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Abstract

Capturing the composition patterns of rela-
tions is a vital task in knowledge graph com-
pletion. It also serves as a fundamental
step towards multi-hop reasoning over learned
knowledge. Previously, several rotation-based
translational methods have been developed to
model composite relations using the product
of a series of complex-valued diagonal matri-
ces. However, these methods tend to make sev-
eral oversimplified assumptions on the com-
posite relations, e.g., forcing them to be com-
mutative, independent from entities and lack-
ing semantic hierarchy. To systematically
tackle these problems, we have developed a
novel knowledge graph embedding method,
named DensE, to provide an improved model-
ing scheme for the complex composition pat-
terns of relations. In particular, our method de-
composes each relation into an SO(3) group-
based rotation operator and a scaling opera-
tor in the three dimensional (3-D) Euclidean
space. This design principle leads to several
advantages of our method: (1) For compos-
ite relations, the corresponding diagonal rela-
tion matrices can be non-commutative, reflect-
ing a predominant scenario in real world ap-
plications; (2) Our model preserves the nat-
ural interaction between relational operations
and entity embeddings; (3) The scaling opera-
tion provides the modeling power for the in-
trinsic semantic hierarchical structure of en-
tities; (4) The enhanced expressiveness of
DensE is achieved with high computational ef-
ficiency in terms of both parameter size and
training time; and (5) Modeling entities in
Euclidean space instead of quaternion space
keeps the direct geometrical interpretations of
relational patterns. Experimental results on
multiple benchmark knowledge graphs show
that DensE is comparable to the current state-
of-the-art models for missing link prediction,
especially on composite relations. In addition,
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the interpretations generated by DensE also re-
veal how relations with distinct patterns (i.e.,
symmetry/anti-symmetry, inversion and com-
position) are modeled, which suggests several
important directions of future studies.

1 Introduction

Knowledge graphs (KGs) are a vital component
of a wide range of downstream applications, such
as machine reasoning, information retrieval and
knowledge-guided natural language processing (Ji
et al., 2020; Zhang et al., 2019b; Yang et al., 2019;
Lin et al., 2019). Especially, learning how to hop
over a variety of concepts or instances stored in a
knowledge graph represents a value path towards
artificial general intelligence.

Knowledge graphs are defined as a collection
of triplets. Each triplet, denoted by (h, r, t), indi-
cates a relation r pointing from the head entity h to
tail entity t. Currently, numerous research efforts
have been devoted to developing knowledge graph
embedding (KGE) methods. These methods aim
to learn a set of low-dimensional representations
of entities and relations (Ji et al., 2020; Nguyen
et al., 2017), which is usually coupled with a score
function to enable the knowledge graph comple-
tion process, i.e., predicting missing links between
entities, for real-world KGs (Nickel et al., 2016;
Lacroix et al., 2018; Bordes et al., 2013; Sun et al.,
2019; Zhang et al., 2019a). Sometimes, neural net-
works can be inserted into the process (Dettmers
et al., 2018; Schlichtkrull et al., 2018; Nathani et al.,
2019), though this requires additional computation
costs.

In principle, the desired KGE method should
be able to accommodate various relation patterns
and to learn representations that are approximately
able to reason over the given patterns (expressive-
ness property of a KGE model (Sun et al., 2019;
Wang et al., 2017)). For example, in a relation pat-
tern such as symmetry (e.g., friend), asymmetry
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(e.g., uncle), inversion relations (e.g., hypernym
and hyponym) and compositional relations (e.g.,
my father’s mother is my grandmother), these pat-
terns should be hold in the vector space. While
the former three patterns are readily covered by
the current methods (Trouillon et al., 2016a; Sun
et al., 2019), it still lacks an effective modeling
strategy for composite relations due to the com-
plexity of composition patterns. In particular, we
find three predominant challenges in this modeling
problem. First, the composition of relations can
be non-commutative (e.g., my father’s mother is
my grandmother, while my mother’s father is my
grandfather, the reasoning result can be different by
changing the orders of relations in a path of knowl-
edge graph), which is opposite to the assumption
of most KGE methods (Bordes et al., 2013; Sun
et al., 2019). Second, the expressiveness of KGE
methods is often limited by the counterintuitive
lack of interaction between entity and relation em-
beddings (Yang et al., 2014). Last but not least,
while the semantic hierarchy of entities in a knowl-
edge graph is a ubiquitous property (Zhang et al.,
2020) (e.g., a triplet in WordNet (Miller, 1995)
(palm, hypernym, tree) indicates “tree” is at a
higher level than “palm” in the hierarchy), most
methods do not pay attention to this and therefore
fail to capture the semantic features at different
semantic hierarchical levels.

In this work, to address these limitations, we de-
velop a comprehensive solution to provide a highly
expressive, efficient and interpretable modeling
method for knowledge graph embedding. More
specifically, we propose DensE (Distance-based
Embedding with Non-commutative Rotation and
Scaling in 3-D Euclidean Space), which decom-
poses the relation into an SO(3) group-based rota-
tion operator and a scaling operator and in the 3-D
Euclidean space. Intuitively, non-Abelian group
(here we use SO(3) rotation group) is applied to
introduce non-commutative nature to our model,
and the scaling operation offers another important
dimension to accommodate each triplet in the Eu-
clidean space, which is barely explored in previous
research. Our main contributions are summarized
as the following:

(1) By integrating infinite non-Abelian group-
based relational rotation and scaling operations in
the 3-D Euclidean space within a unified frame-
work, we effectively accommodate various relation
patterns including non-commutative compositions,

semantic hierarchy, as well as interactions between
entities and relations;

(2) Extensive experiments show that DensE
achieves comparable to the current state-of-the-art
models in link prediction with high computational
efficiency, offering a useful tool for knowledge
graph completion;

(3) We systematically consider three important
scenarios of composition patterns that shall be con-
sidered by KGE methods (Section 3). Then, we
show our method can provide an up-to-date most
comprehensive while straightforward geometric in-
terpretation for the modeling process of each rela-
tion type in the 3-D Euclidean space.

2 Related Work

In this section, we will discuss two different cate-
gories of KGE methods, especially how they evolve
in terms of model expressiveness and interpretabil-
ity.

2.1 Transnational Distance Model

Transnational distance models, represented by
TransE (Bordes et al., 2013) and RotatE (Sun et al.,
2019) use Eucleadian distance as the score func-
tion. In particular, the embedding of relations and
entity are fit so that the tail entity can be obtained
by from the head entity using the operation de-
fined by the relation. Given this intuition, these
methods usually reflect some particular geometric
interpretations. However, within the various rela-
tion patterns, their modeling capacity for composite
relations (i.e., a relation path composed of a series
of relations) tend to be insufficient because most
methods assume a commutative pattern on the rela-
tion path and do not consider entity information in
inferring composition patterns.

Specifically, TransE models each relation as a
pure translational transformation, so it assumes a
fixed addition composition pattern between rela-
tions, i.e., r3 = r1 + r2, which is commutative
and irrelevant to entity embeddings. RotatE made
significant progress by modeling relations as rota-
tional operator (rotation matrix) in 2-D Euclidean
space. When modeling a relation path composed of
multiple relations, RotatE uses Hadamard product
to combine the rotation matrices of the relations
on the path, i.e., r3 = r1 ◦ r2. In this model, all
relations in the composite relation have the same
rotation axis. Thus, the compositions in RotatE are
also mandatorily commutative. Also, interactions



(a)

(b)

Figure 1: (a) DensE decomposes a relation into a rotation operator and a scaling operator on the head entity h in
3-D Euclidean space. (b) Examples of composition patterns.

between relation and entity embeddings are pre-
cluded as the rotation axis is always perpendicular
to entity embeddings.

Following the effort of RotatE, several meth-
ods have been proposed to enhance the expres-
siveness of rotation-based translation KGE model.
For instance, (Yang et al., 2020) proposes a group-
theoretic analysis for KGE methods. Their method,
named NagE, represents a preliminary attempt in
applying non-Abelian group in modeling relational
rotations. RotatE3D (Gao et al., 2020), on the other
hand, extends the rotation of RotatE into the 3-D
Euclidean space. However, although these methods
represent certain conceptual advances, their empiri-
cal results show limited performance advance over
previous methods, probably challenged by the fit-
ting power of pure rotation-based operations and
lacking of ability to model semantic hierarchies in
knowledge graphs.

2.2 Semantic Matching Model

In constrast to translational distance model, meth-
ods in this category evaluate the matching of latent
representation of relations and entities using bi-
linear model, e.g., RESCAL (Nickel et al., 2011),
DistMult (Yang et al., 2014), and ComplEX (Trouil-
lon et al., 2016b). Recently, as a generalization of
DistMult and ComplEX, QuatE proposes a trans-
formation on the entity representations by quater-
nion multiplication with the relation representa-
tion (Zhang et al., 2019a), leading to a significant
advance in expressiveness. For composite relations,
this method does not assume any fixed composition
pattern and preserve the non-commutative nature
to some extent. However, QuatE requires normal-
ization of relation to unit quaternion, indicating it

is incapable of integrating scale information. In
addition, as both entities and relations are embed-
ded in quaternion hyperplanes, QuatE cannot pro-
vide a straightforward geometric interpretation in
the space, which hinders the understanding of the
learned embeddings.

2.3 Methodological Advance of DensE

From the perspective of score function, DensE also
belongs to translation distance model. In contrast
to the previous works, our model leverages both
rotation and scaling operations for relation mod-
eling. The key idea is that we can transform any
non-zero vector in the Euclidean space to another
arbitrary vector through decoupled rotation and
scaling transformations. In addition, our model
provides a clear geometric picture to demonstrate
the transformation of entity representation in vari-
ous relation composition patterns.

Conceptually, some modules of our method is
also related to other recent KGE methods. For in-
stance, a recent work HAKE (Zhang et al., 2020)
has explored the combination of rotation and scal-
ing operations, which are used to model entities at
same and different levels of hierarchy, respectively.
In HAKE, rotation is defined following the proto-
col in RotatE, which leverages U(1) Abelian group
and thus incapable of handling non-commutative
relations. In addition, its rotation axis is vertical
to the 2-D representation space of entities, again
omitting the entity-relation interaction as in RotatE.
On the other hand, while using the non-Abelian
group in KGE model has been explored by (Xu
and Li, 2019), we argue this model has lower ex-
pressiveness than us in principle since it uses finite
(non-)Abelian group (using non-Abelian group is



optional) in 2-D space while we consider an infinite
non-Abelian group in 3-D space. Also, its rotation
operation is combined with reflection, which con-
stitutes a special case of our scaling operation (i.e.,
scaling with a factor of -1).

In contrast with QuatE that models both entities
and relations in the quaternion space and does trans-
formation using quaternion multiplication, DensE
is based on 3-D Euclidean space rather than the
space of quaternions. The continuous rotation trans-
formation in the n-D Euclidean space (n > 2)
is modeled by a special orthogonal group (SO(n)
group). Compared with the vanilla U(1) abelian
group based KGE models (e.g. RotatE/HAKE)
that perform rotation transformation in the 2-D Eu-
clidean space, continuous rotation transformation
in the 3-D space modeled by SO(3) group is the
minimum non-abelian extension with geometric in-
terpretability. Composite relations (relation paths,
details can be found in Section 3) are usually mod-
eled by the product/summation of relation matrices.
The violation of the commutative law of multipli-
cation in the non-abelian case makes modeling the
complex composition patterns of relations possi-
ble (non-commutative). The quaternion system is
related to the SO(3) group and corresponds to the
rotation transformation in 3-D Euclidean space, it
provides a mathematical way to model continuous
rotation transformation in 3D space. In our model,
to guarantee geometric interpretability, entities are
represented by 3D vectors, relations are modeled
by quaternions that perform rotation and scaling
transformation in 3D space. The rigidness of the
quaternion system corresponds to the mathematical
properties of SO(3) group theory since the rotation
transformation in 3D space must satisfy several
constraints such as: non-commutative (non-abelian
nature), orthogonality, invertibility, etc. QuatE also
studied that increasing spatial dimensions such as
to Octonion does not increase performance com-
pared to modeling relation and entities in the space
of quaternion. The reason behind this is that the
octonion system is more rigid than the quaternion
system, the associative law of multiplication is also
violated. However, this property is even harmful to
modeling patterns of relations in a KG since there’s
no relation pattern in a real-world KG that needs
to be modeled by violating the associative law of
multiplication.

Therefore, we argue that among these concurrent
works, DensE is the most comprehensive solution

with the geometric interpretability that accounts
for all the three desiderata for modeling compos-
ite relations, i.e., covering the non-commutative
relations, preserving interaction between entity and
relation, and capturing the entities’ semantic hier-
archy.

3 Problem Formulation

We denote a directed knowledge graph as
G(E ,R,F), where E , R and F are sets of enti-
ties, relations and facts, respectively. A fact stored
in a KG can be expressed as a triplet (h, r, t) ∈ F ,
where h, t ∈ E and r ∈ R. Herein, we focus on the
knowledge completion task, which aims to predict
missing links based on the observed facts. To fulfill
this goal, a score function is used to measure the
plausibility of proposed fact candidates, and the
goal of model optimization is to give higher scores
to true triplets (h, r, t) than the false triplets (h, r, t̄)
or (h̄, r, t), where t̄ and h̄ are randomly sampled
tail and head entities, respectively. Mathematically,
the entity and relation embeddings are usually rep-
resented by tensors, and the score function can thus
be written into the form of fr(h, t).

In principle, KGE models should be designed to
accommodate various relation patterns existing in
real world KGs, such as symmetry, anti-symmetry,
inversion and composition, which are formally de-
fined as follows.

Let x, y, z be the entities in a given KG, and
r(·, ·) maps the relation between the two entities,
we have:

Definition 1. A relation r is symmetric if ∀x, y,

r(x, y)⇒ r(y, x). (1)

On the other hand, a relation is said to be anti-
symmetric if ∀x, y,

r(x, y)⇒ ¬r(y, x). (2)

Friend is a typical example of symmetric relation,
which means if we know x is friend of y, we can
infer y is also friend of x. Filiation is an example
of anti-symmetric relation.

Definition 2. Relation r1 is inverse to relation
r2 if ∀x, y

r1(x, y)⇒ r2(y, x) (3)

For instance, has_part and part_of fit into the
scope of inverse relations, which means if we know
x is a part of y, we can infer that y has part x. Note



that both symmetric/antisymmetric and inverse
relation patterns can be inferred in one hop, so they
are also called atomic relation.

In contrast to the above atomic relation patterns
(inferable within one hop), the complex composi-
tion patterns pose a particular challenge to model-
ing, as discussed below.

Definition 3. Relation r3 is composed of rela-
tion r1 and relation r2 if ∀x, y, z

r1(x, y)Λr2(y, z)⇒ r3(x, z) (4)

Here r3 is also referred to as a composite rela-
tion and possesses certain composition pattern.
In particular, our model design takes the following
properties into account:

Property 1. The two relations in the com-
position are not always commutative. For
example, given r1 = is_father_of , r2 =
is_mother_of , based on the Definition 3, we
will get r3 = is_grandmother_of . How-
ever, when we change the order, i.e., r1 =
is_mother_of , r2 = is_father_of , we will get
r3 = is_grandfather_of . Recent KGE meth-
ods usually model composite relations (relation
paths) by the product (e.g., QuatE, HAKE) /sum-
mation (e.g., TransE) of relation matrices. How-
ever, it is non-trivial to model composition rela-
tion patterns since the product/summation of diag-
onal real-valued/complex-valued matrices is usu-
ally commutative and hence invariant with the or-
der of relations. For instance, ComplEx (Trouil-
lon et al., 2016a) models relation path mentioned
above r1(x, y)Λr2(y, z) by using the product of
two complex-valued diagonal matrices: Rr2Rr1 .
However, the product of relation matrices in the di-
agonalized framework are commutative since that
Rr2Rr1 = Rr1Rr2 .

Property 2. The composition patterns are not
always inferable by the relations alone. For exam-
ple, given that y is x′s younger sister and z is y′s
elder brother, we can not answer whether z is el-
der or younger than x from the given information.
Actually, to answer this question, we need to know
more about x/y/z from their own attributes and
their other relationships.

Property 3. In a composition, the relations in-
volved are not necessarily different. Given the two-
hop example above, besides the situation that r1,
r2 and r3 are mutually different, there are also
four different cases that satisfy the definition of
composition, i.e., r1 = r2 = r3, r1 = r2 6= r3,
r1 = r3 6= r2 and r1 6= r2 = r3 (Figure 1(b)).

4 Method

In this section, we will first discuss the limitation
of previous method such as RotatE, which is based
on the 2-D Euclidean space. Then we will in-
troduce each module of our method. In particu-
lar, we model a relation by a combination of an
SO(3) group-based rotation (introducing the non-
commutative nature) and a scaling operation (intro-
ducing the semantic hierarchy).

4.1 Limitations of Modeling Relational
Rotation in the 2-D Euclidean Space

The motivation of RotatE is from Euler’s identity
eiθ = cos θ + i sin θ, which applies rotation in
the 2D complex plane by using a unitary complex
number. The RotatE model maps the entities and
relations to the complex vector space and defines
each relation as a rotation operator that transforms
the source entity to the target entity. However, as
shown in the Figure 2, composite relations are as-
sumed to be commutative. Changing the order of
relational rotation of r1 and r2 gives the same com-
position r3. Also, the unit rotation transformation
makes it difficult to model the semantic hierarchy
which is a ubiquitous property in knowledge graphs.
The rotation axis (perpendicular to the paper) of
2-D rotation transformation is orthogonal to entity
embeddings, which hinders the method to model in-
teractions between relational operations and entity
embeddings.

Figure 2: RotatE models relations as a unit rotation op-
erator in the 2-D Euclidean space.

Continuous rotation transformation in 3D space
modeled by SO(3) group is the minimum non-
abelian extension with geometric interpretability.
By modeling relations and entities as rotation op-
erators and vectors in 3D space, transformation
in the 3-D Euclidean space can be either non-
commutative or commutative. And since the ro-



tation axis of 3-D transformation is not enforced
to be perpendicular to the vectors, interactions be-
tween relations and entities can also be consid-
ered. A simple example for how rotation in the
3-D Euclidean space can model non-commutative
relations is shown in Supplementary Note 1. We
will formally introduce the mathematical method
for modeling rotations in 3D space in Section 4.2.
In addition, to model the semantic hierarchies of
knowledge graphs, the rotation operation is then
followed by a scaling transformation. The modulus
parts of 3D vectors aims to model the entities in
a KG at different levels of the semantic hierarchy.
The detail of integrating the scaling transformation
in our model is discussed in Section 4.3.

4.2 Modeling Relational Rotation Using
SO(3) Rotation Group

One of the ways to model a rotation operation
in the 3-D space is called axis-angle representa-
tion, which parameterizes a rotation by two quan-
tities: 1) A unit vector −→v indicating the direction
of the axis of rotation, i.e., −→v = (vx, vy, vz) =
(sin θ cosφ, sin θ sinφ, cos θ), where θ ∈ [0, π]
and φ ∈ [0, 2π); and 2) An angle ψ describing the
magnitude of the rotation about the rotation axis,
where ψ ∈ [0, 2π). Given an entity vector−→w in the
3-D space with the coordinate (x, y, z), its rotation
about axis −→v with an angle of ψ can be modeled
using the SO(3) group theory (Figure 1(a), Step 1).
More specifically, we can use a unit quaternion to
encode the rotation using three degrees of freedom
(i.e., θ, φ and ψ). Actually, it can be viewed as a
group structure on a 3-sphere (i.e., S3) which gives
the group Spin(3). Note that this group structure is
isomorphic to SU(2) group and also to the universal
cover of SO(3) group. Formally, the unit quater-
nion q to model a rotation through an angle of ψ
around the aforementioned axis −→v can be derived
using an extension of Euler’s formula:

q = e
ψ
2
(vxi+vyj+vzk) = cos

ψ

2
+sin

ψ

2
∗(vxi+vyj+vzk),

(5)
where i, j,k are imaginary units of the quater-
nion representation, which satisfies the condition
i2 = j2 = k2 = ijk = −1. Unlike real/complex
numbers, the multiplication of quaternions (Hamil-
ton product) is sensitive to the orders as we have:
ij = k, ji = −k, jk = i,kj = −i,ki = j, ik = −j.
For Q1 = a1 + b1i + c1j + d1k and Q2 =

a2 + b2i + c2j + d2k, their Hamilton product is:

Q1 ⊗Q2 = a1a2 − b1b2 − c1c2 − d1d2
+(a1b2 + b1a2 + c1d2 − d1c2)i
+(a1c2 − b1d2 + c1a2 + d1b2)j
+(a1d2 + b1c2 − c1b2 + d1a2)k

(6)

A 3-D Euclidean vector −→w with the coordinate
(x, y, z) can be expressed as a pure quaternion
(meaning the real part of quaternion is zero), i.e.,
W = xi + yj + zk, giving the following the-
orem (Jia, 2019): Theorem 1 Given a 3-D Eu-
clidean vector −→w and its counterpart in the quater-
nion space W, the desired rotation axis −→v , the
magnitude of the rotation ψ, the destination coor-
dinate of the vector after the rotation, i.e.,W′ =
x′i + y′j + z′k, can be calculated by the Hamilton
product of quaternions:

W′ = qWq−1 (7)

where q−1 is the inverse of q, i.e., q−1 =

e−
ψ
2
(vxi+vyj+vzk) = cos ψ2 − sin ψ

2 ∗ (vxi + vyj +
vzk).

The form of Eq.7 and a factor of 1
2 for the an-

gle ψ in Eq.5 indicate that there is a 2 : 1 homo-
morphism from quaternions of unit norm to SO(3).
Considering each 3-D Euclidean vector can also be
expressed as a pure quaternion, we can now repre-
sent the rotation using a matrix R(q) by expanding
Eq.7 and letting C = cosψ and S = sinψ:
−→w ′

= R(q)−→w = C + v2x(1− C) vxvy(1− C) + vzS vxvz(1− C)− vyS
vxvy(1− C)− vzS C + v2y(1− C) vyvz(1− C) + vxS

vxvz(1− C) + vyS vyvz(1− C)− vxS C + v2z(1− C)

xy
z


(8)

In our framework, two rotations can be com-
bined into one equivalent rotation operation (this is
also consistent with the closure property of group
theory). In other words, we can define q = q2q1,
where q corresponds to the rotation q1 followed
by the rotation q2. Therefore, a series of rotations
can be composed together and then applied as a
single rotation. Note that quaternion multiplica-
tion is not commutative unless q1 and q2 share the
same rotation axes (i.e., −→v 1 = −→v 2), which can be
seen from Eq.6. This makes it possible to model
both commutative and non-commutative relation
patterns.

4.3 Integrating the Scaling Operation
In a knowledge graph, different entities may have
different level of semantic hierarchy given a par-
ticular relation. For example, in WN18RR, trade



is a hypernym of transaction, and man is recorded
to has_part to be arm. In these cases, the head
entity and tail entity show different abstraction lev-
els or showing inclusion relationships. Intuitively,
we argue that the difference of semantic hierarchy
can be reflected by the scale of entity, as the enti-
ties possessing same level of abstraction tend to be
achieved through rotation operations.

To define this intuition mathematically, we first
obtain of norm of quaternions. Following Eq.5
and letting q to be the unit quaternion, an arbitrary
quaternion with non-unit norm can be written as:
Q = a+ bi + cj +dk = |Q|q, with the norm given
by

|Q| =
√
a2 + b2 + c2 + d2 (9)

where

a = |Q| cos
ψ

2
,

b = |Q| sin ψ
2

sin θ cosφ,

c = |Q| sin ψ
2

sin θ sinφ,

d = |Q| sin ψ
2

cos θ.

(10)

By multiplying a scalar |Q| in the Eq.8, we can fur-
ther introduce length as another degree of freedom
to better match the ground-truth tail embedding
vector (Figure 1(a), Step 2). Formally, we have:

−→w ′ = |Q|R(q)−→w = O(Q)−→w , where Q ∈ H,−→w ,−→w ′ ∈ R3,
(11)

where O(Q) = |Q|R(q) is the combined opera-
tor of rotation and scaling transformations, H de-
notes the quaternion algebra, and R3 represents
the 3-D Euclidean algebra. Here we call |Q|
the scaling factor. Therefore, we now have
a uniform framework with interpretable geomet-
ric meaning, i.e., (|Q|, θ, φ, ψ) to describe the
transformation corresponding to a specific relation
type. We can also define the reverse operation
O(Q−1) = |Q|−1R(q−1), which describes the re-
verse process: rotate a vector about the axis −→v
with angle −ψ (from another direction), and then
scale the vector with a factor of |Q|−1. Combining
the Eq.8 and Eq.11, we can always find a operator
O(Q3) = O(Q2)O(Q1), which corresponds to the
application of O(Q1) followed by the application
of O(Q2), where we have |Q3| = |Q1| ∗ |Q2| and
R(q3) = R(q2)R(q1).

4.4 Score Function and Optimization
A score function aims to correctly measure the
plausibility of a triple of interest. Formally, as
a distance-based model, our scoring function is
defined as

fr(h, t) = −1

2
(|O(r)h−t|+|O(r−1)t−h|). (12)

Here, | · | denotes the Euclidean distance and
O(·) stands for the transformation conducted on
each element of the entity embeddings. That is
to say, for the i-th embedding unit of h, the opti-
mization target is to minimize the Euclidean dis-
tance between ti and O(ri)hi, as well as the Eu-
clidean distance between hi and O(r−1i )ti, where
ri ∈ H,hi, ti ∈ R3. H and R3 stand for the quate-
rion and 3-D Euclidean algebra, respectively. The
arrow of hi and tj are omitted for clarity. To prop-
erly train the model parameters, here we use a
loss function similar to the self-adversarial neg-
ative sampling loss proposed in (Sun et al., 2019):

L = − log σ(γ + fr(h, t))

−
n∑
j=1

p(h̄j , r, t̄j) log σ(−(γ + fr(h̄(j)
, t̄(j)))),

(13)

where γ is a fixed margin, n is the number of neg-
ative sampling size, (h̄j , r, t̄j) is the j-th negative
triplet of the fact (h, r, t), and σ is the sigmoid func-
tion. h̄(j) and t̄(j)are the embeddings correspond-
ing to the negative triplet (h̄j , r, t̄j). p(h̄j , r, t̄j) is
the weight of the negative sample, which gives the
higher scored negative samples with larger weight
during training. The details about self-adversarial
negative sampling technique can be found in (Sun
et al., 2019).

5 Experimental Settings

Datasets and evaluation metrics The experi-
ments are conducted mainly on three commonly
used benchmark datasets, including WN18RR,
FB15k-237 and YAGO3-10. As pointed out by
(Toutanova and Chen, 2015a; Dettmers et al., 2018),
WN18 and FB15k suffer from the test set leakage
problem. One can predict missing links and at-
tain the state-of-the-art results even using a simple
rule-based model. To avoid this issue, two much
more challenging datasets (WN18RR (Dettmers
et al., 2018) and FB15k-237 (Toutanova and Chen,



Table 1: Statistics of datasets used in this study.

Dataset # Entities # Relations #Training #Validation #Test

WN18RR 40943 11 86835 3034 3134
FB15k-237 14541 237 272115 17535 20466
YAGO3-10 123182 37 1079040 5000 5000

Table 2: Performance comparison on benchmark datasets. Best results are labeled in bold and the second best
are underlined. The reporting scheme generally follows that in (Ruffinelli et al., 2019). First indicates the orig-
inally reported performance of each method. Enhanced records the improved performance with tuned training
techniques and hyperparameters by (Ruffinelli et al., 2019). Recent shows the best results of more selected re-
cent models. Adv+Recip reports the model performance using the same training scheme of DensE, i.e., using
self-adversarial negative sampling and reciprocal learning. Ours reports the performance of DensE as well as its
ablation counterparts.

WN18RR FB15K-237 YAGO3-10
Model MRR H@10 MRR H@10 MRR H@10

First

RESCAL (Wang et al., 2018) 0.420 0.447 0.270 0.427 - -
TransE (Nguyen et al., 2017) 0.226 0.501 0.294 0.465 - -

DistMult (Dettmers et al., 2018) 0.430 0.490 0.241 0.419 0.340 0.540
ComplEx (Dettmers et al., 2018) 0.440 0.510 0.247 0.428 0.360 0.550

Enhanced

RESCAL (Ruffinelli et al., 2019) 0.467 0.517 0.357 0.541 - -
TransE (Ruffinelli et al., 2019) 0.228 0.520 0.313 0.497 - -

DistMult (Ruffinelli et al., 2019) 0.452 0.531 0.343 0.531 - -
ComplEx (Ruffinelli et al., 2019) 0.475 0.547 0.348 0.536 - -

Recent

RotatE (Sun et al., 2019) 0.476 0.571 0.338 0.533 0.495 0.670
NagE (Yang et al., 2020) 0.477 0.574 0.340 0.530 - -

QuatE (Jia, 2019) 0.481 0.564 0.311 0.495 - -
D4-STE (Xu and Li, 2019) 0.480 0.536 0.320 0.502 0.472 0.643

TuckER (Balažević et al., 2019) 0.470 0.526 0.358 0.544 - -
Rotate3D (Gao et al., 2020) 0.489 0.579 0.347 0.543 - -
HAKE1 (Zhang et al., 2020) 0.497 0.584 0.336 0.533 0.522 0.693
HAKE2 (Zhang et al., 2020) 0.497 0.582 0.346 0.542 0.545 0.694

Adv+Recip

TransE 0.230 0.535 0.330 0.525 0.460 0.661
DistMult 0.444 0.533 0.316 0.497 0.427 0.627
ComplEx 0.475 0.559 0.334 0.525 0.510 0.681

RotatE 0.478 0.567 0.337 0.531 0.497 0.676

Ours

DensE 0.492 0.586 0.351 0.544 0.541 0.678
-Scaling 0.475 0.562 0.335 0.527 0.486 0.642

-Reciprocal 0.487 0.572 0.343 0.527 0.530 0.667
-Adv 0.486 0.572 0.306 0.481 0.452 0.642

2015b)) were released. WN18RR comes from
WordNet (Miller, 1995), compared with the previ-
ous version WN18, it removes inverse relations to
provide a more realistic KGE method benchmark.
Similarly, the FB15k-237 dataset is also extracted
from the original Freebase dataset FB15K (Bor-
des et al., 2013) by removing inverse relations.

In addition, we also use the YAGO3-10 (Mahdis-
oltani et al., 2013) dataset, which consists of a large
collection of triplets from multilingual Wikipedia.
These three datasets aim to assess the model perfor-
mance on composition patterns. The main relation
patterns of them are symmetry/anti-symmetry and
composition. The basic statistics of the datasets



are provided in Table 1. Here, we report mean re-
ciprocal rank (MRR) and Hits at 10 (H@10) for
evaluation (the higher, the better), which is con-
sistent with (Ruffinelli et al., 2019). Other perfor-
mance metrics are provided in the Supplementary
Material.

Baselines We mainly compare DensE with top-
performing baseline models for KG link prediction,
including both translational model and semantic
matching model. As the early implementation of
the baseline models may lack thorough configu-
ration tuning or advanced learning techniques, di-
rect compassion with these performances (denoted
as First) may be biased to later methods. There-
fore, for early models such as RESCALL (Nickel
et al., 2011), TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2014) and ComplEx (Trouillon
et al., 2016a), we also provide two improved ver-
sions, including Enhanced, which was obtained
through a sophisticated hyperparameter tuning pro-
cedure by (Ruffinelli et al., 2019) and Adv+Recip,
which is obtained by us using the same self-
adversarial negative sampling and reciprocal learn-
ing as for DensE. These two improved versions are
provided to prompt the fairness of the comparison.

In addition to these methods, we also com-
pare our model with more recently proposed KGE
models (denoted as Recent), such as RotatE (Sun
et al., 2019), QuatE (Jia, 2019), D4-STE (Xu
and Li, 2019), TuckER (Balažević et al., 2019),
Rotate3D (Gao et al., 2020) and HAKE (Zhang
et al., 2020). All these recent methods have in-
cluded some advanced training techniques similar
to (Ruffinelli et al., 2019).

Implementation details We use the Adam opti-
mizer and tune the hyperparameters on the valida-
tion dataset. During training, we adopt a similar
reciprocal learning approach as used in (Lacroix
et al., 2018; Zhang et al., 2019a). Early stopping is
applied based on the performance on the validation
dataset every 1,000 steps. The ranges for hyperpa-
rameter grid search and the best hyperparameter
settings are listed in Supplementary Note 2. All
the parameters are randomly initialized from the
interval
[− 1√

2k
, 1√

2k
], where k is the embedding size.

6 Results and Analysis

6.1 Prediction Performance
We report the link prediction results on the three
benchmark datasets in Table 2. On WN18RR, we
show that DensE performs on par with HAKE and
outperforms most other models on both the metrics,
even after the baseline models are improved by
hyper-parameter tuning or using advanced learning
techniques. On FB15k-237, we show that the per-
formance of DensE is superior to most of the base-
line models, including RotatE and QuatE. While
on this dataset we notice a particular good perfor-
mance of a method called TuckER (Balažević et al.,
2019), this method also shows a significantly infe-
rior performance on WN18RR, suggesting a poten-
tial drawback in generalizability. On YAGO3-10,
DensE also shows a significant margin over RotatE
and D4-STE (a KGE method based on 2D finite
(non-)Abelian group), and also ComplEx when us-
ing the comprehensive metric MRR, which further
demonstrates the superiority of DensE on various
types of datasets. We also provide additional per-
formance metrics, i.e., MR, MRR, Hits at 1 (H@1),
Hits at 3 (H@3), and Hits at 10 (H@10) in Supple-
mentary Note 3 (Supplementary Tables 2, 3, and
4).

Then we carefully compare the performance of
DensE to two recent extension of RotatE mod-
els, namely RotatE3D (Gao et al., 2020) and
HAKE (Zhang et al., 2020). We find that DensE
performs better than Rotate3D in most cases, val-
idating the contribution of the scaling operation.
On the other hand, HAKE and DensE generally
perform comparably. After dissecting into the train-
ing details, we find that different from DensE and
most other translation distance model, HAKE pays
more attention to model the hierarchical nature
of knowledge graphs. Firstly, unlike the score
function of DensE, which directly optimize the Eu-
clidean distance between two vectors in the 3D
space, HAKE decomposes the score function into
two part: 1. The modulus-distance part corre-
sponds to the hierarchy of the knowledge graph; 2.
The phase-distance part corresponds to the rotation
operation in the 2D space. HAKE leverages a task-
specifically calibrated loss term by tuning the rela-
tive contributions of two terms in its score function
manually to make it get better performance in the
dataset with a clear hierarchical structure. There-
fore, for a dataset like WN18RR with a majority
of types of relations that link two entities at differ-
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Figure 3: The effect of trainable parameter size and training epoch number on model performances. (a) and (b)
shows the results for WN18RR dataset. The corresponding results for FB15K-237 is shown in (c) and (d). All the
results are achieved using the same setting (Adv+Recip) as described above.

(a) ψhas_part + ψpart_of (b) |Qhas_part|∗|Qpart_of | (c) |Qhas_part| (d) |Qpart_of |

(e) ψ(O(r2)O(r1))− ψ(O(r1)) (f) ψ(O(r2)O(r1))− ψ(O(r3)) (g) θ(O(r1))− θ(h)

Figure 4: Geometric interpretation provided by DensE. Each histogram shows a distribution of each dimension of
the learned embeddings. Angular parameters are in radian units. (a)-(d) A case study for inversion patterns (Other
degrees of freedom can be found in the Supplementary Note 5). (e)-(f) A case study for composition patterns,
reflecting the scenario of r1(h, h′)Λr2(h′, t) ⇒ r1(h, t) and r1(h, h′)Λr2(h′, t) ⇒ r3(h, t), respectively. ψ(·)
denotes the rotation angle about the rotation axis of a relational operator. (g) Collinearity of entity and relation
embedding. θ(O(r1)) is the θ component of relation r1. θ(h) is the θ value of the head entity h’s embedding in
the spherical coordinate system of the 3-D Euclidean space. All the head entities satisfying r1(h, h′)Λr2(h′, t)⇒
r1(h, t) are included for the analysis. The entities and relations involved can be found in the Supplementary Note
5.

ent levels of the hierarchy, HAKE can get better
performance than DensE. The FB15k-237 dataset
has more complex relation types (237 types of re-
lation) and fewer entities (higher average degree

of vertices) than WN18RR and YAGO3-10. The
advantage of tuning relative contributions of two
terms in the score function manually does not exist
anymore, while the information of hierarchy can



be learning automatically in our DensE with adap-
tive semantic hierarchy. That’s why we outperform
HAKE in FB15k-237 dataset. Secondly, as men-
tioned in the HAKE, it has two versions of the score
function to model the modulus-distance part. We
report the results of two versions of HAKE in Ta-
ble 2, labeled by HAKE1 and HAKE2, respectively.
Version 1 has a clear and simple mathematical form
that models rotation in the 2D space. Compared
with version 1, a bias and re-scaling operation on
relational embedding are introduced into the model
in version 2 (An additional freedom to tune embed-
dings of relation, thus the element of the embed-
ding of relation is a 3D vector). For the YAGO3-10
dataset which is more complicated than WN18RR
and also has a clear semantic hierarchy property,
DensE outperforms HAKE1 and get comparable
result with HAKE2. The above two techniques pro-
posed by HAKE do improve the ability to model
the semantic hierarchy and complement its lack of
expressiveness in rotation operation. We believe
these techniques will also be important tricks that
can be used to improve performance in future stud-
ies (just like the self-adversarial negative sampling
technique).

To confirm the source of performance gains, we
conduct a further analysis that compares the MRR
performance of DensE to RotatE on each relation
type of WN18RR (Table 3). Besides the taxonomy
mentioned in Section 3, relations in the WN18RR
dataset can be also divided into two categories:
(a) relations that link two entities in the same se-
mantic hierarchy (e.g., “similar_to”); (b) relations
that link two entities at different levels of the hi-
erarchy (e.g., “has_part”). One can see that most
of the relations that fall into category (b) are also
overlap with composite relation patterns. Intrigu-
ingly, we notice a large performance increase in
composite relations, as exemplified by hypernym,
the most abundant composite relation in test data.
We show that DensE improves MRR on this rela-
tion by as much as 3.3%. These results indicates
particular advantages of DensE in modeling com-
position relation patterns and semantic hierarchies
of knowledge graphs.

6.2 Ablation Study

To examine the effectiveness of each module in our
model, we perform a series of ablation experiments
(Table 2). On WN18RR dataset, the most signifi-
cant performance decrease occurs when we cancel

the scaling operation, i.e., only model the relation
as rotations. This confirms the contribution from
scaling to the whole model. On FB15K-237 and
YAGO3-10 datasets, we also observe a large drop
in performance when removing the scaling opera-
tion. Also, self-adversarial negative sampling (adv)
shows significant contribution, indicating the neces-
sity to incorporate proper training techniques. In
Supplementary Note 4, we also compared DensE
and RotatE models without self-adversarial neg-
ative sampling and confirmed the superiority of
DensE in this setting. Note that HAKE also uses
the self adversarial technique in training. However,
the ablation results are not provided.

6.3 Computational Complexity

We show that compared with high-performance
models such as RotatE and HAKE, DensE is
generally more computationally efficient in terms
of parameter number and training epochs. For
TuckRE, although it can get better performance
on FB15k237 with a relatively small model size,
it needs much larger training epochs than other
models on both WN18RR and FB15k237 datasets.
We find that TuckRE needs roughly 500 epochs to
converge to its best results. We plot the results of
the first 100 epochs in Figure 3(b) and Figure 3(d)
here. As is shown in Figure 3, when compared
with other baseline models, DensE achieves sig-
nificantly higher performance with the same pa-
rameter size or epoch number on both WN18RR
and FB15K-237 dataset. When comparing the time
efficiency, as different models have different train-
ing time per epoch, here we also report the training
time of DensE and other baseline models. We show
that although the more complex math formulation
may cause longer training time, the resulting better-
designed model can lead to a much faster conver-
gence speed that significantly shortens the total
training time under the same machine condition
(Table 4). On the other hand, if we let models have
similar performance, e.g., only make DensE reach
the final performance of RotatE, we can see it only
needs 10 epochs and uses 27% of RotatE’s train-
ing time. These results indicate a clear advance of
DensE in computation efficiency. We reason that
this is mainly achieved by introducing a decoupled
scaling operation, thus lowering the embedding
dimension required in rotation-only modeling.



Table 3: MRR comparison on each relation type of WN18-RR. Performance increases are in parentheses.

Relation type Relation Name % in test data RotatE DensE

Atomic

derivationally_related_form 34% 0.947 0.955 (+0.008)
also_see 1.8% 0.585 0.647 (+0.062)

verb_group 1.3% 0.943 0.955 (+0.012)
similar_to 0.2% 1 1 (+0)

Composite

hypernym 39.5% 0.148 0.181 (+0.033)
instance_hypernym 4% 0.318 0.349 (+0.031)
member_meronym 8.1% 0.232 0.249 (+0.017)

synset_domain_topic_of 3.8% 0.341 0.412 (+0.071)
has_part 5.5% 0.184 0.205 (+0.021)

member_of_domain_usage 0.8% 0.318 0.326 (+0.008)
member_of_domain_region 1% 0.2 0.407 (+0.207)

Table 4: The comparison of training time of each method on WN18RR. A lower total time results in a higher
efficiency. To ensure a fair comparison, here we unify the hyperparateters of each method so that all the models
have a similar parameter size around 36M.

Model Training time per epoch (s) # of epochs Total training time (s) MRR

DensE 92 21 1932 0.492
RotatE 83 40 3320 0.478
ComplEx 75 62 4650 0.475
DisMult 52 68 3536 0.444

7 Geometric Interpretation

7.1 Theoretical Analysis

In this section, we first discuss mathematically how
DensE provides geometric interpretation of rela-
tion patterns including symmetry, antisymmetry,
inversion and composition. According to the con-
vention of axis-angle representation described in
Section 4.2, all angle-related parameters (θ, φ, and
ψ) are restricted to be in the half-closed intervals
as we mentioned before. The positive direction of
rotation is based on the right-handed coordinate
system, the rotation angle with the minus value
indicates a rotation opposite to the positive direc-
tion. To keep the values of angle to be within the
above interval, we relocate angles outside intervals
into the desired regions by leveraging the periodic
property of the rotation system. To begin with, a re-
lation r is symmetric in DensE if and only if each
dimension of its embedding ri satisfies |ri| = 1
and the rotation angle satistifies ψri = 0 or π. For
anti-symmetry relation pattern, the embedding ri
satisfies |ri| = 1 , but the rotation angle ψri should
be neither 0 nor π. Also, two relations r1 and
r2 are in inverse pattern, if and only if they sat-

isfy: |r1i| ∗ |r2i| = 1, θr1i = θr2i , φr1i = φr2i and
ψr1i + ψr2i = 2π, meaning the embeddings of
these two relations share the same rotation axes,
but rotate in two opposite directions.

As discussed in Section 4.2, the commutative
and non-commutative composition patterns can
be naturally modeled by the guarantee of the prop-
erty of group theory, which covers Property 1 of
composite relations. Also, following the intuition
of Property 2, our model does not enforce a uni-
form mode of each element in relation represen-
tations. Instead, it learns to model the interaction
between relations and entities as well as the ambi-
guity in composition pattern inference, leading to
a disperse distribution in the relation embedding
space. Last but not least, our model can smoothly
deal with constraints posed by relation types in
inferring composition patterns, as stated in Prop-
erty 3. For instance, when modeling the pattern
r1(x, y)Λr2(y, z) ⇒ r2(x, z), the representation
from RotatE tends to degenerate to a trivial case
where the rotation angle of r1 and r2 both set to
be 0 or 2π or r1 = 2π, r2 = π. In DensE, since
the entity embeddings are not required to be per-
pendicular to the rotation axis, it can also place the



embedding of entity x to be collinear with the rota-
tion axis of r1. In this way, the rotation axis of r1
and r2 are not required to be the same, making the
model to more expressive. In another example, as
for the pattern r1(x, y)Λr1(y, z) ⇒ r2(x, z), be-
sides capturing the relationship of the two rotation
angles (i.e., ψr2i = 2ψr1i), the scaling transforma-
tion offers an additional degree of freedom, where
our model tends to give |r2i| = |r1i|2. Again, we
point out that these “rules” are not constant solu-
tions, as the information entities will further guide
the model to deviate from the statistical mode for
better accommodation of each triplet. Other com-
position patterns presented in the Property 3 can
be analyzed in a similar way (see Supplementary
Note 5.3).

7.2 Case Studies

Here, we show several examples to illustrate the
geometric insight given by DensE, which basically
reflects the geometric intuition discussed above.

We start our analysis with inverse relations,
which comes from the original WN18 dataset (We
have also confirmed the good prediction perfor-
mance of DensE on the WN18 dataset in Supple-
mentary Note 6). In Figure 4(a), we show the
distribution of element-wise addition of embed-
dings from two inverse relations (has_part and
part_of ) of ψ, one representative degree of free-
dom in modeling relational rotation (Other degrees
of freedom can be found in the Supplementary
Note 5). In this way, we can visualize how the
two embeddings agree with each other. As the
two relations are fully inferable by each other, we
do observe a clear conjugation as expected in Sec-
tion 7.1. This is also reflected in the representa-
tion of scaling from these two relations, where the
element-wise products tend to be one (Figure 4(b)).
Interestingly, we do observe that two complemen-
tary embeddings are learned these two relations
(Figure 4(c)-(d)). In particular, the relation whose
head entity has a higher semantic hierarchy (i.e.,
has_part) tend to show a scaling norm |Q| larger
than one, while the relation whose head entity has
a lower semantic hierarchy (i.e., part_of ) generally
shows a scaling norm |Q| smaller than one. This
clearly verifies the intuition of introducing the scal-
ing operation do capture relation-specific semantic
hierarchy of entities.

For composition patterns, we slightly change
the experiment protocol, with each histogram show-

ing the element-wise difference between the em-
beddings of a composite relation and the embed-
dings calculated by multiplying each relation in the
relation path. In a case from WN18RR, we demon-
strate how DensE models a composition pattern
for

r1(h, h
′)Λr2(h

′, t)⇒ r1(h, t),

where

r1 = derivationally_related_form,

r2 = hypernym.

This is a typical case where the composite rela-
tion equals the first relation in the relation path.
As shown in Figure 2(e), while most embedding
dimensions still agree well between the actual com-
posite relation and the calculated relation path, the
distribution tends to disperse to a large range, in-
dicating the existence of ambiguity and interac-
tion between entities and relations. To further ex-
plore the ambiguity issue in the above case, we
perform the same analysis on another small portion
of triplets that actually give

r1(h, h
′)Λr2(h

′, t)⇒ r3(h, t)

where

r3 = synset_domain_topic_of.

Interestingly, we also observe that part of em-
bedding dimensions of O(r2)O(r1) are aligned
with O(r3) (embedding difference close to zero),
demonstrating the flexibility of our model to cap-
ture potentially ambiguous relation compositions
(Figure 4(f)). On the other hand, the model can also
learn to put the rotation axis of r1 collinear with the
embedding of head entities h in the composition
mode expressed as

r1(h, h
′)Λr2(h

′, t)⇒ r1(h, t)

reflecting the interaction of entities and relations
(Figure 4(g)). This example clearly demonstrates
the interpretability of DensE in modeling complex
composition patterns. The geometric patterns for
other relation patterns can be found in Supple-
mentary Note 5. Together with the properties dis-
cussed in Section 3, here we clearly demonstrate
the pros and cons of the current rotation-based
translational KGE method in modeling composi-
tion relation patterns.



8 Conclusion

In this work, we propose an effective method,
named DensE, for knowledge graph embedding.
DensE decomposes a relation operator into an
SO(3) group-based rotation as well as a scaling
transformation. Extensive experiments show that
DensE possesses good performance in knowledge
completion with high computational efficiency.
Also, DensE provides a straightforward geometric
interpretation for the relations, leading to mean-
ingful insights for the future work for modeling
complex relation patterns.

Declaration of competing interest

The authors declare that they have no known com-
peting financial interests or personal relationships
that could have appeared to influence the work re-
ported in this paper.

Acknowledgements

The authors thank Dr. Y. Wen, Dr. W. Peng, Dr.
D. Wang, Dr. W. Guo, Mr. A. Shen and Ms. X.
Lin for insightful comments on the manuscript. We
also thank Dr. Y. Guo and Ms. C. Jiang for helpful
suggestions in the experimental settings. We also
thank all the colleagues in AI Application Research
Center (AARC) of Huawei Technologies for their
supports.

A The geometrical interpretation of
non-commutative compositions

Figure 5: A simple example for how rotation in the 3-D
Euclidean space can model non-commutative relations

Left: A rotation about axis-z followed by a ro-
tation about axis-x, the initial vector h is placed
along axis-x. It can be seen that the final state is
along axis-z, and two rotation operations are equiv-
alent to one operation with the rotation axis to be
about axis-y.

Right: The rotation operation sequence is re-
versed from the left figure. A rotation about axis-x
is followed by a rotation about axis-z. The final
state is then changed to be along axis-y. Since the
initial vector is collinear with the first rotation axis,
the two rotation operations are equal to the last
rotation (rotation about axis-z).

B Hyperparameters setting

The ranges of the hyperparameters for the grid
search are set as follows: Embedding size k ∈
{100, 200, 500, 1000} (In our model, each entity is
represented with a matrix with a size of 3 × k,
and each relation with a matrix with a size of
4 × k), batch size b ∈ {256, 512, 1024}, fixed
margin γ ∈ {3.0, 6.0, 9.0, 12.0, 15.0, 24.0, 30.0},
negative sampling size n ∈ {256, 512, 1024},
self-adversarial sampling temperature α ∈
{0.3, 0.5, 1.0}. The initial learning rate η is set
to be 0.1, and it decays with a factor of 1/2 if the
training loss does not decrease in 1000 epochs. We
list the best hyperparameters setting of DensE on
the benchmark datasets in Supplementary Table 5.

C Additional performance metrics

For a more complete comparison of each method,
for each dataset we list MR, MRR, H@1, H@3,
and H@10 in Supplementary Tables 6, 7, and 8.

D Effect of self-adversarial negative
sampling on DensE and RotatE

In the ablation study, we observe a significant con-
tribution of the self-adversarial negative sampling
technique on the prediction performance of FB15k-
237 and YAGO3-10. Therefore, we compare our
model with RotatE in the setting where both models
are trained without self-adversarial negative sam-
pling (Supplementary Table 9). These results fur-
ther confirm the superiority of our model without
self-adversarial negative sampling.

E Capability of DensE in modeling
relation patterns

In this Section, we provide a detailed analysis on
how our method tend to model each relation pat-
tern in an interpretable way. In our experiment,
we calculate the statistical rule of each degree of
freedom to reflect the effect of specific relation
patterns. In addition, we also sometimes compare
the embeddings of two relation types (or a relation



Table 5: Hyperparameters settings of DensE in this study.

Dataset
size k

Embedding
size b
Batch

γ
Margin

sample size n
Negative

α
adv temperature

WN18 200 512 12.0 1024 0.3
WN18RR 300 512 6.0 512 0.5
FB15k-237 800 1024 9.0 256 1.0
YAGO3-10 200 1024 24.0 512 1.0

Table 6: Performance comparison on WN18RR. Best results are labeled in bold and the second best are underlined.
First indicates the originally reported performance of each method. Recent shows the best results of more selected
recent models. Ours reports the performance of DensE. For MRR, the lower, the better; for other metrics, the
higher, the better.

WN18RR
Model MR MRR H@1 H@3 H@10

First

RESCAL (Wang et al., 2018) - 0.420 - - 0.447
TransE (Nguyen et al., 2017) 3384 0.226 - - 0.501

DistMult (Dettmers et al., 2018) 5110 0.430 0.390 0.440 0.490
ComplEx (Dettmers et al., 2018) 5261 0.440 0.410 0.460 0.510

Recent

RotatE (Sun et al., 2019) 3340 0.476 0.428 0.492 0.571
NagE (Yang et al., 2020) - 0.477 0.432 0.493 0.574

QuatE (Jia, 2019) 3472 0.481 0.436 0.500 0.564
D4-STE (Xu and Li, 2019) - 0.480 0.452 0.491 0.536

TuckER (Balažević et al., 2019) - 0.470 0.443 0.482 0.526
Rotate3D (Gao et al., 2020) 3328 0.489 0.442 0.505 0.579
HAKE (Zhang et al., 2020) - 0.497 0.452 0.516 0.582

Ours DensE 2934 0.492 0.443 0.509 0.586

Table 7: Performance comparison on FB15K-237. Best results are labeled in bold and the second best are under-
lined. First indicates the originally reported performance of each method. Recent shows the best results of more
selected recent models. Ours reports the performance of DensE. For MRR, the lower, the better; for other metrics,
the higher, the better.

FB15K-237
Model MR MRR H@1 H@3 H@10

First

RESCAL (Wang et al., 2018) - 0.270 - - 0.427
TransE (Nguyen et al., 2017) 357 0.294 - - 0.465

DistMult (Dettmers et al., 2018) 254 0.241 0.155 0.263 0.419
ComplEx (Dettmers et al., 2018) 339 0.247 0.158 0.275 0.428

Recent

RotatE (Sun et al., 2019) 177 0.338 0.241 0.375 0.533
NagE (Yang et al., 2020) - 0.340 0.244 0.378 0.530

QuatE (Jia, 2019) 176 0.311 0.221 0.342 0.495
D4-STE (Xu and Li, 2019) - 0.320 0.230 0.353 0.502

TuckER (Balažević et al., 2019) - 0.358 0.266 0.394 0.544
Rotate3D (Gao et al., 2020) 165 0.347 0.250 0.385 0.543
HAKE (Zhang et al., 2020) - 0.346 0.250 0.381 0.542

Ours DensE 161 0.351 0.256 0.386 0.544



Table 8: Performance comparison on YAGO3-10. Best results are labeled in bold and the second best are under-
lined. First indicates the originally reported performance of each method. Recent shows the best results of more
selected recent models. Ours reports the performance of DensE. For MRR, the lower, the better; for other metrics,
the higher, the better.

YAGO3-10
Model MR MRR H@1 H@3 H@10

First
DistMult (Dettmers et al., 2018) 5926 0.340 0.240 0.380 0.540
ComplEx (Dettmers et al., 2018) 6351 0.360 0.260 0.400 0.550

Recent
RotatE (Sun et al., 2019) 1767 0.495 0.402 0.550 0.670

D4-STE (Xu and Li, 2019) - 0.472 0.381 0.523 0.643
HAKE (Zhang et al., 2020) - 0.545 0.462 0.596 0.694

Ours DensE 1450 0.541 0.465 0.585 0.678

Table 9: Results of DensE and RotatE without self-adversarial negative sampling training technique, where “adv”
represents “self-adversarial”.

Model WN18 WN18RR FB15k-237 YAGO3-10

DensE (w/o adv) 0.950 0.486 0.306 0.452
RotatE (w/o adv) 0.947 0.470 0.297 0.439

type and an entity) per element, i.e., we perform
element-wise addition, subtraction, multiplication
on each embedding dimension. Then, we use the
distribution of these results to demonstrate how the
two compared embeddings agree with each other.
Note that below we use an addition subscript i to
denote each dimension in the embeddings.

E.1 Symmetry/anti-symmetry pattern

As pointed out in main text Section 7.1, for the
symmetry relation pattern, the scaling factor |Q|
of symmetric relation tend to be one, and the rota-
tion angle ψ should be 0 or π in [0, 2π). For anti-
symmetry relation pattern, one can easily check
that the scaling factor |Q| should also be one, but
the rotation angle ψ should be neither 0 nor π in the
range of [0, 2π). Here we show the distributions
of rotation angle ψ and scaling factor |Q| of four
relations with symmetry pattern in WN18RR (Sup-
plementary Figure 6 (a)-(h)). We also show distri-
butions of anti-symmetry relation pattern “mem-
ber_meronym” in Supplementary Figure 6 (i)-(j).
As we can see that the scaling factor is roughly
around one. For the rotation angle ψ, there are just
few elements fall into the bin that contains π. It
should be noted that since the embedding size k in
our model for WN18RR is set to be 300, the sum
of frequency in these distributions also equals to
300.



(a) |Qderivationally_related_form| (b) ψderivationally_related_form

(c) |Qalso_see| (d) ψalso_see

(e) |Qsimilar_to| (f) ψsimilar_to

(g) |Qverb_group| (h) ψverb_group

(i) |Qmember_meronym| (j) ψmember_meronym

Figure 6: Geometric interpretation of how DensE models symmetry patterns and anti-symmetry patterns. Each
row shows the distribution of |Q| and ψ for a given relation, respectively.



E.2 Inversion pattern

In main text Section 7.1, we assert that if two
relations r1 and r2 satisfy the inverse pattern, if
and only if they satisfy: |r1i| ∗ |r2i| = 1, θr1i =
θr2i , φr1i = φr2i and ψr1i + ψr2i = 2π. In Supple-
mentary Figure 7, we show a case of paired rela-
tions with inversion pattern from WN18 dataset,
namely has_part, part_of . We plot the scaling
factor |Q|, magnitude of the rotation ψ, and (θ, φ)
that describe the rotation axis for each relation (first
two columns), as well as their element-wise align-
ment results (the last column).

E.3 Composition pattern

E.3.1 Ambiguity in composition pattern
In a real-world KG (here we take a sub-graph from
WN18RR as an example), due to the ambiguity
issue mentioned in the main text (composition pat-
tern Property 2), there exist plenty of examples
where a third relation (the composite relation) can-
not be inferred given the two participating relations
alone (Supplementary Figure 8(a)). For example,
given r1 = derivationally_related_form and
r2 = hypernym, we have the composition pattern
as shown with the blue lines: (Trade(VB), deriva-
tionally_related_form, Trade(NN)), (Trade(NN),
hypernym, transaction) and (Trade(VB), deriva-
tionally_related_form , transaction). From
these cases, it seems that one can sum-
marize the composition pattern as: r3 =
r1 = derivationally_related_form, i.e.,
r1(h, h

′)Λr2(h
′, t) ⇒ r1(h, t). However, we

also have the triangle with red lines, i.e.,
(Trade(VB), derivationally_related_form, Selling),
(Selling, hypernym, mercantilism) and (Trade(VB),
synset_domain_topic_of, mercantilism). In these
cases, it looks like the composition pattern has the
form that r1(h, h′)Λr2(h′, t) ⇒ r3(h, t), where
r3 = synset_domain_topic_of . This ambigu-
ity means that the composition mode is not uni-
form but depends on specific entities and their
other neighborhoods. Therefore, in order to give
the model sufficient flexibility to learn this, our
model does not require all the dimensions in a
relation embedding to fit in one single compo-
sition mode (e.g., r1(h, h′)Λr2(h′, t) ⇒ r1(h, t)
or r1(h, h′)Λr2(h′, t) ⇒ r3(h, t)). In conse-
quence, the learned relation embedding for a com-
posite relation are actually distributed in a dis-
perse manner, with the majority of embedding di-
mensions following mode r1(h, h′)Λr2(h′, t) ⇒

r1(h, t), and some minor portions following
r1(h, h

′)Λr2(h
′, t)⇒ r3(h, t), which is consistent

with the abundance of each mode in the training
data.

E.3.2 Case study: a two-hop composition
pattern

As we mentioned in the main text, in a composition
pattern, the relations involved are not necessarily
different (composition pattern Property 3). Here
we discuss the simplest case of a two-hop relation
composition. Even under the assumption that the
composite relation can be inferred from its compo-
sition alone (i.e., an unambiguous composition),
there are still five possible situations, as shown in
Supplementary Figure 8(b).

Here we provide a detailed analysis on these
five situations, using real cases in WN18RR as
examples (Supplementary Figure 8(a)).

Situation 1: r1, r2 and r3 are all the same,
e.g., the triangle in yellow color with three triplets:
(man, has_part, arm), (arm, has_part, paw)
and (man, has_part, paw). To satisfy the com-
position relation constraint, in principle the model
can adopt several approaches to fit this situation.
From the perspective of relation embedding, it can
learn to fit |Qhas_part| = 1 or ψhas_part ∈ {0, 2π}.
Also, in terms of interaction between entities and
relations, it can also learn to align the rotation
axis of relation with the entity embedding (see
Supplementary Figure 9(c), showing the differ-
ences between the θ component of r1 in the mode
r1(h, h

′)Λr1(h
′, t)⇒ r1(h, t) and the correspond-

ing head entities h in spherical coordinate system).
Note that when the rotation axis aligns with head
entity embedding in spherical coordinate system,
the composition pattern can be modeled by the scal-
ing factor alone, i.e., |Qhas_part|2 = |Qhas_part|,
regardless of the rotation magnitude ψ.

In this case, we see the model mainly adopts
the first approach (Supplementary Figure 9(a)), as
|Qhas_part| is roughly around 1. In addition, the
partial alignment between relation rotation axis
and entities is also observed (Supplementary Fig-
ure 9(c)). In contrast, for ψhas_part, we see very
few dimensions satisfy the condition (0 or 2π),
which is also consistent with the dominate role
of scaling factor in this case. Noticed the fact that
the relation “hypernym” dominates the composite
patterns (Refer to Table 3 in the main text), we also
find that r1 = r2 = r3 = hypernym pattern exists
in the WN18RR dataset. The above similar analy-



(a) |Qhas_part| (b) |Qpart_of | (c) |Qhas_part| ∗ |Qpart_of |

(d) ψhas_part (e) ψpart_of (f) ψhas_part + ψpart_of

(g) θhas_part (h) θpart_of (i) θhas_part − θpart_of

(j) φhas_part (k) φpart_of (l) φhas_part − φpart_of

Figure 7: Geometric interpretation of how DensE models inverse pattern, using an example of
(has_part, part_of) from WN18. At each row, we show the embedding from one degree of freedom of our
model. The first two columns show the embeddings of each relation type, and the last column shows the alignment
of the two embeddings regarding a specific degree of freedom.



(a)

(b)

Figure 8: (a) A representative subgraph from WN18RR to show ambiguity. (b) The relations involved in a compo-
sition pattern are not necessarily to be mutually different.



sis can be done for this case. The relevant results
are shown in Supplementary Figure 9(d), (e), and
(f), respectively.

Situation 2: r1 and r2 are the same, but
not equal to r3. An example is given by the
triangle in green with three triplets: (Trade(V B),
derivationally_related_form, Selling),
(Selling, derivationally_related_form,
Sell) and (Trade(V B), verb_group,
Sell). As mentioned in main text Sec-
tion 7.1, we expect the model to learn
ψverb_group = 2ψderivationally_related_form and
|Qverb_group| = |Qderivationally_related_form|2,
both of which are confirmed in this case. Besides
this, we also observe that the rotation axes of the
two relations are aligned on some dimensions,
i.e, θverb_group = θderivationally_related_form
and φverb_group = φderivationally_related_form.
The corresponding distributions are shown
in Supplementary Figure 10, where we have
r1 = r2 = derivationally_related_form and
r3 = verb_group.

Situation 3: r1 and r3 are the same,
but not equal to r2, e.g., the trian-
gle in blue color with three triplets set:
(Trade(V B),derivationally_related_form
, Trade(NN)), (Trade(NN), hypernym,
transaction) and (Trade(V B),
derivationally_related_form, transaction).
Here we compare the difference between the em-
bedding of a composite relation and the embedding
calculated by multiplying each relation in the rela-
tion path. We have already shown the distribution
of ψ in the main context. Other distributions are
shown in Supplementary Figure 11, where we have
r1 = r3 = derivationally_related_form and
r2 = hypernym.

Situation 4: r2 and r3 are the same,
but not equal to r1, e.g., the triangle
in purple color with three triplets set:
(Trade(V B), hypernym, transact),
(transact, derivationally_related_form,
transaction) and (Trade(V B),
derivationally_related_form, transaction).
Here we compare the difference between
the embedding of a composite relation and
the embedding calculated by multiplying
each relation in the relation path. Related
distributions are shown in Supplementary Fig-
ure 12, where we have r1 = hypernym and
r2 = r3 = derivationally_related_form. In

Table 10: Performance comparison on WN18. The per-
formances of RotatE are obtained from the original pa-
per.

Model MR MRR H@1 H@3 H@10

RotatE 309 0.949 0.944 0.952 0.959
DensE 285 0.950 0.945 0.954 0.959

this case, we see that the composition pattern given
by O(r2)O(r1) is learned to have similar scaling
factor |Q| and rotation magnitude ψ with r2, and
the rotation axes (θ, φ) are also partially aligned.

Situation 5: r1, r2 and r3 are mutually
different relations, e.g., the triangle in red
color with three triplets set: (Trade(V B),
derivationally_related_form, Selling),
(Selling, hypernym, mercantilism) and
(Trade(V B), synset_domain_topic_of ,
mercantilism). Here we compare the difference
between the embedding of a composite relation
and the embedding calculated by multiplying each
relation in the relation path. Related distributions
are shown in Supplementary Figure 13, where we
have r1 = derivationally_related_form, r2 =
hypernym and r3 = synset_domain_topic_of .
The reason for relatively large disper-
sion here is discussed in the main text,
i.e., the majority of triplets exemplify
derivationally_related_form Λ hypernym ⇒
derivationally_related_form (See also
the discussion above of Situation 3), while
only a small portion have the pattern
derivationally_related_form Λ hypernym ⇒
synset_domain_topic_of .

F Link prediction results on WN18
dataset

In the main text, we report the MRR and H@10 per-
formance on WN18RR, FB15K237 and YAGO3-
10. Here, we also report our model’s performance
on WN18 (Supplementary Table 10), from which
inverse relations are extracted by the demonstra-
tion of geometric interpretation of DensE (main
text Figure 3).

G Variance of the prediction
performance

The mean values and corresponding variance
of MRR on WN18, WN18RR, FB15k-237 and
YAGO3-10 datasets are shown in Supplementary



(a) |Qhas_part| (b) ψhas_part (c) θ(O(r1))− θ(h) (has_part) (d) |Qhypernym|

(e) ψhypernym (f) θ(O(r1))− θ(h) (hypernym)

Figure 9: Geometric interpretation of composition patterns in Situation 1.

(a) Q(O(r3)−Q2(O(r1)) (b) ψ(O(r3))− 2 ∗ ψ(O(r1))

(c) θ(O(r3))− θ(O(r1)) (d) φ(O(r3))− φ(O(r1))

Figure 10: Geometric interpretation of composition pat-
terns in Situation 2.

(a) Q(O(r2)O(r1))−Q(O(r1)) (b) ψ(O(r2)O(r1))− ψ(O(r1))

(c) θ(O(r2)O(r1))− θ(O(r1)) (d) φ(O(r2)O(r1))− φ(O(r1))

Figure 11: Geometric interpretation of composition pat-
terns in Situation 3.

(a) Q(O(r2)O(r1))−Q(O(r2)) (b) ψ(O(r2)O(r1))− ψ(O(r2))

(c) θ(O(r2)O(r1))− θ(O(r2)) (d) φ(O(r2)O(r1))− φ(O(r2))

Figure 12: Geometric interpretation of composition pat-
terns in Situation 4.

(a) Q(O(r2)O(r1))−Q(O(r3)) (b) ψ(O(r2)O(r1))− ψ(O(r3))

(c) θ(O(r2)O(r1))− θ(O(r3)) (d) φ(O(r2)O(r1))− φ(O(r3))

Figure 13: Geometric interpretation of composition pat-
terns in Situation 5.



Table 11. The results are obtained by training
DensE with five different random seeds, showing
that the prediction performance of DensE is rela-
tively stable.
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