
Generative models with kernel distance in data space

Szymon Knop, Marcin Mazur, Przemysław Spurek, Jacek Tabor, Igor Podolak
Faculty of Mathematics and Computer Science

Jagiellonian University, Krakw, Poland

Abstract
Generative models dealing with modeling a joint data dis-
tribution are generally either autoencoder or GAN based.
Both have their pros and cons, generating blurry images or
being unstable in training or prone to mode collapse phe-
nomenon, respectively. The objective of this paper is to con-
struct a model situated between above architectures, one that
does not inherit their main weaknesses. The proposed LCW
generator (Latent Cramer-Wold generator) resembles a clas-
sical GAN in transforming Gaussian noise into data space.
What is of utmost importance, instead of a discriminator,
LCW generator uses kernel distance. No adversarial train-
ing is utilized, hence the name generator. It is trained in two
phases. First, an autoencoder based architecture, using kernel
measures, is built to model a manifold of data. We propose
a Latent Trick mapping a Gaussian to latent in order to get
the final model. This results in very competitive FID values.

Introduction
Generative modeling is a fast-growing area of machine
learning which deals with modeling a joint distribution of
data. Generative modeling’s key task is to train a generator
network to produce new samples from a given data space by
transforming samples from noise distribution. Training usu-
ally minimizes the dissimilarity between real and generated
data distributions.

Widely used approaches to generative modeling are
GANs and models based on autoencoder architecture. Au-
toencoder consists of an encoder E : X −→ Z and a de-
coder D : Z −→ X (a generator) networks. Training boils
down to minimizing a tuned sum of a reconstruction error
and some measure of similarity between the distribution of
encoded data PE(X) and a given prior (noise) distribution PZ

on the latent Z . GAN consists of a generator G : Z −→ X
and a discriminator that distinguishes between samples from
real PX and “fake” PG(Z) data distributions. It learns adver-
sarially by utilizing a minimax game rule.

Both approaches have their pros and cons. Autoencoder
based generative methods produce theoretically elegant gen-
erative models with the drawback that they tend to generate
blurry samples when applied to natural images. On the other
hand, their main advantage over GAN based models is that
they allow fitting manifold of data and approximate proba-
bility distribution simultaneously (Goodfellow et al. 2014).

Contrary to GANs, in autoencoder based models, each data
point can easily be directly mapped into latent space, needed
in conditional data generation.

GAN based methods’ main advantage is their ability to
produce sharp images, almost indistinguishable from real
ones. On the other hand, GANs are harder to train, unsta-
ble and may suffer from the mode collapse problem, where
the resulting model is unable to capture all the true data
distribution variability. GAN based models imitate real data
well but frequently do not cover the training data set’s entire
space (Heusel et al. 2017).

The objective of this paper is to show that it is achiev-
able to effectively train a model that does not inherit the
weaknesses of the above models, such as blurry images or
complex adversarial training, and provides for better results.
The proposed LCW generator1 is obtained in a two-stage
training and uses kernel measures in all cost functions. The
discriminator network is no longer necessary.

Our contributions can be summarized as follows:
• we introduce a new LCW generator, which resembles

a classical GAN in transforming Gaussian noise into data
space and use kernel distance instead of adversarial train-
ing,

• we show that kernel based metric can be used as recon-
struction error in classical autoencoder based generative
models by introducing a CW2 model that achieves state-
of-the-art FID scores in it’s category,

• we propose a Latent Trick, which can be applied to any
model with latent space to construct density-based inter-
polations.

Motivation
In the case of simple data sets, e.g. MNIST or Fashion-
MNIST, it is possible to effectively train a generator net-
work by directly minimizing an estimator of some distance
between data and model distributions (Deshpande, Zhang,
and Schwing 2018; Tabor et al. 2018). Unfortunately, such
models may give poor results for the CelebA data set (see
Tab. 1).

At first glance, it seems that kernel distance cannot be ef-
fectively applied in high dimensional spaces. But it turns out

1 The code is available https://github.com/gmum/lcw-generator

ar
X

iv
:2

00
9.

07
32

7v
1

 [
cs

.L
G

]
 1

5
Se

p
20

20

https://github.com/gmum/lcw-generator

Figure 1: The LCW generator is trained in a two-stage
procedure. First, a generative autoencoder (CW2 model) is
trained (see Part A). In the second stage, a new Latent gen-
erator neural network is introduced and trained to trans-
port a standard Gaussian noise distribution N (0, I) into the
autoencoder latent space (see Part B). The final model is
a concatenation of the latent generator and the decoder (see
Part C).

that the CW distance used in the CW autoencoder (CWAE)
model introduced in Tabor et al. (2018), to measure dissim-
ilarity between distribution of encoded data and the Gaus-
sian prior on the latent space, can also be efficiently utilized
as a measure of reconstruction error (see the CW2 model
introduction below). This autoencoder model obtains state-
of-the-art results, suggesting that the problem does not lie in
an objective function but in a training procedure (see Tab. 1).

Inferior results in previous to CW2 models were due to
mini-batch training in high dimensional spaces with high
noise. The model needs to minimize both the reconstruc-
tion error and the latent distribution distance from the prior,
which might be complicated for non-simple data sets. In the
proposed model, both are computed using kernel distances,
and the training is two-step (see Fig. 2), which partly sepa-
rates the responsibility for reconstruction/distribution train-
ing. Hence much better results are possible.

General idea
The proposed LCW generator is trained in a two-stage pro-
cedure (see Fig. 1). First, the CW2 model, a modification of
CWAE (Tabor et al. 2018), is pretrained (see next section for
details). Such architecture gives state-of-the-art FID score in
class of generative autoencoder models but does not gener-
ate images as sharp as GANs do. To solve this problem the
second stage of the construction is applied. There, the Latent
Trick (defined thoroughly in later section), in which the cur-
rent autoencoder architecture is fixed and the new latent gen-
erator is trained to transport standard Gaussian noise distri-
butionN (0, I) into the autoencoder latent space. This better
approaches the encoded data distribution. The Latent Trick
is implemented as a fully connected neural network. Conse-

Figure 2: A classical decoder must simultaneously render
manifold of data and transport a given prior into data space
to model data distribution (see top row). In the proposed
modification, we first model manifold of data with autoen-
coder and then model probability distribution of data using
a Latent generator (see bottom row). This increases the gen-
erativity of the whole model. Visualization of data manifold
inspired by (Socher et al. 2013).

quently, the final model is given as concatenation of the la-
tent generator and previously trained decoder. The CW2 au-
toencoder may still be used on its own.

CWAE CW-Generator SW-Generator CW2

MNIST 23.63 16.48 17.85 17.44
F-MNIST 49.95 31.05 48.02 33.34
CelebA 49.69 87.01 141.03 47.09

Table 1: FID scores on MNIST, Fashion-MNIST and
CelebA data sets obtained with CWAE (state-of-the-art au-
toencoder based generative model), classical CW-Generator
(see Tabor et al. (2018) for both), SW-Generator (Desh-
pande, Zhang, and Schwing 2018) and the proposed CW2.

We illustrate the concept of the model in Fig. 2. Classical
generative autoencoder’s decoder (see the top row in Fig. 2)
must simultaneously render manifold of data and transport
a given prior distribution on the latent into data space to
model data distribution. In the proposed solution, the data
manifold is modeled first and then the probability distribu-
tion of data model is expanded using the Latent generator
(see the bottom row in Fig. 2). Above is the crucial aspect
of the proposed solution which inherits the positive proper-
ties of both autoencoder and GAN based generative meth-
ods. A stable model is obtained, with precise autoencoder
latent space producing high-quality images without adver-
sarial training.

CWAE and CW2 models
In general, all autoencoder based generative models are
trained to minimize an objective function of the form

J (X; E ,D) = Err(X,D(E(X))) + λDM(PE(X), PZ),

C
W

A
E

+L
T

L
C

W

Figure 3: Results of CWAE+LT and LCW generator models trained on CelebA data set. As we can see, we obtain state-of-the-art
samples and interpolations in autoencoder based generative models.

where Err is a reconstruction error term, λ is a hyperpa-
rameter and DM denotes any dissimilarity, not necessarily
non-negative, measure between probability distributions on
the latent Z . CWAE uses the mean squared error MSE, log-
arithm of the square of the CW distance dCW and N (0, I)
as the prior PZ , which leads to the following formula

MSE(X,D(E(X))) + λ log d2CW(PE(X),N (0, I)).

Following Tabor et al. (2018), we emphasize that dCW can
be calculated analytically and approximated as a distance
between a latent sample Z = (zi)

n
i=1 and the standard Gaus-

sian prior. Specifically,

2
√
π d2CW(Z,N (0, I)) ≈ 1

n2

∑
ij(γn +

‖zi−zj‖2
2DZ−3)−

1
2

+(1 + γn)
− 1

2 − 2
n

∑
i(γn + 1

2 + ‖zi‖2
2DZ−3)

− 1
2 ,

consequently giving the following CWAE cost function

JCW = MSE(X,D(E(X))) + λ log d2CW(E(X),N (0, I)),

where DZ = dimZ and γn bandwidth is chosen using Sil-
verman’s rule of thumb, i.e. γn = σ̂(4

3n)
2/5, where σ̂ de-

notes a standard deviation that we assume to be equal to 1 as
we deal with the standard Gaussian distribution.

We want to point out that the CW distance is given
by a characteristic kernel with a closed-form for spherical
Gaussians. Moreover, to the best of our knowledge, CWAE
model was the first kernel distance based concept that re-
quired no sampling from the prior distribution.

Taking into consideration the results of Tabor et al.
(2018), it is also possible to obtain the following approxi-
mate analytical formula that expresses dCW for two given
samples X = (xi)

n
i=1 and Y = (yi)

n
i=1in X

2
√
π d2CW(X,Y) ≈ 1

n2

∑
ij(γn +

‖xi−xj‖2
2DX−3)−

1
2 +

1
n2

∑
ij(γn +

‖yi−yj‖2
2DX−3)−

1
2 − 2

n

∑
ij(γn +

‖xi−yj‖2
2DX−3)−

1
2 ,

where DX = dimX and γn is calculated using standard
deviation of joined X and Y samples.

This suggests using the CW distance not only in the la-
tent, but also in the data space as Err(X,D(E(X))). Con-
sequently we introduce the CW2 model with the following
objective function2

JCW2 = d2CW(X,D(E(X))) + λ log d2CW(E(X),N (0, I)),

minimized in LCW generator construction’s first phase. The
square sign in CW2 denotes that it uses the CW distance
twice.

Latent Trick
Note that in the first stage (see Part A in Fig. 1) of model
construction, the latent distribution is forced to be as close
as possible to the Gaussian prior. Hence the obtained CW2

model is certainly generative.
2It should be mentioned here that this is not a classical autoen-

coder function, because a reconstruction error does not depend di-
rectly on differences between xi and D(E(xi)) as in MSE, but is
based on a distance between distributions.

AE CWAE CW2

AE+LT CWAE+LT LCW

Figure 4: The top row shows encoded data distributions
learned by AE, CWAE and CW2 models on Fashion-
MNIST’s validation data set. Note that they are close to but
different from the standard Gaussian noise. However, they
are very similar to bottom row figures, which present the
LCW generator’s output, applied for the above models, i.e
the standard Gaussian distribution transported to respective
latent spaces.

However, there remain two fundamental problems. One
is because there are empty holes/spaces in the latent space ,
i.e. parts with very low data density being mapped. In the
classical autoencoder based approach, there is a need for
a compromise between reconstructing and generating abil-
ities. A possible solution is to use an appropriate hyperpa-
rameter to balance the two terms (Higgins et al. 2017) but,
in practice, it increases the generativity of the model at the
expense of reconstruction.

Second problem seems to be more fundamental (Li, Swer-
sky, and Zemel 2015; Dziugaite, Roy, and Ghahramani
2015; Li et al. 2017). It is related to using mini-batch train-
ing in high dimensional data space with much lower intrin-
sic data dimension. Each batch contains only a small, typi-
cally unbalanced, subset of a data set. We hypothesize that
it affects kernel methods’ effectiveness because they need
to learn representation and data distribution simultaneously,
see Fig. 2.

To solve the above problems, we introduce the Latent
Trick, which is the second stage of our procedure. It involves
the creation of a latent generator

LG : (Z ′,N (0, I)) −→ (Z, PE(X)),

which is a neural network trained to transform the standard
Gaussian distribution (on the new Z ′ space) so that it re-
sembles the distribution of encoded data on CW2 model’s
latent Z . To be precise, the objective is to minimize the fol-
lowing function

JLT(X,Z ′;LG) = d2CW(E(X),LG(Z ′))),
where X and Z ′ denote a data sample and a sample from
N (0, I) distribution, respectively. Consistently, to express

Data set Method Learn. λ Latent Noise Rec. FID
rate dim dim error score

MNIST AE 1.e-3 - 8 - 11 52
AE+LT 5.e-4 - 8 8 - 22
CWAE 1.e-3 1 8 - 11 23
CWAE+LT 5.e-4 - 8 8 - 20
CW2 1.e-3 1 8 - 14 17
LCW 5.e-4 - 8 8 - 14

F-MNIST AE+LT 5.e-4 - 8 8 - 41
CWAE 1.e-3 10 8 - 10 49
CWAE+LT 5.e-4 - 8 8 - 38
CW2 1.e-3 1 8 - 13 33
LCW 5.e-4 - 8 8 - 28

CelebA AE 1.e-3 - 64 - 66 328
AE+LT 5.e-4 - 128 32 - 45
CWAE 5.e-4 5 64 - 68 49
CWAE+LT 5.e-4 - 128 32 - 31
CW2 5.e-4 0.2 64 - 71 47
LCW 5.e-4 - 128 32 - 33

Table 2: Comparison of different architectures on MNIST,
Fashion-MNIST and CelebA data sets. All models outputs
except AE are similarly close to the normal distribution.
CWAE achieves the best value of FID score (lower is better).
All hyperparameters were found using a grid search (see ap-
pendix).

the CW distance an appropriate approximation formula is
used (analogous to that in the previous section).

Note that the Latent Trick phase allows to rectify model’s
generative power without losing it’s reconstruction qual-
ity. Consequently, the final LCW generator is provided as
a function LGCW : Z ′ −→ X , which transport a Gaussian
noise sample Z ′ into the data space, via concatenation of LG
and D (compare diagram in Fig. 1), i.e.

LGCW(Z ′) = D(LG(Z ′)).
The influence of the Latent Trick is visualized in Fig 4.

Top row shows the mapping of the whole data set on the la-
tent (in R2 here for simplicity) for AE, CWAE, and CW2

models are shown, while the bottom row shows mapping
of the Gaussian noise through Latent Trick onto the same
space. The corresponding figures seem to differ slightly, i.e.
the LG mappings can be understood as generalizations of
the encoded data samples. Hence the small discrepancies.

Latent Trick can be used not only for the above construc-
tion but to any classical autoencoder based generative model
that uses MSE as a reconstruction error. We examine some
of these models in the Experiments section.

Related work
We divided the related work section into two parts. First,
we describe existing approaches to train GAN style models
(Generators) with kernel measures in data space. Then we
discuss existing solutions improving autoencoder properties
by adding a neural network in latent space.

AE CWAE CW2

Figure 5: Reconstructions quality of AE, CWAE and CW2 (first stage of LCW generator) models trained on CelebA data set.
Odd columns correspond to the real test points, while even to their reconstructions.

Generators Generative Moment Matching Network
(GMMN) (Li, Swersky, and Zemel 2015; Dziugaite, Roy,
and Ghahramani 2015) is a deep generative model that
differs from Generative Adversarial Network (GAN) (Good-
fellow et al. 2014) in replacing GAN’s discriminator with
a two-sample test based on kernel maximum mean discrep-
ancy (MMD) (Gretton et al. 2012). Unfortunately, these
models work only for reasonable simple data sets like
MNIST and Fashion-MNIST.

To solve such problems (Li et al. 2017) propose an MMD
GAN. Authors improve the model expressiveness of GMMN
and its computational efficiency by introducing adversarial
kernel learning to replace a fixed Gaussian kernel in the orig-
inal GMMN. The proposed algorithm is similar to GAN,
aiming to optimize two neural networks in a minimax set-
ting, but the objective’s meaning is different. In GAN we
train a discriminator (binary) classifier to distinguish two
distributions. MMD-GAN discriminates two distributions
with a two-sample test via MMD, but with an adversarially
learned kernel. It is similar to our approach in using kernel
distance but, contrary to LCW generator proposed, still uses
adversarial training.

Deshpande, Zhang, and Schwing (2018) show that it is
possible to train a GAN like architecture (namely an SW-
Generator) by substituting discriminator with kernel mea-
sure in data space. In practice, the authors use a Sliced
Wasserstein distance. Since the sliced method can reduce
data dimensionality by random projections, a model can
be trained effectively using kernel measures in high dimen-
sional spaces. Unfortunately, their model works only for rea-
sonable simple data sets like MNIST and Fashion-MNIST.

Autoencoder based generative models First and one of
the most popular approaches to autoencoder based genera-
tive models is VAE (Kingma and Welling 2014). In prac-
tice, such models give correct results, but geometry of latent
space might have some very low probability areas (empty
spaces) (Tolstikhin et al. 2018). An idea to join the training
algorithms and, following it, the merits of autoencoders and

GANs, was presented early in a widely cited paper (Larsen
et al. 2016). Another method to solve such problems can be
obtained by adding additional architecture to the latent, in
order to obtain better representation. For example, Ziegler
and Rush (2019); Xiao, Yan, and Amit (2019) apply nor-
malizing flows (Kingma and Dhariwal 2018) in the latent
space. Thanks to this the latent distribution (which is similar
to the standard Gaussian) is transformed into the Gaussian
prior. Dai and Wipf (2018), on the other hand, present sim-
ilar solution based on adding additional autoencoder in the
latent space (TwoStageVAE model). They present theoreti-
cal results stating that VAE model does not properly approx-
imate properly prior distribution in the latent space. But, as
they propose, the second VAE model is able to correct dis-
tribution in the latent. Deja et al. (2020) use Sinkhorn au-
toencoder with Noise Generator (e2e SAE), a simple fully
connected architecture which transfers Gaussian noise into
the latent space. This model is trained end-to-end and gives
similar results to WAE-MMD (Tolstikhin et al. 2018).

Experiments
In this section, we empirically validate the proposed LCW
generator model on standard benchmarks for autoencoder
based generative models: CelebA, MNIST and Fashion-
MNIST. Since MNIST and Fashion-MNIST are relatively
simple, we use them rather as toy examples. CelebA data
sets will be used to show real difference between models,
see Tab. 3.

It should be mentioned that GAN models obtain essen-
tially better results. But our goal is not to outperform GANs
but rather to reduce the gap between the generative quality
of the GAN based and non-adversarial AE based models.
At the same time, as a “by-product”, we propose the CW2

model. Still being an autoencoder based model, it obtains
much better FID values than other autoencoders (see, e.g.,
Tab. 4).

Quantitative tests To quantitatively compare LCW gen-
erator with other models, in the first experiment we compare

Test interpolation Random sample

A
E

A
E

+L
T

Figure 6: Results of AE and AE+LT models trained on CelebA data set. Interpolation in AE (top row) are constructed linearly
in the latent between “endpoint” images from AE+LT, while in AE+LT a linear interpolation between samples from N (0, I) is
performed to be mapped as LG(z′) points. This corresponds to two types of interpolations in Fig. 7. As we can see, classical
AE is not a generative model (top right). By applying Latent Trick we produce generative model AE+LT (bottom right).

CW-Generator SW-Generator LCW generator

MNIST 16.48 17.85 14.92
F-MNIST 31.05 48.02 28.04
CelebA 87.01 141.03 33.07

Table 3: FID scores on MNIST, Fashion-MNIST and
CelebA data sets obtained with CW-Generator, SW-
Generator and LCW generator.

different models which use kernel distance in data space,
i.e. CW–, SW– and LCW generators. To assess results the
Fréchet Inception Distance FID is used (Heusel et al. 2017).
As it can be easily seen, LCW generator outperform other
approaches. In the case of MNIST and Fashion-MNIST data
set the difference is smaller than in the case of CelebA, since
the two first data sets are quite simple.

In the other experiment we follow the classical compe-
tition setup for generative models on Fashion-MNIST data
set. In agreement with the qualitative studies, we observe
FID values of LCW generator to be better (lower) than those
for VAE, CWAE, SWAE (Kolouri et al. 2019), WAE-MMD
and WAE-GAN (Tolstikhin et al. 2018).

We stress here that LCW generator on CelebA achieves
FID score 33, compared to 52 and 42 achieved by WAE-

Model FID Model FID Model FID

VAE 60 2Stage-VAE∗ 34 CWAE + LT 31
CWAE 49 CW2 47 LCW 33
WAE 52 WAE-GAN∗ 42 e2e SAE∗ 54

DCGAN∗ 12.5 WGAN-GP∗ 20.3 WGAN-div∗ 17.5

Table 4: FID values for several compared models, com-
puted on the CelebA data set. The Latent Trick addition
expands the model generative capabilities. Models marked
with an asterisk have results taken from literature. The DC-
GAN value was trained with a special two time scale algo-
rithm (Heusel et al. 2017). WGAN have convolutional archi-
tectures and the results are taken from (Wu et al. 2017).

MMD and WAE-GAN (see Tab. 4). It should be mentioned
that LCW generator gives similar results to 2Stage-VAE and
CWAE+LT, which also use two stage training but in first part
use MSE as a reconstruction cost.

Ablation study In this paragraph, we show how the
proposed two-stage training procedure works in various
autoencoder-based models. As it was already mentioned, the
Latent Trick is a possible solution to the problem with si-

Figure 7: Interpolations in CWAE+LT (top row) and LCW
generator (bottom row) models’ latent spaces, trained on
CelebA data set. The red dots show a GAN like linear inter-
polation αiLG(z′1) + (1− αi)LG(z′k) for z′1, z

′
k ∼ N (0, I),

while the blue ones are obtained by mapping a linear inter-
polation αiz

′
1 + (1− αi)z

′
k via LG. In the latter case curves

follow the latent distribution and avoid empty spaces.

multaneous modeling of a manifold of data and generativity
of the model. We claim that we model the manifold of data
in the first stage, while the latent distribution in the second
stage .

To test whether this hypothesis is true, we apply the La-
tent Trick to some models. We start with a standard autoen-
coder (AE), which models only the manifold of data. It turns
out that such models work surprisingly well (see the differ-
ence between AE and AE+LT methods in Tab. 2). It should
be mentioned that AE+LT gets FID score of 45 on CelebA,
which is comparable to that of WAE-GAN’s (42) and WAE-
MMD’s (52). It is still an open question why the Latent Trick
added to CWAE and CW2 models performs essentially bet-
ter score than AE+LT (see Tab. 2). It seems that in AE we are
able to model data manifold but latent representation is not
constrained, so the Latent Trick is not able to describe dis-
tribution of data efficiently. In Fig. 6 we present qualitative
tests obtained by interpolation and sampling.

Summarizing, Latent Trick can be used to transform any
autoencoder based architecture into generative model.

Qualitative tests Since the LCW generator, similarly to
GAN models, does not produce reconstructions, we com-
pare only those of CW2 model (trained as the first stage of
LCW generator) to ones produced by CWAE and vanilla AE,
see Fig. 5. We want to stress that CW2 produces quite accu-
rate reconstructions even though it is not explicitly required
(point to point) by its cost function.

Interpolations It is challenging to see the different inter-
polation abilities of the proposed LCW generator model and
its parts. The least interesting is that using the CW2 model
only since it is a simple, autoencoder like, interpolation in

the latent Z space. Thus we shall skip it.
On the other hand, the construction of the Latent Trick

allows to make two interesting interpolations. First, let
us draw z′1, z

′
k ∼ N (0, I), i.e. two points from Latent

Trick’s input space Z ′. Mapping z1 = LG(z′1), zk =
LG(z′k) it is possible to perform a GAN like type lin-
ear interpolation z1, z2, . . . , zk in the latent Z . On the
other hand, there is a possibility to produce a linear in-
terpolation z′1, z

′
2, . . . , z

′
k in Z ′ and map all those points

to LG(z′1),LG(z′2), . . . ,LG(z′k). This produces a density-
based interpolation since LG network is trained to gener-
ate the latent distribution. The results can be seen in Fig. 7,
where red dots show the standard like interpolation, while
blue ones are obtained using the Latent Trick. Note that in
the latter case the model can follow areas of high data den-
sity.

Additionally, using all considered models we can con-
struct interpolation and sampling, see Fig. 3. In the case of
sampling we can see that LCW generator gives state-of-the-
art autoencoder based faces.

The above clearly shows that the proposed LCW gener-
ator model can better map the latent space. Several meth-
ods for interpolation in latent spaces provide sophisti-
cated approaches to computing the latent space data map-
ping density, frequently using Riemannian curvatures, see
e.g. (Agustsson et al. 2017; Arvanitidis, Hansen, and Hauber
2018; Lesniak, Sieradzki, and Podolak 2019). The proposed
model generates density-based interpolations thanks only to
applying the Latent Trick.

Architecture
For CWAE model we used hyperparameters reported in Ta-
bor et al. (2018). For CW2 model, SW-Generator and
CW-Generator we performed a grid search over batch-
size in {64, 128, 256, 512} and learning rate values in
{0.005, 0.0025, 0.001, 0.0005, 0.00025}. For every model,
we reported results for configuration that achieved the low-
est value of FID Score.

Autoencoder feed-forward architecture for MNIST or
Fashion-MNIST (28× 28 images)

encoder three feed-forward ReLU layers, 200 neurons
each,

decoder three feed-forward ReLU layers, 200 neurons
each followed by feed-forward sigmoid layer.

Autoencoder architecture for CelebA (with images cen-
tered and cropped to 64× 64 with 3 color layers):

encoder
four convolution layers with 4×4 filters, each layer was
followed by a batch normalization (consecutively 128,
256, 512, and 1024 channels) and ReLU activation,

decoder
dense 1024 neuron layer,
three transposed-convolution layers with 4 × 4 fil-
ters, and each layer followed by a batch normalization
with ReLU activation (consecutively 512, 256, and 128
channels),

transposed-convolution layer with 3 × 3 filter, 3 chan-
nels and tanh activation.

For LCW generator architecture we used five feed-
forward RELU layers with batch normalization and 512 neu-
rons. The final layer was a feed-forward layer with a linear
activation.

Conclusions
In this paper, we presented the new LCW generator. Accord-
ing to our knowledge, it is the first model that can be effec-
tively trained using a kernel distance in high dimensional
data sets. It needs no adversarial training and does not suf-
fer from “mode collapse”. Consequently, the proposed ap-
proach might be situated between autoencoder and GAN
models, while not inheriting their main weaknesses.

Our experiments show that LCW generator gives superior
FID values for generated samples. Another interesting fea-
ture is that it is a natural generator of density-based interpo-
lations in the latent space. Its ability to omit all low-density
areas might give a robust tool for generating new samples
with a smooth changing of features.

Finally, we want to stress that the Latent Trick may be
applied to any already trained autoencoder based model, to
increase its generative capabilities.

References
Agustsson, E.; Sage, A.; Timofte, R.; and Van Gool, L.
2017. Optimal Transport Maps for Distribution Preserv-
ing Operations on Latent Spaces of Generative Models.
arXiv:1711.01970 .

Arvanitidis, G.; Hansen, L. K.; and Hauber, S. 2018. Latent
Space Oddity: on the Curvature of Deep Generative Mod-
els. In Proc. of the Int. Conf. on Learning Representations,
ICLR’2018.

Dai, B.; and Wipf, D. 2018. Diagnosing and Enhancing VAE
Models. In Proc. of the Int. Conf. on Learning Representa-
tions, ICLR’2018.

Deja, K.; Dubiński, J.; Nowak, P.; Wenzel, S.; and Trzciński,
T. 2020. End-to-end Sinkhorn Autoencoder with Noise Gen-
erator. arXiv:2006.06704 .

Deshpande, I.; Zhang, Z.; and Schwing, A. 2018. Gener-
ative Modeling Using the Sliced Wasserstein Distance. In
Proc. of the IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR’2018, 3483–3491.

Dziugaite, G. K.; Roy, D. M.; and Ghahramani, Z. 2015.
Training Generative Neural Networks via Maximum Mean
Discrepancy Optimization. In Proc. of the Conf. on Uncer-
tainty in Artificial Intelligence, UAI’15.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative Adversarial Nets. In Adv. in Neural Infor-
mation Processing Systems, NeurIPS’2014, 2672–2680.

Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Schölkopf, B.;
and Smola, A. 2012. A Kernel Two-sample Test. The Jour-
nal of Machine Learning Research 13(1): 723–773.

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. GANs Trained by a Two Time-scale
Update Rule Converge to a Local Nash Equilibrium. In Adv.
in Neural Information Processing Systems, NeurIPS’2017,
6626–6637.
Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.;
Botvinick, M.; Mohamed, S.; and Lerchner, A. 2017. β-
VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework. In Proc. of the Int. Conf. on Learn-
ing Representations, ICLR’2017.
Kingma, D.; and Welling, M. 2014. Auto-encoding Varia-
tional Bayes. arXiv:1312.6114 .
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Generative
Flow with Invertible 1x1 Convolutions. In Adv. in Neu-
ral Information Processing Systems, NeurIPS’2018, 10236–
10245.
Kolouri, S.; Pope, P. E.; Martin, C. E.; and Rohde, G. K.
2019. Sliced Wasserstein Auto-Encoders. In Proc. of the
Int. Conf. on Learning Representations, ICLR’2019.
Larsen, A. B. L.; Sønderby, S. K.; Larochelle, H.; and
Winther, O. 2016. Autoencoding Beyond Pixels Using a
Learned Similarity Metric. In Proc. of the Int. Conf. on Ma-
chine Learning, ICML’16, 15581566. JMLR.org.
Lesniak, D.; Sieradzki, I.; and Podolak, I. 2019. Distribution
Interpolation Trade-off in Generative Models. In Proc. of the
Int. Conf. on Learning Representations, ICLR’2019.
Li, C.-L.; Chang, W.-C.; Cheng, Y.; Yang, Y.; and Póczos,
B. 2017. MMD GAN: Towards Deeper Understanding of
Moment Matching Network. In Adv. in Neural Information
Processing Systems, NeurIPS’2017, 2203–2213.
Li, Y.; Swersky, K.; and Zemel, R. 2015. Generative Mo-
ment Matching Networks. In Proc. of the Int. Conf. on Ma-
chine Learning, ICML’2015, 1718–1727.
Socher, R.; Ganjoo, M.; Manning, C. D.; and Ng, A. 2013.
Zero-shot Learning Through Cross-modal Transfer. In Adv.
in Neural Information Processing Systems, NeurIPS’2013,
935–943.
Tabor, J.; Knop, S.; Spurek, P.; Podolak, I.; Mazur, M.;
and Jastrzȩbski, S. 2018. Cramer-Wold Autoencoder.
arXiv:1805.09235 .
Tolstikhin, I.; Bousquet, O.; Gelly, S.; and Schoelkopf, B.
2018. Wasserstein Auto-encoders. In Proc. of the Int. Conf.
on Learning Representations, ICLR’2018.
Wu, J.; Huang, Z.; Thoma, J.; Acharya, D.; and Gool, L. V.
2017. Wasserstein Divergence for GANs.
Xiao, Z.; Yan, Q.; and Amit, Y. 2019. Generative Latent
Flow. arXiv:1905.10485 .
Ziegler, Z. M.; and Rush, A. M. 2019. Latent Normalizing
Flows for Discrete Sequences. In Proc. of the Int. Conf. on
Machine Learning, ICML’2019.

	Introduction
	Motivation
	General idea
	CWAE and CW2 models
	Latent Trick
	Related work
	Experiments
	Architecture

	Conclusions

