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Abstract

As deep neural networks are increasingly used in applications suited for low-power devices,
a fundamental dilemma becomes apparent: the trend is to grow models to absorb increas-
ing data that gives rise to memory intensive; however low-power devices are designed with
very limited memory that can not store large models. Parameters pruning is critical for
deep model deployment on low-power devices. Existing efforts mainly focus on designing
highly efficient structures or pruning redundant connections for networks. They are usu-
ally sensitive to the tasks or relay on dedicated and expensive hashing storage strategies.
In this work, we introduce a novel approach for achieving a lightweight model from the
views of reconstructing the structure of convolutional kernels and efficient storage. Our
approach transforms a traditional square convolution kernel to line segments, and automat-
ically learn a proper strategy for equipping these line segments to model diverse features.
The experimental results indicate that our approach can massively reduce the number of
parameters (pruned 69% on DenseNet-40) and calculations (pruned 59% on DenseNet-40)
while maintaining acceptable performance (only lose less than 2% accuracy).

Keywords: Model Compression; Interpolation; Irregular Convolutional Kernels;

1. Introduction

With the rapid development of the deep learning, Convolutional Neural Networks (CNNs)[1]
have become ubiquitous ranging from image classification[2, 3] to semantic segmentation
[4, 5] and object detection[6, 7, 8], since them effectively extracts valuable and abstract
features. Although deep models [3, 9, 10, 11, 12] are very powerful, the large number of
learnable parameters leads to a mass of calculations and memory of devices consumption.
For example, the parameter numbers of ResNet101[11] and DenseNet100[12] are 39M and
27M, respectively. It leads to many of low-power devices are hard to deploy CNNs. Ev-
idently, deep neural networks would be used more widely if their computational cost and
storage requirement could be significantly reduced.
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Figure 1: Feature maps generated by AlexNet from low to high convolution layers.

Recently, an increasing line of effort has been undertaken to tackled compressing the size
of models for CNNs. Most of existing approaches are considering to design delicate structures
or prune redundant connections of networks. Kernel factorization and weight pruning are
two branches of representative approaches to reduce the model size of deep neural networks.
Kernel factorization like Inception-V3[10] uses asymmetric kernels like n× 1 and 1× n, and
perpendicularly intersects them to replace one normal square kernel. Since asymmetric
kernels have line segment shapes, this kind of two-layer solution is 33% cheaper than normal
square kernel for the same number of output channels. Weight pruning[13, 14] is a kind of
post processing methods. It deletes the connections which weights are smaller than setting
thresholds. The thoughts of these two kinds of methods are both to suppose that the generic
architecture of CNNs have much parameter redundancy, and exist even smaller kernels than
original square kernels are competent for feature extraction. However, existing methods
have some limitations. Such methods of asymmetric convolution kernel factorization only
have two kinds of angles, i.e., vertical and horizontal, which somehow restricts the model
capability of convolution. While the approaches of common weight pruning can not be
completed in one step as they need to wait for the whole kernels having been pre-trained
and then prune and fine-tune them. Moreover, common weight pruning models neither
reduce computing cost nor speed up original models due to their pruned models needing to
be saved by complicated hashing techniques.

In this work, we aim to significantly prune the number of parameters for CNN models
without additional computing cost caused by complicated hashing techniques, as well as
maintain acceptable performance. To achieve these targets, there are several challenges we
have to face. First, the redundant parameters in CNN models usually take on stochastic dis-
tribution. Removing such redundant parameters will result in sparse matrices of parameters,
which leads to additional cost for hashing in phases of saving and loading models. Second,
most of accelerated libraries for deep neural networks, e.g, CuDNN[15] and OpenBlas[16],
are developed for coping with dense matrix. It a challenging task to leverage accelerated
libraries to speed up the pruned networks which weights matrices are sparse. Finally, as Fig-
ure 1 shown, the key of CNN models that distinguish them from other models in computer
vision is the convolutional operation, like 3×3 convolution, which can effectively extract
and assembly edges, angles and shapes from low to high features by learning the assembly
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Figure 2: (a) Multiple kernels assembly. (b) Feature maps visualization of AlexNet. (c) Kernels visualization
of Gabor.

patterns of convolutional kernel layer by layer. Intuitively, we can abstract the “principal
components” from convolutional kernels to achieve an efficient assembly. As shown in Fig-
ure 2(a), an irregular shape can be modeled by assembling two “principal components” of
squares. However, like Figure 2(b), feature maps are usually various. Thus, as shown in
Figure 2(c) the trained convolutional kernels should have various “principal components”,
which causes lots of redundant parameters. It is very challenging to maintain powerful abil-
ities of CNN kernels to extract and assembly features, as well as, find a general pattern
to efficiently express the “principal components”. To address these problems, we propose
a simple, efficient, yet effective method, known as Rotated Convolution(RotateConv), to
makes up the deficiency of traditional kernel factorization and weight pruning. Traditional
convolutional kernels, which shapes are usually square or rectangle, can learn the patterns
in feature maps by overlapped scanning. As shown in Figure 2(c), AlexNet has learned a
variety of frequency- and orientation-selective kernels. These kernels have clear skeletons
which are composed by “black grids”, and most of them present as line segments. Inspired
by such evidence, Our RotateConv is shown as the last one in Figure 3. Aiming at assem-
bling “principal components”, the basic shape of RotateConv kernel is a line segment, which
means that it only has 2 or 3 weights for convolution. Besides weights, a RotateConv kernel
has an additional learnable variable, namely, angle θ, which makes RotateConv is much
more flexible considering that directions from angles 0◦ to 180◦ instead of 0◦ and 90◦ than
asymmetric kernels of kernel factorization. Note that making the kernel rotatable is achieved
by making the variable θ continuous and learnable. Due to the existence of θ, these line
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Figure 3: Asymmetric kernels with different angles. In top-down and left-right order, the former four kernels
have different but fixed angles as 0◦, 90◦, 45◦ and 135◦. The last one is an illustration of our RotateConv
kernel that is asymmetric but rotatable, which means the angle θ is learnable during training.

segment kernels can have a larger receptive field like 3× 3, so its modeling capacity still can
be guaranteed. In addition, for avoiding the computing cost caused by complicated hashing
techniques in the phase of loading pruned model, we leverage interpolation-based algorithms
to realize efficiently storing and restoring pruned model instead of hashing techniques. Con-
sidering different emphases on the model size and performance, we propose two variants of
rotatable kernels. One has n+ 1 parameters consisting of n weights and an angle value for
each convolutional kernel. And the other one only has n parameters for each convolutional
kernel and one additional parameter for each convolutional filter. Accordingly the compress
ratios are (n+ 1)/9 and approximately equal to n/9 for 3× 3 convolution, respectively.

Compared with the existing work, our contributions in this work can be summarised as
follows.

• Compared with asymmetric kernels of kernel factorization, proposed RotateConv ker-
nels are much more flexible considering that they can have any continuous angles from
0◦ to 180◦ instead of 0◦ and 90◦. Compared with previous methods of weight prun-
ing, our RotateConv kernels do not need to pretrain, as they not only have much less
weights than the square one, but also are born with line segment shape that can be
trained end to end.

• Compared with previous methods which store and restore pruned models by hashing
techniques, we propose learnable and interpolation-based methods to efficiently store
and restore pruned model. Taking this advantage, our pruned CNN models have
enormous potential to run faster on low-power devices, such as ARM CPU and FPGA.

• We conduct a series of experiments to validate the proposed methods. The results
show that our final pruned models achieve competitive performance, e.g., for SSD[8],
we can reduce the number of parameters 80% and save more than 60% FLOPs without
accuracy slumping.
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2. Related Work

Since RotateConv devotes to achieve a more compressed convolutional kernel, related
work can be divided into two groups, i.e., convolution kernel design and model compression.

2.1. Convolution kernel design

The most representative work of kernel design in deep CNN can be inferred from the
series work of Inception-Vn[17, 18, 10]. Inception-V1 uses multi-scale kernels to extract
scale-invariant features. Inception-V2 uses more stacked small kernels to replace one bigger
kernel so as to increase the depth of the network and reduce the number of parameters.
Inception-V3 further makes the kernel smaller as it uses asymmetric kernels like 1× 3 and
3× 1. As we mentioned above, though this asymmetric kernel reduces parameters a lot,
its fixed angle as vertical and horizontal puts limitations on the capacity of modeling more
orientation-flexible patterns. Dilated convolution[19] is another widely used method for
convolution kernel design, which aims at solving the resolution reduction problem of feature
maps in forward propagation. It is a dilated variant of traditional compact kernels, which
helps the kernel have a larger receptive field without increasing parameters. However, dilated
kernels usually result in memory cache missing problem and suffer from unexpected speed
bottleneck.

Recently, there emerge some novel deformable kernel design works. Deformable Convo-
lutional Networks (DCN)[20] is a recently proposed excellent work which learns irregular
kernels. DCN has a similar thought with Region Proposal Network[7] as it applies a usual
convolution on the input feature, and then outputs the new kernel shape for the follow-
ing deformable convolution layer. Irregular Convolutional Neural Networks (ICNN)[21] is
another work learning irregular kernels. Different from DCN, ICNN directly models the
kernel’s shape attributes as learnable variables and learns the shapes in the same way as
kernel weights. Although, these two methods can expand the capacity of convolutional
kernels, they utilize extra parameters and made the calculation more complicated. Unlike
existing methods, our methods change the shape of the convolutional kernels for devoting
to maintain the capacity of CNN models with less parameters.

2.2. Model compression

There has been growing interest in model compression due to the demands of device-
limited applications. From the viewpoint of having potential to reduce the requirement
of storage and accelerate the deep models in the phase of inference, the related work of
model compression can be ranged into low-rank decomposition, weight sparsifying, struc-
tured pruning and quantization representation.

Low-rank decomposition methods approximate weight matrix of neural networks with
low-rank techniques like Singular Value Decomposition[22] or CP-decomposition[23]. These
methods usually can obtain well performance on “big layers”, such as fully-connected layers
and such convolution layers using big kernels like 5×5 and 7×7. Thus, they can yield
significant model compression and acceleration on Alexnet[24] with a little compromise on
accuracy. However, these methods can not achieve notable effect of compression on modern
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CNN architectures, since their convolutional layers tend to use small kernels like 3×3 and
1×1 kernels.

Weight sparsifying methods attempt to prune the unimportant connections in pre-trained
neural networks. The resulting network’s weights are mostly zeros thus the storage space
can be reduced by storing the model with sparse formats. Song Han et al.[13] alternately
prune the unimportant connections with given thresholds and fine-tune the pruned networks
to reduce the number of parameters by 9× and 13× for AlexNet and VGG-16 model, re-
spectively. However, this kind of methods only can achieve speedup with dedicated sparse
matrix operation libraries and/or hardware, since the sparse weights need to auxiliary op-
eration to retrieval in the phase of inference. Srinivas et al.[25] overcome the limitation of
generating sparse weights by setting thresholds, they explicitly impose sparse constraints
over each weight tensor, and achieve high compression rates with a more efficient training.
However, this method still suffers from the same drawback with Song Han’s work [13], i.e.,
they are easy to obtain small models, but hard to really speed up networks with general
computing devices like CPU, since the work of processing sparse matrix is not friendly for
CPU.

Structured pruning works are proposed for pruning redundant structures, such as chan-
nels and layers, in trained deep models. Channel pruning methods[26, 27] are most represen-
tative work in this branch. Li et al.[26] prune input channels for each layer indicating by the
weights of convolutional kernels, while Liu et al.[27] learn a scaling factor which indicates
the importance of channel for each output channel, then heuristically prunes the output
channels with learned scaling factors. Changpinyo et al.[28] introduce sparsity both on in-
put and output channels by random deactivating input-output channel-wise connections.
To achieve a full-scale solution, Wen et al.[29] utilize a Structured Sparsity Learning (SSL)
method to sparsify different level of structures (e.g. filters, channels or layers) in CNNs. He
et al.[30] effectively prunes each layer by channel selection based on LASSO regression[31]
and least square reconstruction of output. All of these methods utilize sparsity regualariza-
tion during training to obtain structured sparsity. Compared with weight sparsifying, these
channel pruning works overcome the limitation of requiring to restore compact matrices or
dedicated speeding up libraries.

Quantization representation methods quantize network weights from float(usually 32
bits) to be a few of bits. Binary-net[32] and XNOR-net[33] can achieve 32× compression
rates and 58× speed up on deep models by using just one bit to store one weight and bitwise
operations, but often notably sacrifice accuracy. HashNet[34] quantizes the network weights
by a hash strategy, while Song Han et al.[13] quantizes the network weights by a clustering
strategy. These methods assign the network weights to different groups and within each
group weight the value is shared. In this way, only the shared weights and indices of weights
need to be stored, thus a large amount of storage space could be saved. However, these
techniques can neither save run-time memory nor inference time unless they are aided by
special devices, since the shared weights need to be restored to their original positions before
calculation.
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3. Mathematical Derivation of Rotated Convolution

Early work[13, 34, 30] have proved that only reserving the “principal components” of
CNN models, i.e., a few of importance weights, the CNN models still can maintain their
ability of feature extraction. In this section, we aim to prune and compress standard convolu-
tion networks to such “principal components” by elaborating Rotated Convolution Network
(RCN). Accordingly, we first formulate our rotated convolution kernel for RCN, and present
in detail how we efficiently achieve RCN which has both high compression rate and accuracy
from standard CNNs. Then we will explain RotateConv’s mathematical derivations.

3.1. Rotated convolution kernel

Distinguish from a traditional CNN model which convolutional kernels have fixed shapes
and can be expressed as matrices, e.g., a standard 3×3 kernel is expressed as a 3×3 matrix,
our RCN model is formed by rotated convolution kernels which consists of 3 weights placed on
a straight line as shown in Figure 3. Accordingly, instead of using a matrix, we formulate the
rotated convolution kernel K̃ by building coordinate systems on its corresponding standard
kernel K.

K̃ = {W,T}
W = {wi,j,0, wi,j,1, wi,j,2|i = 1, 2, ..., N, j = 1, 2, ..,M}
T = {θi,j |i = 1, 2, ..., N, j = 1, 2, ..,M}

(1)

where M denotes the number of input channels and N is the number of output channels.
W is the set of kernel weights and each kernel has 3 weights. T is the set of kernel angles θ.
θ is defined as the included angle between the horizontal line and the kernel line as shown
in Figure 3, which is range in 0◦ to 180◦. For a RotateConv kernel shown in Figure 4(a),
the output can be calculated as:

Si =
M∑
j=1

(wi,j,0Ij,0 + wi,j,1Ij,1 + wi,j,2Ij,2) (2)

where Si is the weighted summation in the i-th output channel. Inputs Ij,0, Ij,1 and Ij,2
correspond to the weights wi,j,0, wi,j,1 and wi,j,2, respectively. Note that for RotateConv,
Ij,1, Ij,2 are sampled by θi,j.

3.2. Interpolation based on angle

The rotated convolution kernel K̃ can be viewed as the “principal components” of K.
Hence the calculation of convolution only needs to process the pixels corresponding to “prin-
cipal components”. However, as θi,j in T is defined to be continuous, if θi,j does not equal
to an integer multiple of 45◦, then it does not exist corresponding pixels, i.e., Ij,1 and Ij,2,
on feature maps.

To solve this problem, we first build a coordinate system on its related kernel K, which
is shown as Figure 4(b). Then, we have two choices to match input pixels with weights.
Specifically, we can combine the input pixels corresponding to wi,j,1,b and wi,j,1,s or split
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(c). Angle inverse-interpolation

Figure 4: (a) Theoretical RotateConv kernel has a line segment shape, whose weights are w0, w1, w2 and
angle is θ. (b) Practical RotateConv kernel for computation after inverse-interpolation based on angle. (c)
The inverse-interpolation process for RotateConv.

the weights wi,j,1 and wi,j,2, to the adjacent positions which are the integer multiple of 45◦

as shown in Figure 4(c). Most of deep learning software frameworks utilize the algorithm
of im2col to transform the calculation of convolution to be dense matrix calculation. If
we adopt combining the input pixels, the im2col will invalidate because θ is a variable.
Therefore, in this work, we adopt the second method to avoid extra time consuming related
with the practical convolution implementation. And at last, a RotateConv kernel associated
with a 3×3 square kernel is equivalent to keeping 5 weights like Figure 4(b). The split
process can be calculated as:

wi,j,1,b = wi,j,1 × f(θi,j)
wi,j,1,s = wi,j,1 × (1− f(θi,j))
wi,j,2,b = wi,j,2 × f(θi,j)
wi,j,2,s = wi,j,2 × (1− f(θi,j))

s.t.f(θi,j) =
θi,j%45

45 , 0◦ ≤ θi,j< 180◦

(3)

where wi,j,1,b and wi,j,1,s mean the weights split by wi,j,1, same as wi,j,2,b and wi,j,2,s split
by wi,j,2. The spliting sizes are determined by f(θi,j), which is simply defined as the ratio
between the include angle and 45◦.

To this end, the convolution is a weighted summation after inverse-interpolation based
on angle:

Si =
M∑
j=1

(Si,j,0 + Si,j,1 + Si,j,2)

s.t.


Si,j,0 = wi,j,0Ii,j,0

Si,j,1 = wi,j,1,bIi,j,1,b + wi,j,1,sIi,j,1,s

Si,j,2 = wi,j,2,bIi,j,2,b + wi,j,2,sIi,j,2,s

(4)

3.3. Back propagation

There are three kinds of learnable variables, i.e., inputs I, weights W and angles T ,
and one kind of intermediate variables Wbs, as called wi,j,1,b, wi,j,1,s, wi,j,2,b and wi,j,2,s. The
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gradients for inputs I can be calculated by the same as the ones of traditional convolution,
while the gradients for Wbs and Wi,j,0 also can be calculated with the traditional way, since
Wbs, Wi,j,0 and zeros are combined to be a usual 3× 3 kernel as shown in Figure 4(b). The
key point is to compute the gradients for weights Wi,j,1, Wi,j,2, and angles θi,j with the
intermediate variables Wbs.

∆wi,j,1 = ∆wi,j,1,bf(θi,j) + ∆wi,j,1,s(1− f(θi,j))

∆wi,j,2 = ∆wi,j,2,bf(θi,j) + ∆wi,j,2,s(1− f(θi,j))

∆θi,j = wi,j,1(∆wi,j,1,b −∆wi,j,1,s)f
′(θi,j)

+ wi,j,2(∆wi,j,2,b −∆wi,j,2,s)f
′(θi,j)

(5)

The update mechanism of Wbs is the same as before for standard weights W , but not
for angles T . For a certain angle θ, since backward gradients, are supplied from wbs, the
updated new θ should not excess the boundaries defined by wb and ws too much.

θupdate = (θlast + ∆θ)%180

s.t.


θlast small − ε < θupdate < θlast big + ε

θlast small = θlast − θlast%45

θlast big = θlast − θlast%45 + 45

(6)

where ε is a small positive value to allow θupdate to get out of the last adjacent boundaries
θlast small and θlast big but not too much. Note that weights W and angles T can both
be initialized from random distribution or pre-trained 1× 3 and 3× 1 kernels, while the
initialization for angles T should be in the range from zero to 180◦.

4. Arithmetic interpolation

Although we deduce RotateConv kernels in above section with punning 3×3 convolu-
tional kernels, the punning method can be used to arbitrary scale convolutional kernels. In
the meantime, we have noticed that present-day CNN models are constructed by a mass of
3×3 convolutional layers, but RotateConv kernels with interpolation based angle only can
achieve 4/9 compression ratio on 3×3 convolutional kernels. Considering different emphases
on the model size and performance, in this section, we further propose a more efficient in-
terpolation approach aiming at higher compression ratio, i.e., RotateConv based Arithmetic
Interpolation(AIRotateConv).

4.1. Formulation of RotateConv based Arithmetic Interpolation

Different from RotateConv based angle interpolation which has an additional parameter,
i.e., angle, for each convolutional kernel, RotateConv based arithmetic interpolation treats
the weights of “principal components” of a convolution layer as an arithmetic progression,
which only requires a tolerance for each convolution layer to do the interpolation calculation.
Here, we redefine RotateConv based arithmetic interpolation as

C = { w, τ, νi,j ∈ V | 0 ≤ i < m, 0 ≤ j < n }
νi,j = {vr ∈ Ki,j | 0 < r ≤ k}

(7)
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where C denotes the parameter set of a pruned convolution layer. w is the minimum weight
in reserved weights and τ is the estimated tolerance of arithmetic progression. The reserved
weights of pruned convolution layer are treated as an arithmetic progression. νi,j is the point
set indicating the “principal components” of Ki,j, i.e., the positions of top-k biggest weights
of Ki,j. V is an ordered point set which are ordered by their associated weights, and their
associated weights are ranged into an arithmetic progression. Ki,j is the j-th convolution
kernel belongs i-th channel, and k is the number of weights of a convolution kernel.

4.2. Interpolation based on arithmetic interpolation

Aiming to extracting the “principal components” from regular convolutional kernels, we
can initialize the shape of pruned convolutional kernel K̃i,j with the “principal components”
of regular convolutional kernel Ki,j. Specifically, we sort the weights of Ki,j according to
their absolute values, then select top-k positions that their absolute weights are bigger than
the rest to be the νi,j.

Similar to RotateConv based angle interpolation, we utilize an algorithm of interpolation
to allocate the weights indicated by V . Here, we first gather all top-k weights from each
K̃i,j, and sort the them to generate ordered points set V . Then, we recalculate weights of
points in V through arithmetic interpolation. Specifically, due to the attribute of arithmetic
progression, the weights of each K̃i,j can be interpolated as

wvi,j,r = w + τ · f(vi,j,r) (8)

where vi,j,r indicates the r-th point in pruned kernel K̃i,j, and f(vi,j,r) denotes an index
function which returns the order of point vi,j,r in ordered set V . τ is the estimated tolerance
of arithmetic progression which is made up of reserved weights indicating by V . Therefore,
the estimated tolerance τ can be calculated by

τ =

∑n
i=1wvi − wvi−1

n− 1
, (9)

where n is the number of points in V . wvi denotes the weight of point vi, and vi ∈ V .

4.3. Learning

Given a pruned convolution layer C, there are three kinds of variables need to be learn,
i.e., the reserved point set νi,j for each regular kernel Ki,j, the minimum weight w in the
reserved points and the tolerance τ . Aiming to learning νi,j from regular convolution kernel
Ki,j, we jointly train the network weights of Ki,j with sparsity regularization imposed on the
latter. Then, we iteratively select kernels with thresholds and top-k points of these reserved
kernels which absolute weights are bigger than the rest to be the νi,j, and recalculate weights
of points in V through arithmetic interpolation. Specifically, the training objective of our
approach is given by

L =
∑
x,y

l(f(x,W ), y) + λ
∑
γ∈Γ

g(Wγ) (10)

where (x, y) denotes the trained input and target, W denotes the trainable weights of regular
convolution, the first sum-term corresponds to the normal training loss of a CNN. Γ is the set
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of layers which will be pruned, g(Wγ) is a sparsity-induced penalty on the weights of a pruned
convolution layer, and λ balances the two terms. In this work, we choose g(Wγ) =| Wγ |,
which is known as L1-norm and widely used to feature selection.

Specifically, as shown in Algorithm 1, we first normally train the source network in each
iteration, and then update K̃ based on the last K with the methods mentioned in subsection
4.2. Notice that for realizing training our pruned network on existing training tools(e.g.,
caffe, pytorch), at the end of each iteration, we first set all weights of each Kl,i,j to be 0,

then update reserved weights with the weights of K̃l,i,j.

Algorithm 1 Learning RotateConv based Arithmetic Interpolation
Input:

A minibatch of inputs, targets and thresholds (X,Y, T ),
cost function L(Y, Ỹ ),
a regular model W = {Kl,i,j | 0 ≤ l < L, 0 ≤ i < ml, 0 ≤ j < nl};

Output:
Φ := {wl, τl, K̃l,i,j | l ∈ Γ, 0 ≤ i < ml, 0 ≤ j < nl};

1: repeat
2: Ỹ=Forward (X,W );
3: ∂L

∂W =Backward ( ∂L
∂Ỹ

);

4: W t+1=UpdateParameters (W t, ∂L∂W );
5: for l ∈ Γ do
6: for each Kl,i,j do
7: if max(|Kl,i,j |) < tl, tl ∈ T then
8: continue;
9: end if

10: sort points in Kl,i,j according to their absolute weights;
11: select top-k points to be the set νl,i,j ;
12: end for
13: gather νl,∗,∗ into Vl;
14: sort points in Vl according to their weights;
15: calculate estimated tolerance τl with Eq.(9);
16: interpolate values to the points in Vl with Eq.(8);
17: for each K̃l,i,j do
18: update the weights of points in νl,i,j ;

19: update the weights of Kl,i,j with the weights of K̃l,i,j ;
20: end for
21: end for
22: until convergence

5. Experiment

For evaluating the effectiveness of proposed methods, we study the performance of pruned
models generated by proposed methods on the tasks of classification and objective detection.
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In this section, we first introduce datasets, base-lined models and experimental settings
respectively. Then, we evaluate performance of RotateConv and AIRotateConv models
which do interpolation based on angle and arithmetic progression, respectively.

5.1. Datasets

CIFAR[35] consists of colored natural images with 32×32 pixels. CIFAR-10 consists of
images drawn from 10 classes and CIFAR-100 from 100 classes. The training and testing
sets contain 50,000 and 10,000 images respectively, and hold out 5,000 training images as a
validation set. In our experiments, the input data is normalized using channel means and
standard deviations without any data augmentation. For the final run we report the final
test error on the test set at the end of training.

SVHN[36] is a real-world digit image dataset for developing machine learning and object
recognition algorithms. It is obtained from house numbers in Google Street View images.
The task is to classify the digit centered in image. It has 10 classes, 73,257 digits for training,
26,032 digits for testing. We use the CIFAR-like version for experiments, each image has a
32× 32 spatial size and is centered around a single digit which means that many examples
do contain some distractions at the sides.

PASCAL VOC[37] is a real-world digit image dataset for developing object detection and
localization algorithms. Our training dataset consists of a set of images from the training
datasets of VOC-2007 and VOC-2012, and the testing dataset(4952 images) is the testing
set of VOC-2007. Each image has an annotation file giving a bounding box and object
class label for each object in one of the twenty classes present in the image. We adopt the
same configurations with SSD[8] in training and testing, and report mAP performance of
SSD300(the size of input images is 300×300 pixels).

5.2. Deep models

For studying the performance of our methods both on light and heavy models, we select
three kinds of network structures, i.e., ResNet[11], DenseNet[12] and VGG-Net[38] to do
experiments.

ResNet is a kind of popular network structure in modern CNNs and makes great con-
tribution in deep learning. Using shortcut connections and deeper networks, it massively
improves the performance in various learning tasks while maintaining the efficiency in the
model size.

DenseNets are improved from ResNet. They connect each layer to every other layer in
a feed-forward fashion. In this way, DenseNets alleviate the vanishing-gradient problem,
strengthen feature propagation, encourage feature reuse, and substantially reduce the num-
ber of parameters. In our experiments, we reproduce a 40-layer DenseNet as illustrated in
[11] with growth rate 60.

VGG-Net is a neural network that performed very well in the Image Net Large Scale Vi-
sual Recognition Challenge (ILSVRC) in 2014. It scored first place on the image localization
task and second place on the image classification task. Only 3×3 convolution and 2×2 pool-
ing are used throughout the whole network. VGG also shows that the depth of the network
plays an important role and deeper networks give better results. In our experiments, we
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also adopt the SSD300 architecture[8] to do experiments for evaluating performance of our
methods on the task of object detection. SSD300 utilizes VGG-16[38] as its base architec-
ture, which only removes all the dropout layers and the fc8 layer. For obtaining predictions
of detections at multiple scales, SSD300 adds convolutional feature layers which decrease in
size progressively to the end of the truncated base network.

5.3. Experimental setting

All the network structures are trained using stochastic gradient descent (SGD). On CI-
FAR, we train the baselines, i.e., ResNet and DenseNet, using batch size 64 for 300 epochs
without data augmentation. The initial learning rate is set to 0.01, is divided by 10 at 50%
and 75% of the total number of training epochs. We use a weight decay of 10−4 and a
Nesterov momentum[39] of 0.9 without dampening. The weight initialization introduced by
[40] is adopted. On PASCAL VOC, we report mAP of the SSD300 model provided by the
authors. The backbone of SSD300 is VGG-16 which is pre-trained on the ILSVRC CLS-LOC
dataset[41] with initial learning rate 0.001, 0.9 momentum, 0.0005 weight decay, and batch
size 32.

We train pruned networks which 3×3 convolution kernels are set to be pruned. For each
pruned convolution layer, a Batch Normalization[42] layer is added after that. On CIFAR,
we train prunned ResNet and DenseNet with the initial learning rate 0.01, and keeping
other settings the same as their baselines. On PASCAL VOC, we train the pruned SSD300
following the same settings in baseline training.

5.4. Results and analysis

In this section, we first analyze the performance of RotateConv models which are gen-
erated by the method mentioned in section 3, as well as the improved models which are
produced by the approach of AIRotateConv mentioned in section 4. Then, we observe the
effect of applying AIRotateConv on different layers and the number of pruned layers to
explore a appropriate pruning rule.

5.4.1. Effectiveness of approach

The numbers of parameters of deep neural networks can be reduce a lot by our pro-
posed approaches as well as their performance still can be acceptable. As shown in Table 1,
Version-9 means the basic network which most of convolution layers are 3× 3 convolution,
Version-4 and Version-3 means 4 parameters and 3 parameters models pruned by Rotate-
Conv, while Version-3∗ means 3 parameters model pruned by AIRotateConv with threshold
0.001, respectively. Taking ResNet20 for an example, the performance of the various versions
is similar, while the basic model has 16.62M parameters, the pruned models, i.e., Version-4,
Version-3 and Version-3∗ models only have 9.23M , 5.54M and 4.71M parameters, respec-
tively. Moreover, according to the experimental results shown in Table 1, the performance
of Version-4 is even better than Version-9 in some cases. It indicates that the line segment
kernels still have a powerful capability on feature extraction, and sometimes even have better
generalization than traditional square kernels, because they have deformable kernels.
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Table 1: Performance of image classification on CIFAR-10/100 and SVHN datasets. “#Params”
denotes the number of convolutional parameters in the model. Three settings are listed for compar-
ison, as shown in second row on table, 9 for 3× 3 baseline kernel, 4 for 4 parameters RotateConv
version, 3 for 3 parameters RotateConv version, and 3∗ for 3 parameters AIRotateConv version
which cutting threshold is 0.001 . All 3×3 conv layers in each network are pruned, except their
first layers.

Model ResNet20 VGG DenseNet40
Version 9[11] 4 3 3∗ 9[11] 4 3 3∗ 9[12] 4 3 3∗

#Params 16.62M 9.23M 5.54M 4.71M 19.09M 10.61M 6.36M 5.63M 4.03M 2.24M 1.35M 1.22M
CIFAR-10 91.70 90.78 84.83 90.28 92.52 91.83 83.35 91.06 92.63 92.68 81.24 90.89
CIFAR-100 52.84 53.45 50.39 52.75 56.63 56.93 51.32 56.12 72.45 69.99 50.64 68.64
SVHN 95.82 96.01 95.17 95.69 96.02 96.40 96.19 95.68 97.15 96.84 90.69 96.79

However, the experimental results in Table 1 also indicate that the performance of
Version-3 and Version-4 exist a degree of gap. This phenomenon shows that weights di-
versity is helpful for feature extraction and has a significant impact on performance. For
example, Version-4 can directly model a triangle with a line segment kernel, but Version-3
can not. Thus, the performance of Version-3 usually decline more than Version-4. In ad-
dition, the performance of Version-3∗ can be compared to Version-4 while its parameters
are even less than Version-3. This result is because AIRotateConv not only can learn the
key positions in convolution kernels by L1-norm and thresholds, but also utilize arithmetic
interpolation to the full extent of maintaining weights diversity.
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Figure 5: Convergence of ResNet20 on CIFAR100.

Figure 5 shows the accuracy curves for various versions of ResNet20 on the dataset
CIFAR-100. As we can see in the Figure 5(a), accuracies of Baseline, RotateConv and
AIRotateConv seesaw by iterations, and finally get almost equal performance. The ascent
tendency of AIRotateConv is a little slower than others when it was trained from scratch.
This phenomenon may demonstrate that the rate of convergence of AIRotateConv is more
relied on parameter initialization, because it needs to select key positions of convolutional
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Table 2: Test Errors of pruned DenseNet-40 models on CIFAR-10. NS(40% Pruned) and NS(70%
Pruned) denotes the models which 40% and 70% convolutional channels are pruned by Network
Slimming[27], respectively. Version-4 denotes the model pruned by RotateConv with 4 parameters,
Version-3∗ is the model pruned by AIRotateConv with 3 parameters and 0.001 threshold.

Model err(%) pruned params pruned flops
Baseline 7.37 – –
NS(40% Pruned) 6.11 35.7% 28.4%
NS(70% Pruned) 5.19 65.2% 55.0%
version-4 7.32 44.35% 38.15%
version-3∗ 9.11 69.72% 59.67%

kernels. Therefore, we usually initialize the pruned models of AIRotateConv by trained
basic models, and then fine-tune the pruned models with relatively small learning rate, e.g.,
0.001. In this way, we can quickly obtain an acceptable pruned model by AIRotateConv
shown in Figure 5(b).

One purpose of this work is to reduce the amount of computing resources needed. From
Table 2, we can observe that, on DenseNet, typically when 44%-69% convolution parameters
are pruned, our aproaches, i.e.,version-4 and version-3∗ can achieve acceptable performance
comparing with the original models and other pruning methods. For example, when 69%
convolution parameters and 59.67% flops are pruned, version-3∗ still can achieve a test error
of 9.11% on CIFAR-10. Although our methods are inferior on the viewpoint of test errors,
they can achieve higher compression ratio and less computation than the slimming model[27].
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Figure 6: Kernel angle distributions for layer Conv-21 in ResNet20 trained on CIFAR-100. Layer Conv-
21 has 64 input channels and 64 output channels. (a) For the first output channel, the 64 kernel angles
applied on input features. (b) For the first input channel, the 64 kernel angles used by 64 output channels
respectively.

5.4.2. Analysis of working mechanism

For detecting the working mechanism of line segment kernels, we choose the model
ResNet20 without loss of generality, and train it on CIFAR-100 with 4 parameters Rotate-
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Conv kernels. Then, we observe the angle distributions of last convolutional layer Conv-21,
which has 64 output channels and 64 input channels. Here, we analyze two distributions
along input and output channel respectively.

On the one hand, we give the angle distribution for one output channel. For each
output channel, it has 64 spatial kernels corresponding to 64 RotateConv angles applied
along input channels. Figure 6(a) shows the angle distribution of the first output channel,
which is denoted as {θ1,j|j = 1, 2, .., 64} before. We can find that different input features are
applied with different RotateConv angles, which is coincident with universal intuition that
different features represent different patterns.

On the other hand, we give the angle distribution for one input channel. For each input
channel, it has been repeatedly used by 64 different output channels which has 64 different
RotateConv angles too. Figure 6(b) shows the angle distribution of the first input channel,
which is denoted as {θi,1|i = 1, 2, .., 64} before. We can find that one single input feature
is repeatedly applied with different RotateConv angles, which can be explained that one
feature map always contains various patterns and the later operations need respectively
select these patterns for further processing.

0 5 10 15 20 25 30 35 40
�������
	��������
�����

8

9

10

11

12

13

14

��
���
��
�

���

�
��
����
����
��
�

(a)

Conv 2-10

Conv 16-25

Conv 29-38

Conv 14

Conv 14 & 27

Conv 27

Conv 27-28

Conv 14-15 & 27-28

Conv 14-15

(b)

Figure 7: Effect of pruning different layers with AIRotateConv. (a) Accuracy varying with the increasing
number of pruned layers. (b) Effect of independently pruning different parts of network.

5.4.3. Effect of pruning different layers

To study the effect of pruning different layers, we observe the accuracy of image classi-
fication varying pruning number of layers by AIRotateConv. Without loss of generality, we
prune DenseNet-40 from bottom-to-up and up-to-bottom, respectively. As shown in Fig-
ure 7(a), the accuracies usually decline with the number of pruned layers increasing, but the
direction of bottom-to-up declines more quickly than the direction of up-to-bottom at initial
stage. For example, at the stage of pruning 0 to 10 layers, the performance degradation of
bottom-to-up is significantly faster than up-to-bottom. It indicates that the low-level fea-
tures seemingly require relatively powerful convolutional kernels to do feature extraction,
because the low-level features usually are detailed information. Therefore, in practice, we
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Table 3: Performance of AIRotateConv approach on SSD300 with varying pruning ratio. Baseline
indicates the original SSD300 without any pruning. Model-1 is the pruned SSD300 which all
convolution layers are applied pruning, while Model-2 is the pruned SSD300 maintaining the first
Conv and latest layer without pruned. Model-3, Model-4 and Model-5 are the pruned SSD300
which the first and latest Conv layer are not pruned, and their insignificant kernels are cast off
with different thresholds.

Model mAP Threshold Param pruned FLOP pruned

Baseline 74.0 – – –
Model-1 67.1 0.001 74.7% 79.3%
Model-2 73.8 0.001 74.7% 79.1%
Model-3 73.2 0.0015 77.2% 83.1%
Model-4 70.8 0.0020 79.5% 83.7%
Model-5 66.7 0.0035 86.3% 86.2%

usually maintain the first few layers without pruning for balancing the accuracy and the
resources reductions. Besides, we can observe from Figure 7(b) that the high layers seem
to be more sensitive to be pruned than the low layers. For example, when the low(conv2 to
conv10), middle(conv16 to conv25), and high(conv29 to conv38) layers are pruned respec-
tively, the lower pruning cases seem to outperform higher cases. This is due to the high
layers usually process abstract information which is crucial to classification. Therefore, ac-
cording to requirements of balancing the accuracy and the resources reductions, we usually
maintain the first and latest convolution layers without pruning.

Keeping the observation of Figure 7 in mind, we further study the performance of AIRo-
tateConv approach applying on the object detection network, i.e., SSD300. As shown in
Table 3, applying AIRotateConv approach on SSD300 can reduce amount of parameters
while the performance of pruned models are acceptable. Moreover, due to maintaining the
first convolution layer without punning, the mAP of Model-2 outperforms Model-1. This
result reconfirms that the low-level features seemingly require relatively powerful convolu-
tional kernels, and we usually keep the first convolution layer without pruning in practice for
balancing the accuracy and the resources reductions. For obtaining more condensed models,
we further remove the kernels which absolute ρ are smaller than given thresholds, i.e., ig-
nore the associated input channels for each layer when their weights of convolutional kernels
are close to 0. The experimental results are shown by Model-3, Model-4 and Model-5. It
indicates that as the threshold increasing, the parameter reduction ratio is increasing and
the performance indicated by mAP still can be acceptable.

6. Conclusion

The aim of this work is to reduce computing resource requirements of CNNs as well
as maintain their performance. Thus, we propose a kind of convolutional kernel which
has extremely simple shape as line segments, and equip them with the rotatable ability
to model diverse features. The rotatable ability is achieved by using inverse-interpolation
which makes angles continuous, differentiable and learnable. In this paper, we use Rotate-
Conv and AIRotateConv to significantly reduce the number of model parameters, as well
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as maintain the accuracies of models. The difference between these variants is the method
of interpolation, i.e., interpolation of RotateConv is based on angles while AIRotateConv
does inverse-interpolation with arithmetic interpolation. In experiments, three kinds of net-
work structures, i.e., ResNet20, VGG and DenseNet40 are pruned for efficiency analysis and
pruning strategies exploration.

In the future, we will devote to the following problems. Firstly, proposed approaches
should be validated on more large scale datasets such as ImageNet[43] and COCO[44].
Secondly, RotateConv is achieved by inverse-interpolation with angle parameter, but it
brings RotateConv kernels back to original shape for computation, and does not reduce
computation. Therefore, we hope more efforts could be devoted to make further progress
in acceleration of RotateConv. Last, although AIRotateConv has the potential to reduce
the number of FLOPs and make an acceleration, it still needs to modify existing software
framework like caffe, meanwhile, FPGAs also are main platforms for model inference, we
plan to involve AIRotateConv into high-performance frameworks, e.g., ncnn, for low-power
CPUs and FPGAs.
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