides from An to A1. gcForestcs calculates the accuracy of the
region and compares it with the target accuracy T A.

Gate = min{Pk |Lk > T A, k ∈ [1, n]} (3)

where Lk = 1
k
∑k

i=1 1[p(Ai) = yi] is the accuracy of the instances
(A1, A2, . . . Ak).

If the accuracy of Lk is no less than T A, the confidence Pk of
Ak is used as the threshold to divide all of the instances into two
subsets: a high-confidence region Y , and a low-confidence re-
gion N. The method used to calculate the threshold and process
the division of instances is shown in Figure 2.

Figure 2: Threshold calculation and instance division processing: gcForestcs
calculates the accuracy of the instances in the brown box region. Y and N are
the high-confidence and low-confidence regions, respectively.

3. DBC-Forest

Section 3.1 describes the weakness of the method of produc-
ing the threshold in gcForestcs. The DBC-Forest approach used
to find mis-partitioned instances is presented in Section 3.2, in
which a binning strategy is employed to identify the threshold.

2

3.1. Mis-partitioned Instances

The method of producing the threshold in gcForestcs suffers
from the issue of mis-partitioned instances. An illustrative ex-
ample is given below.

Example 1. Suppose there are 12 instances, as shown in Fig-
ure 3. The confidences are sorted in descending order. Of these,
the predictions for instances 1, 2, 3, 4, 7 and 10 are correct, and
the others are incorrect. Suppose the target accuracy T A is 70%.
Since the accuracy of the high confidence region is 5/7 = 71.4%,
gcForestcs selects the confidence of instance 7 as the threshold.
However, instances 5 and 6 are mis-partitioned, since they are
incorrectly allocated to the high-confidence region.

Figure 3: The result of threshold calculation according to gcForestcs. If
T A=70%, gcForestcs will select the confidence of instance 7 as the threshold,
and instances 5 and 6 will be mis-partitioned.

Obviously, if the mis-partitioning of instances can be
avoided, the prediction performance will be improved. Sec-
tion 3.2 presents DBC-Forest, in which the threshold calcula-
tion method is improved.

3.2. DBC-Forest

The general framework of DBC-Forest is the same as that of
gcForestcs, as shown in Figure 1. The difference between the
two methods is that they adopt different strategies for producing
the threshold. We now introduce the principle used to produce
the threshold in DBC-Forest, which applies the following five
steps to screen the instances at each level.

Step 1: Rank the confidences to obtain (A1, A2, . . . An). This
step is similar to the first step of gcForestcs.

Step 2: Set the bins b1, b2, . . . bk and place the instances
(A1, A2, . . . An) into the bins. Of these, instances A1, A2, . . . ,
and An/k with the highest confidence are put into b1, and the
following n/k instances are put into b2. Finally, the last n/k
instances with the lowest confidence are put into bk. Thus, each
bin bt(1 6 t 6 k) can be obtained according to Equation (4).

(A(n
k)×(t−1)+1, A(n

k)×(t−1)+2, . . . A(n
k)×t) ∈ bt (4)

For clarification, an example is shown in Figure 4.
Step 3: Calculate the accuracy of the n/k instances for each

bin. The accuracy of bin Pbt(1 6 t 6 k) is the average accuracy
of the instances in its bin, which can be calculated according to
Equation (5):

Pbt =

∑n× t
k

i= n
k ×(t−1)+1 1[p(Ai) = yi]

n/k
(5)

Figure 4: Binning process. For clarification, we set k=100.

where p(Ai) and yi are the prediction and label of instance Ai
, respectively. In this way, we can obtain the accuracies of all
bins (Pb1, Pb2, . . . Pbk), which are stored in (b1, b2, . . . bk)

Step 4: Produce the threshold Gate according to T A. In
DBC-Forest, the accuracy of each bin is compared with T A
from 1 to k, and the bin whose accuracy is less than T A is found.
If Pb(j+1) ≤ T A, then the threshold Gate is the confidence of in-
stance A(b× j/k).

Step 5: Obtain the final result based on Gate. If the confi-
dence of the instance is larger than Gate, DBC-Forest will use
the prediction of the current level as the final result Fi, as shown
in Equation (6); otherwise, the instance goes to the next level.

Fi = {pre(Ai)|Pi > Gate} (6)

where pre(Ai) denotes the prediction of Ai.
Example 2 illustrates the principle used to produce the

threshold in DBC-Forest.
Example 2. In this example, we use the same 12 instances

as in Figure 3, and set T A=70%. When the size of bins is two,
there are six bins, as shown in Figure 5. We know that the
accuracy of bin III is zero, which is less than T A. Hence, the
confidence of instance 4 in bin II is selected as the threshold in
DBC-Forest.

Figure 5: The result of threshold calculation in DBC-Forest. If T A=70%, DBC-
Forest selects the confidence of instance 4 as the threshold.

level

Compared with gcForestcs, the advantage of DBC-Forest
is that it can exactly generate the threshold and avoid mis-
partitioned instances. But, it is worth noting that only in the
case of unlimited depth of decision tree, the accuracies of all
training instances are 100%. In this case, the thresholds of both
DBC-Forest and gcForestcs are 1, and the models of DBC-
Forest and gcForestcs are the same. This case can only hap-
pen when the dataset has few instances, since the confidence of

3

each instance is generated by the 3-fold cross-validation at each
level.The frame of DBC-Forest is shown in Figure 6.

4. Experiments

The goal of these experiments is to demonstrate that DBC-
Forest can achieve better accuracy than other competitive mod-
els for the same hyperparameters, and that the training time
is less than other models to achieve the same accuracy. Sec-
tion 4.1 introduces the experimental environment and bench-
mark datasets. Section 4.2 explains the baseline methods and
developed six research questions. Section 4.3 shows the influ-
ence of the size of bins. Section 4.4 reports the performance
in terms of accuracy. Section 4.5 compares the thresholds of
DBC-Forest and gcForestcs. Section 4.6 describes the perfor-
mance of the algorithm in terms of robustness. Section 4.7 an-
alyzes the efficiency of the binning confidence screening. Sec-
tion 4.8 presents the performance in terms of training time.

4.1. Experimental environment and benchmark datasets

Hardware: In all experiments, we use a machine with
2×2.20 GHz CPUs (10 cores) and 128 GB main memory.

Hyperparameter Settings: To ensure a fair comparison, gc-
Forest, gcForestcs and DBC-Forest use the same hyperparam-
eters as follows. Cascade structure: Each level has a random
forest and a completely random forest. The number of decision
trees in the two forests is 50. The number of cascade levels
stops increasing when the current level can not improve the ac-
curacy of the previous level for DBC-Forest, gcForestcs and
gcForest, which can effectively reduce the time cost and com-
plexity of the model. For gcForestcs and DBC-Forest, T A is set
to decrease the error rate by 1/2, and the size of the bin use in
DBC-Forest is 100. For multi-grained scanning, the three win-
dow sizes are [d/4], [d/6] and [d/8], and the number of decision
trees is 30. Multi-grained scanning can generate more features,
which can highlight the efficiency of confidence and binning
confidence scanning.

Evaluation metrics: In all experiments, we adopt the pre-
dictive accuracy as the classification performance measurement
that is the most suitable for these balanced datasets. The train-
ing time is used to evaluate the efficiency. For fairness, we
select the 5-fold cross-validation to verify the performance of
DBC-Forest in all experiments.

Datasets: All of the datasets used in the experiments to ver-
ify the performance of DBC-Forest are representative datasets.
MNIST, DIGITS, EMNIST [31] and FASHION-MNIST [32]
are high-dimensional datasets that require multi-grained scan-
ning. ADULT, BANK, YEAST, LETTER and IMDB are low-
dimensional datasets which do not require multi-grained scan-
ning.The IRIS is a dataset with few instances, which is used
to verify the test performance of the proposed model when the
confidence of each instance is 1.

4.2. Baseline methods and reaserch questions

To validate the performance of DBC-Forest, six methods are
used. The principles of them are described as follows.

Table 1: Description of datasets

Name Train Test D L
MNIST 56,000 14,000 784 10
DIGITS 1,437 360 64 10
EMNIST 105,280 26,320 784 10

FASHION-MNIST 56,000 14,000 784 10
ADULT 39,074 9,768 14 2

BANK(BANK MARKETING) 32,950 8,238 20 2
YEAST 1,187 297 8 10
LETTER 16,000 4,000 16 26

IMDB 40,000 10,000 5,000 2
IRIS 120 30 4 3

XGBoost: XGBoost [13], as an ensemble learning algorithm
improved by GBDT, introduces a regularized objective, and im-
proves the loss function.

LightGBM: LightGBM [33] is a novel GBDT algorithm,
which contains two mechanisms: gradient-based one-side sam-
pling and exclusive feature bundling to deal with large number
of data instances and large number of features, respectively.

mgrForest: mgrForest [34] is a multi-dimensional multi-
grained residual forest algorithm, which maps feature vectors
to higher levels for prediction.

AWDF: AWDF [20] is an improved deep forest method,
which adopts the adaptive weight of every training instance at
each cascade level.

gcForest: gcForest adopts multi-grained scanning and a cas-
cade structure. Multi-grained uses a high-dimensional data cas-
cade structure via layer-by-layer to output finally prediction.

gcForestcs: gcForestcs is an improved deep forest method.
At each level, a threshold is automatically generated to screen
the instances to reduce the time cost.

To validate the performance of DBC-Forest, we developed
the following six research questions (RQ).

RQ 1: What the influence of size of bin has on the perfor-
mance of the DBC-Forest?

RQ 2: Compared with state-of-the-art alternatives, what is
the performance of DBC-Forest?

RQ 3: What is the difference between the thresholds in gc-
Forestcs and DBC-Forest?

RQ 4: How does DBC-Forest performance under different
hyperparameters?

RQ 5: Compared with gcForest, what is the effect of DBC-
Forest at each level?

RQ 6: How is the running time of DBC-Forest?
To answer RQ 1, we adopted some different sizes of bin to

validate the performance of DBC-Forest in Section 4.3. To ad-
dress RQ2, we compared the performance of XGBoost, Light-
GBM, mgrForest, AWDF, gcForest, gcForestcs, and DBC-
Forest in Section 4.4. In response to RQ3, we explored the
thresholds used in the binning confidence screening mechanism
and confidence screening confidence mechanism to show differ-
ent in Section 4.5. For RQ 4, we set general hyperparameters
to compare the performance of gcForest, gcForestcs, and DBC-
Forest in Section 4.6. To answer RQ 5, we compared the accu-
racy and the number of instances between gcForest and DBC-
Forest at each level in Section 4.7. To address RQ 6, we com-

4

Figure 6: The framework of DBC-Forest

pared the time cost of gcForest, gcForestcs, and DBC-Forest
under achieving similar accuracy in Section 4.8.

4.3. Influence of size of bins
In this subsection, to report the influence of the size of

bins on the model performance, we conduct experiments on
FASHION-MNIST, BANK, LETTER and IMDB datasets. We
use the size of bins varying from 10 to 140 to validate the per-
formance of DBC-Forest.

(a) On FASHION-MNIST dataset (b) On BANK dataset

(c) On LETTER dataset (d) On IMDB dataset

Figure 7: Influence of size of bins

Experiments show that the model performance varies with
the size of bins, but the fluctuations are small. For example,
as Figure 7 (a) shows, the difference between the lowest accu-
racy and the highest accuracy is only 0.64%. More importantly,
when the size of bins is 100, the accuracy reaches the best accu-
racy 90.42%, and the same phenomenon can be found on other
datasets. Hence, the size of bins is selected 100 in the rest ex-
periments.

4.4. Accuracy

In this section, we compare the performance of DBC-Forest
with other classical methods in terms of accuracy. The hyper-
parameters of XGBoost are the max depth and learning rate,
which are 3 and 0.1, respectively. The hyperparameters of
LightGBM are the learning rate and number of leaves which
are 0.1 and 31, respectively. The default parameters of AWDF,
mgrForest, gcForest, gcForestcs and DBC-Forest are given in
Subsection 4.1. The experimental results are shown in Table 2.

Table 2 shows that the gcForest-based model achieves the
best performance on most datasets. For example, DBC-Forest
achieves the highest accuracy of 90.57% on FASHION-MNIST
dataset. This shows that multi-grained scanning has advantages
in the processing of high-dimensional datasets. More impor-
tantly, the performance of DBC-Forest indicates that the bin-
ning confidence screening method improves the accuracy of the
model.

To further evaluate the performance of DBC-Forest, we em-
ploy t-Test, Friedman Test, and Nemenyi Test for statistical hy-
pothesis test.

1. t-Test: The most commonly utilized in the machine learn-
ing t-Test are the paired t-Test and the 5×2 fold cross-validation
paired t-test [35]. Although some studies show that the 5×2 fold
cross-validation paired t-Test is better than the paired t-Test, we
select paired t-Test in this paper. The reason is as follows. First,
the 5×2 fold cross-validation paired t-Test needs five times 2-
fold cross-validation. However, we adopt one times 5-fold
cross-validation in experiments. Second, although the paired
t-Test has flaws, Steven [36] shows that it is difficulty agreeing
on the correct framework for hypothesis testing in complex ex-
perimental designs . For example, the 5×2 fold cross-validation
paired t-Test has a much higher Type II error than paired t-Test
[37]. Third, we also adopt Friedman Test and Nemenyi Test for
further statistical hypothesis test. Hence, in this paper, we adopt
the paired t-Test to evaluate the performance DBC-Forest.

The processing of paired t-Test is shown as follows. First,
we compare two model accuracies and get their different value

5

Table 2: Comparison of accuracy (%)

XGBoost LightGBM mgrForest AWDF gcForest gcForestcs DBC-Forest
MNIST 97.75±0.17 97.58±0.17 97.61±0.19 98.89±0.11 98.77±0.12 98.36±0.14 99.03±0.07
DIGITS 96.83±0.67 97.66±0.28 95.54±0.75 98.23±0.60 97.72±0.71 97.38±0.57 97.88±0.67
EMNIST 81.05±0.20 66.45±11.33 81.41±0.18 86.74±0.18 86.55±0.20 87.24±0.23 87.32±0.29

FASHION-MNIST 90.30±0.33 90.07±0.25 87.71±0.34 89.89±0.27 89.99±0.33 89.94±0.29 90.57±0.22
ADULT 87.05±0.11 87.45±0.24 85.35±0.36 85.86±0.15 85.99±0.37 86.04±0.35 86.11±0.29
BANK 91.48±0.20 91.77±0.26 91.41±0.71 91.45±0.23 91.43±0.23 91.53±0.19 91.62±0.16
YEAST 59.63±2.22 57.40±3.86 58.55±3.14 62.53±4.10 62.06±3.77 62.00±3.5 62.13±3.70

LETTER 96.30±0.42 96.73±0.39 92.18±0.38 96.65±0.18 97.02±0.22 96.83±0.27 97.07±0.23
IMDB 86.43±0.14 86.56±0.29 83.20±0.54 88.94±0.23 88.81±0.10 88.88±0.14 89.39±0.32

D. We then obtain the statistic according to
∣∣∣∣∣µ/√ 1

krσ
2
∣∣∣∣∣ [37],

where k is the fold of cross-validation times, r is the k-fold
cross-validation times, µ is the mean of D, σ is the standard de-
viation of D. Since we adopt one times 5-fold cross-validation,
the paired t-Test statistic is

∣∣∣√5µ/σ
∣∣∣. Final, we compare T0.05,4

with the statistics to accept (N) or reject (Y) the null hypothesis.
The results of paired t-Test results are shown in Table 3.

As shown in Table 3, DBC-Forest is significantly different
from other models on most datasets. For example, on LET-
TER dataset, the 5-fold cross-validation accuracies of DBC-
Forest are 97.33, 96.97, 96.72, 97.33, and 97.00, and the 5-
fold cross-validation accuracies of gcForestcs are 97.22, 96.60,
96.47, 97.03, and 96.83. Then the differnt value D = (97.33-
97.22, 96.97-96.60, 96.72-96.47, 97.33-97.03, 97.00-96.83) =

(0.11, 0.37, 0.25, 0.30, 0.17). Thus, µ = 0.092, and σ = 0.24,
and the statistic is

∣∣∣√5µ/σ
∣∣∣ =

∣∣∣√5 × 0.24/0.092
∣∣∣ = 5.827. Fi-

nally, we reject the null-hypothesis that DBC-forest is equal to
gcForestcs, since the statistic is larger than T0.05,4 =2.132. How-
ever, we accept the null-hypothesis that DBC-forest is equal
to gcForest on LETTER dataset, the processing is as follows.
The 5-fold cross-validation accuracies of gcForest are 97.12,
97.00, 96.62, 97.28, and 97.10, and D = (0.21, -0.03, 0.10,
0.05, -0.10). Finally, the paired t-Test statistic is

∣∣∣√5µ/σ
∣∣∣ =∣∣∣√5 × 0.046/0.107

∣∣∣ = 0.964, and larger than T0.05,4 = 2.132.
2. Friedman Test and Nemenyi Test: To compare the per-

formance of all models, we adopt the Friedman Test [38] for
significance test. For each dataset, we rank all models ac-
cording to their accuracy. The highest is 1, and the sec-
ond highest is 2, so on and so forth. Therefore, the smaller
the mean value is, the better the performance is. The mean
value r of XGBoost, LightGBM, mgrForest, AWDF, gcFor-
est, gcForestcs, and DBC-Forest are 4.67, 4.33, 6.55, 3.44,
3.78, 3.67, 3.67, and 1.56, respectively. Then we conduct the
Friedman Test according to (N − 1)τχ2/(N(k − 1)τχ2), where
τχ2 = 12N(

∑k
i=1 r2

i − k(k + 1)2/4)/k(k + 1), N and k are the num-
ber of datasets and the number of models, respectively. In the
end, we reject the null-hypothesis, since the statistic is 7.481
which is greater than F0.05,(6,48) = 2.295.

To further differentiate the algorithms, we utilize the Ne-
menyi Test. The critical difference value of the Nemenyi Test
is 2.742 according to q0.1,7

√
k(k + 1)/6N, where q0.1,7 = 2.693.

As shown in Figure 8, DBC-Forest is significantly better than

most models.

Figure 8: Nemenyi Test figure of model accuracy. The dots are the mean rank
of models, and the horizontal bar across each dot donates critical difference.

4.5. Comparison of thresholds

DBC-Forest is an improved model of gcForestcs. Thus, gc-
Forestcs is selected in this subsection. To show the difference of
the thresholds of the two models, we select MNIST and BANK
datasets with many instances, and IRIS dataset with few in-
stances. Since the two models generate a large number of lev-
els, we only show the comparison of the first level. The results
are shown in Figures 9, 10 and 11, respectively.

Figure 9: Comparison of thresholds on MNIST dataset

6

Table 3: Significance test of t-Test

XGBoost LightGBM mgrForest AWDF gcForest gcForestcs
MNIST Y (21.770) Y (20.893) Y (18.674) Y (2.158) Y (6.340) Y (10.328)
DIGITS Y (2.906) N (1.239) Y (6.454) Y (3.110) Y (0.986) Y (3.177)
EMNIST Y (64.190) Y (4.022) Y (67.231) Y (14.143) N (1.268) Y (18.438)

FASHION-MNIST Y (2.196) Y (6.436) Y (30.176) Y (8.597) Y (7.323) Y (14.350)
ADULT Y (4.945) Y (10.965) Y (3.409) Y (2.621) N (1.372) N (1.289)
BANK N (0.878) N (1.164) Y (2.461) N (1.100) Y (2.689) Y (3.477)
YEAST Y (2.368) N (1.779) Y (2.484) N (0.183) N (1.118) N (0.246)
LETTER Y (6.956) Y (3.805) Y (72.742) Y (15.096) N (0.964) Y (5.827)

IMDB Y (23.278) Y (35.757) Y (33.717) Y (4.902) Y (4.042) Y (5.457)

Figure 10: Comparison of thresholds on BANK dataset

Figures 9 and 10 show that the thresholds of DBC-Forest
are more reasonable than those of gcForestcs, since gcFoer-
stcs screens some instances with low accuracy. For example,
on MNIST dataset, gcFoerstcs screens the instances in the first
527 bins, while DBC-Forest does in the first 365 bins. The in-
stances from the 365th to 526th bins are mis-partitioned, which
are incorrectly allocated to the high-confidence region.

Figure 11 shows that the two thresholds are the same. In this
case, the training errors of the two models are both 0, i.e., there
is no mis-partitioned instances. However, it should be noted
that the test accuracies of the two models on IRIS dataset are
both 93.33%, which means that the generalization abilities of
the two models are weak.

4.6. Robustness

Our goal is to validate the accuracy of DBC-Forest and
its robustness (here, robustness means that the model always
achieves excellent performance for different parameters). Three
models are compared: gcForest, gcForestcs and DBC-Forest.
The experiment is divided into two parts, with and without
multi-grained scanning. The robustness of a model can be eval-
uated based on whether the model depends on the adjustment of
the parameters. If a model works well with suitable parameters
but the accuracy decreases rapidly with more general parame-
ters, then the model depends on the adjustment of the parame-
ters. To determine the robustness of the model, the experiment

Figure 11: Comparison of thresholds on iris dataset

with multi-grained scanning uses two different hyperparame-
ters: default parameters and general parameters. The general
hyperparameters for multi-grained scanning are as follows: the
three window sizes were [d/2], [d/3], [d/4], and the number of
decision trees in the forest is 10. Comparisons of the default
and general parameters, with and without multi-grained scan-
ning, are shown in Tables 4, 5 and 6.

Comparison of 5-fold cross-validation test accuracy with
default parameters for high-dimensional datasets (%)

gcForest gcForestcs DBC-Forest
MNIST 98.77±0.12 98.36±0.14 99.03±0.07
DIGITS 97.72±0.71 97.38±0.57 97.88±0.67
EMNIST 86.55±0.20 87.24±0.23 87.32±0.29

FASHION-MNIST 89.99±0.33 89.94±0.29 90.57±0.22

Table 4: Comparison of 5-fold cross-validation test accuracy with general pa-
rameters for high-dimensional datasets (%)

gcForest gcForestcs DBC-Forest
MNIST 98.19±0.13 97.12±0.19 98.63±0.08
DIGITS 97.10±1.24 92.65±1.59 97.32±0.84
EMNIST 84.39±0.24 86.39±0.25 85.31±0.29

FASHION-MNIST 89.72±0.34 89.16±0.30 90.42±0.22

The experimental results give rise to the following observa-
tions.

7

Table 5: Comparison of 5-fold cross-validation test accuracy for low-
dimensional datasets (%)

gcForest gcForestcs DBC-Forest
ADULT 85.99±0.37 86.04±0.35 86.11±0.29
BANK 91.43±0.23 91.53±0.19 91.62±0.16
YEAST 62.06±3.77 62.00±3.50 62.13±3.70

LETTER 97.02±0.22 96.83±0.27 97.07±0.23
IMDB 88.81±0.10 88.88±0.14 89.39±0.32

1. As shown in Table 4, the DBC-Forest model gives a
higher accuracy than both gcForest and gcForestcs. For exam-
ple, on FASHION-MNIST dataset, the accuracies of gcForest,
gcForestcs and DBC-Forest are 90.57%, 89.94% and 89.99%,
respectively. This is due to the fact that the binning confidence
screening improves accuracy.

2. From Tables 4 and 5, it can be seen that the DBC-Forest
model has better robustness performance than both the gcFor-
est and gcForestcs models. For example, on MNIST dataset,
it can be seen that the accuracies of gcForest and gcForestcs
are decreased by 0.58% and 1.24%, respectively, when general
parameters are used. However, the accuracy of DBC-Forest is
only reduced by 0.4%. This phenomenon demonstrates that the
binning confidence screening is more accurate than the method
used by gcForestcs for threshold selection, and that instance
screening is more demanding, resulting in its performance be-
ing very robust to the hyperparameter settings.

3. Table 6 shows that the accuracies of the three models are
not very different on low-dimensional datasets, and that DBC-
Forest is slightly better than the other models. For example, on
IMDB dataset, the accuracies of gcForest, gcForestcs and DBC-
Forest are 88.81%, 88.88% and 89.39%, respectively. This re-
sult indicates that binning confidence screening is more effec-
tive than the original confidence screening.

4.7. Efficiency of binning confidence screening

In the previous subsections, we validate the performance of
our model in terms of accuracy and robustness. In this sub-
section, we analyze the efficiency of the binning confidence
screening. Since the five datasets DIGITS, ADULT, BANK,
YEAST and LETTER contain less data and are easier to pre-
dict, only two or three levels are generated in the cascade struc-
ture. Therefore, we use MNIST, EMNIST, FASHION-MNIST
and IMDB for this experiment. We compare the remaining in-
stances and accuracy at each level, and the results are shown in
Figures 12 to 15.

(a) Remaining instances (b) Accuracy at each level

Figure 12: Comparison of remaining instances and accuracy at each level on
MNIST dataset

(a) Remaining instances (b) Accuracy at each level

Figure 13: Comparison of remaining instances and accuracy at each level on
EMNIST dataset

(a) Remaining instances (b) Accuracy at each level

Figure 14: Comparison of remaining instances and accuracy at each level on
FASHION-MNIST dataset

(a) Remaining instances (b) Accuracy at each level

Figure 15: Comparison of remaining instances and accuracy at each level on
IMDB dataset

Figures 12 to 15 show that although DBC-Forest retains
more instances than gcForestcs, its accuracy at each level is
higher than that of gcForestcs on most datasets. For example,
on MNIST dataset, DBC-Forest retains about 3,700 instances,
while gcForestcs retains about 400 at the second level. How-
ever, the accuracy of DBC-Forest is higher than that of gc-
Forestcs at the second level. Almost all of the results show this
phenomenon. More importantly, the curve of the remaining in-
stances for gcForestcs drops steeply, while that of DBC-Forest

8

drops smoothly. The reason for this is that DBC-Forest can find
mis-partitioned instances, and Examples 1 and 2 illustrate this
phenomenon.

4.8. Training time
In this subsection, to achieve the same accuracy, we report

the training time of gcForest, gcForestcs and DBC-Forest. The
accuracy and training time on nine datasets are shown in Table
7.

It should be noted that it is difficult to obtain exactly equal
accuracy for different schemes, and the accuracies in Table 7
are therefore slightly different.

As shown in Table 7, DBC-Forest requires a shorter train-
ing time than gcForest and gcForestcs for the same or slightly
higher accuracy. For example, on IMDB dataset, the train-
ing time of DBC-Forest, gcForest and gcForestcs are 654.32,
8,828.60 and 802.41 s, respectively. These results show that
DBC-Forest is more effective than the comparable schemes.
The reason is that the accuracy of DBC-Forest at most levels
is higher than gcForestcs, as mentioned in Subsection 4.5, and
hence DBC-Forest can be trained faster than the other schemes.

5. Conclusion

To improve the efficiency of the deep forest algorithm, gc-
Forestcs allows some instances in high-confidence region to be
passed directly to the final stage. However, there is a group of
instances in this region with low prediction accuracy. To find
these instances, we propose DBC-Forest, which ranks the in-
stances based on the confidences and puts them into bins of the
same size. The accuracy of each bin is the average value of
the accuracies of the instances in the bin. DBC-Forest finds a
bin with an accuracy lower than the target accuracy, and uses
the confidence of the last instance in the bin as the threshold.
In this way, DBC-Forest effectively avoids the mis-partitioning
of instances, and improves the classification performance of
gcForestcs. Our experimental results demonstrate that DBC-
Forest achieves better accuracy performance than other state-
of-the-art models for the same parameters, and has higher ro-
bustness than gcForest and gcForestcs. We also discuss the ef-
ficiency of binning confidence screening, and show that DBC-
Forest can be trained faster than the other schemes for the same
accuracy.

There are many aspects to be considered in the future.
1. Although experiments show that DBC-Forest achieve best

performance, the hyperparameters may not be appropriate for
some models. How to select the appropriate hyperparameter
for each deep forest model is worth developing.

2. binning confidence screening mechanism to avoid mis-
partition instances. The hyperparameter size of bin influences
DBC-Forest performance. In the future, we will design a self-
adaptive screening method to replace the current mechanism.

Acknowledgement

This work was partly supported by National Natural Science
Foundation of China (61976240, 52077056), Natural Science

Foundation of Hebei Province, China (Nos. F2020202013,
E2020202033), and Graduate Student Innovation Program of
Hebei Province (CXZZSS2021026).

References

[1] H. Pan, X. Niu, R. Li, Y. Dou, H. Jiang, Annealed gradient descent for
deep learning, Neurocomputing 380 (2020) 201–211.

[2] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Proceedings of Neural Informa-
tion Processing Systems, 2012, pp. 1097–1105.

[3] D. Mautz, C. Plant, C. Böhm, DeepECT: The Deep Embedded Cluster
Tree, Data Science and Engineering, 5 (4) (2020) 419–432.

[4] R. ZahediNasab, H. Mohseni, Neuroevolutionary based convolutional
neural network with adaptive activation functions, Neurocomputing, 381
(2020) 306–313.

[5] Y. Wu, D. Liu, H. Jiang, Length-changeable incremental extreme learning
machine, Journal of Computer Science and Technology, 32 (3) (2017)
630–643.

[6] Y. Wu, L. Luo, Y. Li, L. Guo, P. Fournier-Viger, X. Zhu, X.
Wu, NTP-Miner: Nonoverlapping three-way sequential pattern mining,
ACM Transactions on Knowledge Discovery from Data, (2021) DOI:
10.1145/3480245

[7] S. Cheng, Y. Wu, Y. Li, F. Yao, F. Min, TWD-SFNN: Three-way deci-
sions with a single hidden layer feedforward neural network, Information
Sciences, (2021) DOI: 10.1016/j.ins.2021.07.091

[8] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, arXiv preprint arXiv: 1409.1556.

[9] Z. Zhang, C. Duan, T. Lin, S. Zhou, Y. Wang, X. Gao, GVFOM: a novel
external force for active contour based image segmentation, Information
Sciences, 506 (2020) 1–18.

[10] B. Cao, Y. Gu, Z. Lv, S. Yang, J. Zhao, Y. Li, RFID Reader Anti-Collision
Based on Distributed Parallel Particle Swarm Optimization, IEEE Internet
of Things Journal, (2021) DOI: 10.1109/JIOT.2020.3033473.

[11] D. Liu, Y. Wu, H. Jiang, FP-ELM: An online sequential learning algo-
rithm for dealing with concept drift, Neurocomputing, 207 (26) (2016)
32–334.

[12] H. Jiang, X. Chen, T. He, Z. Chen, X. Li, Fuzzy clustering of crowd-
sourced test reports for apps, ACM Transactions on Internet Technology,
18 (2018) 1–28.

[13] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Pro-
ceedings of Knowledge Discovery and Data Mining, 2016, pp. 785–794.

[14] F. Wang, Q. Wang, F. Nie, W. Yu, R. Wang, Z. Li, A forest of trees with
principal direction specified oblique split on random subspace, Neuro-
computing 379 (2020) 413–425.

[15] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.
[16] Z. Zhou, J. Feng, Deep forest, National Science Review 6 (1) (2019) 74–

86.
[17] M. Zhou, X. Zeng, A. Chen, Deep forest hashing for image retrieval,

Pattern Recognition 95 (2019) 114–127.
[18] J. Ren, B. Hou, Y. Jiang, Deep Forest for Multiple Instance Learning,

Journal of Computer Research and Development 56 (8) (2019): 1670–
1676.

[19] L. Yang, X. Wu, Y. Jiang, Z. Zhou, Multi-label learning with deep forest,
arXiv preprint arXiv: 1911.06557.

[20] L. V. Utkin, A. V. Konstantinov, V. S. Chukanov, M. V. Kots, A. A. Meldo,
A New Adaptive Weighted Deep Forest and Its Modifications, Interna-
tional Journal of Information Technology & Decision Making 19 (04)
(2020) 963-986.

[21] Y. Zhu, S. Fu, S. Yang, P. Liang, Y. Tan, Weighted deep forest for
schizophrenia data classification, IEEE Access 8 (2020) 62698–62705.

[22] S. Ray, Disease classification within dermascopic images using fea-
tures extracted by ResNet50 and classification through deep forest, arXiv
preprint arXiv: 1807.05711.

[23] R. Su, X. Liu, L. Wei, Q. Zou, Deep-Resp-Forest: A deep forest model to
predict anti-cancer drug response, Methods 166 (2019) 91–102.

[24] Y. Guo, S. Liu, Z. Li, X. Shang, BCDForest: a boosting cascade deep
forest model towards the classification of cancer subtypes based on gene
expression data, BMC Bioinformatics 19 (S5) (2018) 1–13.

9

Table 6: Comparison of training time with same accuracy

Accuracy (%) Training time (s)
gcForest gcForestcs DBC-Forest gcForest gcForestcs DBC-Forest

MNIST 98.52±0.12 98.52±0.11 98.63±0.08 1,798.72 885.27 437.90
DIGITS 97.55±0.69 97.16±0.48 97.55±0.71 19.02 18.79 18.73
EMNIST 86.85±0.22 87.24±0.23 87.32±0.29 6,848.37 6,382.01 7,515.22

FASHION-MNIST 90.32±0.24 89.94±0.29 90.42±0.22 16,369.51 1,955.10 560.32
LETTER 96.90±0.18 96.90±0.21 96.90±0.23 14.30 14.93 10.52
ADULT 86.11±0.27 86.11±0.27 86.11±0.29 21.15 17.72 15.59
BANK 91.48±0.22 91.48±0.20 91.50±0.18 20.68 16.82 15.83
YEAST 61.45±1.87 61.45±2.74 61.45±1.37 8.50 10.32 9.70
IMDB 89.10±0.08 89.39±0.13 89.39±0.32 8,828.60 802.41 654.32

[25] Y. Dong, W. Yang, J. ang, J. Zhao, Y. Qiang, MLW-gcForest: A multi-
weighted gcForest model for cancer subtype classification by methylation
data, Applied Sciences 9 (17) (2019) 3589.

[26] F. Yang, Q. Xu, B. Li, Y. Ji, Ship detection from thermal remote sens-
ing imagery through region-based deep forest, IEEE Geoence & Remote
Sensing Letters (2018) 449–453.

[27] R. Zhu, J. Fang, S. Li, Q. Wang, H. Xu, J. Xue, H. Yu, Vehicle re-
identification in tunnel scenes via synergistically cascade forests, Neu-
rocomputing 381 (2020) 227–239.

[28] T. Wu, Y. Zhao, L. Liu, H. Li, A novel hierarchical regression approach
for human facial age estimation based on deep forest, in: Proceeding of
International Conference on Networking, Sensing and Control, 2018, pp.
1–6.

[29] H. Yao, H. He, S. Wang, Z. Xie, EEG-based emotion recognition using
multi-scale window deep forest, in: Proceeding of Symposium Series on
Computational Intelligence, 2019, pp. 381–386.

[30] M. Pang, K. Ting, P. Zhao, Z. Zhou, Improving deep forest by confidence
screening, in: Proceeding of International Conference on Data Mining,
2018, pp. 1194–1199.

[31] G. Cohen, S. Afshar, J. Tapson, A. Schaik, EMNIST: an extension of
MNIST to handwritten letters, in: International Joint Conference on Neu-
ral Networks, 2017, pp. 2921–2926.

[32] H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms, arXiv preprint arXiv:
1708.07747.

[33] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T. Liu,
Lightgbm: A highly efficient gradient boosting decision tree, Advances
in neural information processing systems 30 (2017) 3146-3154.

[34] L. Weng, M. Qian, M. Xia, Y. Xu, C. Li, Land use/land cover recogni-
tion in arid zone using A multi-dimensional multi-grained residual Forest,
Computers & Geosciences 144 (2020) 104557.

[35] D.Thomas G, Approximate Statistical Tests for Comparing Supervised
Classification Learning Algorithms, Neural Computing 10 (7) (1998), pp.
1895-1923.

[36] S. Steven, On Comparing Classifiers: Pitfalls to Avoid and a Recom-
mended Approach, Data Mining and Knowledge Discovery 1 (3) (1997),
pp. 371-328.

[37] R. Bouckaert, E. Frank, Evaluating the replicability of significance
tests for comparing learning algorithms, in: Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2004, pp. 3–12.

[38] Y. Wu, Y. Wang, Y. Li, X. Zhu, X. Wu, Top-k Self-Adaptive Contrast Se-
quential Pattern Mining, IEEE Transactions on Cybernetics, (2021) DOI:
10.1109/TCYB.2021.3082114.

10

	1 Introduction
	2 Producing threshold of gcForestcs
	3 DBC-Forest
	3.1 Mis-partitioned Instances
	3.2 DBC-Forest

	4 Experiments
	4.1 Experimental environment and benchmark datasets
	4.2 Baseline methods and reaserch questions
	4.3 Influence of size of bins
	4.4 Accuracy
	4.5 Comparison of thresholds
	4.6 Robustness
	4.7 Efficiency of binning confidence screening
	4.8 Training time

	5 Conclusion

