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Abstract

While graph neural networks (GNNs) have shown a great potential in vari-
ous tasks on graph, the lack of transparency has hindered understanding how
GNNs arrived at its predictions. Although few explainers for GNNs are ex-
plored, the consideration of local fidelity, indicating how the model behaves
around an instance should be predicted, is neglected. In this paper, we first
propose a novel post-hoc framework based on local fidelity for any trained
GNNs - TraP2, which can generate a high-fidelity explanation. Considering
that both relevant graph structure and important features inside each node
need to be highlighted, a three-layer architecture in TraP2 is designed: i)
interpretation domain are defined by Translation layer in advance; ii) lo-
cal predictive behavior of GNNs being explained are probed and monitored
by Perturbation layer, in which multiple perturbations for graph structure
and feature-level are conducted in interpretation domain; iii) high faithful
explanations are generated by fitting the local decision boundary through
Paraphrase layer. Finally, TraP2 is evaluated on six benchmark datasets
based on five desired attributions: accuracy, fidelity, decisiveness, insight
and inspiration, which achieves 10.2% higher explanation accuracy than the
state-of-the-art methods.
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1. Introduction

The development of deep neural networks has shown outstanding per-
formances in many domains [1, 2, 3], which is partially attributed to the
effectiveness of mining latent representations from Euclidean domain. By
using regular grid convolution, convolutional neural networks (CNNs) effec-
tively extract important semantic information from Euclidean data. How-
ever, there is an increasing number of applications which data are represented
as graphs. Recently, Graph neural networks (GNNs) [4, 5, 6, 7] have been
proposed and achieved breakthroughs in processing various graph structure
data, such as point clouds, social network, chemistry molecules solved some
classical field problems such as node classification [8] and graph classifica-
tion [9]. With the advent of more high-precision models, requirements for
a better understanding of the inner workings of a model are getting more
attention. It is important to know the reason why this model produces such
predictions. From the aspect of application, models need to provide trans-
parent and high-precision solutions especially for some key scenarios, such
as security, economy and healthcare. Meanwhile, interpretable approach can
provide insight for improving models, and show underlying rules that are
overlooked. Therefore, higher demands on the performances are raised for
explainer: 1) the explainers need provide accurate, reliable and stable expla-
nation for original model. 2) excellent interpretable approaches are expected
to provide insight for model cognition and reveal potential rules that are ne-
glected. However, the design of end-to-end network architecture reduces the
transparency of the model, which hinders people to comprehend them.

To improve the transparency of deep neural networks, many researches
of explanation technologies have been introduced and applied in recent years
[10, 11, 12, 13]. Regrettably, existing explanation methods encountered bar-
riers when they are applied to GNNs due to the particularity of graph struc-
ture. In recent two years, few excellent explanation approaches for GNNs
have been studied. A qualified interpretation model should provide accurate
explanation and be faithful to original model. Although learning a completely
faithful explanation is usually impossible, a meaningful interpretation in the
vicinity of prediction being explained is possible [14]. Unfortunately, taking
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node classification as an example, prior researches only use the GNN’s predic-
tion behavior information of node being explained to generate explanations,
which neglects the other local behaviors near the decision boundary of the
node. These behavior informations are very useful for providing a local faith-
ful explanation. To our best knowledge, there is no method considering the
“vicinity” in graph-structured data for a post-hoc explanation based on local
fidelity at present. In addition, each feature component is node-dependent
that each feature can make different contribution for distinct nodes and the
prediction behaviors of GNNs. It is crucial for evaluating and integrating
them for an accurate and reliable explanation. However, existing methods
ignore this. For example, the GNNExplainer [15] only coarsely provides a
shared score for the feature components of all nodes, which leads to a sub-
optimal interpretation effect.

To address above problems, we propose a novel post-hoc and model-
agnostic explanation framework for GNNs, which provides a “broad” insight
of original model (Figure 1). To achieve this, the proposed approach includes
a three-layer architecture design which is named TraP2: i) Translation Layer
is adopted to realize the transformation from the original problem to inter-
pretation domain according to different tasks. ii) To “trap” richer predic-
tive behaviors near a local decision boundary of the object being explained,
the Perturbation Layer probes and monitors local behaviors by specially de-
signed strategy from both graph structure-level and feature-level. Meanwhile,
a novel perturbation energy level is proposed for measuring the obtained at-
tention of each perturbation. iii) Based on perturbed instances, Paraphrase
Layer finds high-faithful explanations by fitting the local decision boundary,
which also provides insight in both graph structure-level and node-dependent
feature-level. Finally, to verify the effectiveness of the presented model, we
evaluate it on multiple datasets [15] for node and graph classification, and
compare our results with other state-of-the-art methods. The results demon-
strate the effectiveness of our work from accuracy, fidelity and contrastivity,
which outperforms other approaches for all tasks. In summary, the main
contributions of this paper can be summarized as follows:

• We first put forward a novel post-hoc framework TraP2 based on lo-
cal fidelity of any GNN models for different recognition tasks, which
generates high-fidelity explanations.

• Novel perturbation strategy and perturbation effect estimation method
designed for graph data are proposed. Furthermore, our model provides
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a more fine-grained explanation on node-dependent feature-level than
prior works.

• Compared with the state-of-the-art GNN explanation approaches, the
proposed method achieves the top performance on multiple benchmark
datasets.

The remainder of this paper is organized as follows: Section 2 is the
related works containing the introduction of the graph neural networks, cur-
rent non-graph and graph neural networks-based interpretability methods.
In Section 3, we introduce the details of our proposed explanation approach.
Experimental results for node and graph classification tasks are given in Sec-
tion 4. Finally, Section 5 concludes this paper and prospects some future
works.

2. Related Work

2.1. Graph neural networks

In recent years, graph neural networks have been successfully applied to
a wide variety of fields such as computer vision [16, 17], natural language
processing [18], recommender systems [19] and healthcare [20]. GNNs effec-
tively handle the complex relationship between objects in the graph structure
following a neighborhood aggregation scheme, where the features of a node
is computed by recursively assembling and transforming features of its local
neighbors [21, 22]. They can be divided into two categories: spectral [23, 24]
and spatial methods [25, 26, 27]. The spectral method is defined via graph
Fourier transform and convolution theorem, which takes the graph Laplace
matrix as an important tool and does not explicitly use the information prop-
agation mechanism on the graph. Bruna et al. [28] proposed a method to
conduct convolution in the spectral domain adopting the Fourier basis of
a given graph. Levie et al. [29] introduced a new spectral domain convolu-
tional architecture using a new class of parametric rational complex functions
(Cayley polynomials) that can specialize on frequency bands of interest. On
the other hand, spatial approaches define convolution operations in the ver-
tex domain, operating on spatially local neighborhood nodes. For instance,
Ying et al. [30] proposed a differentiable graph pooling method for GNNs,
which can be used to obtain a representation of an entire graph by summing
the features of all nodes in the graph. Veličković et al. [31] presented graph
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attention networks operated on graph-structured data, assigning different
weights to different nodes within a neighborhood.

2.2. Non-graph neural networks interpretability methods

Many well-studied explanation techniques employ gradient-based back-
propagation to calculate saliency maps for original input. Some promi-
nent methods of this category include Class Activation Mapping (CAM)
[32], Gradient-weighted Class Activation Mapping (Grad-CAM) [33], (Grad-
CAM++) [34], Excitation Back-Propagation (EB) [35] and Layer-wise Rele-
vance Propagation (LRP) [36]. The CAM and its generalization Grad-CAM
measure the linear combination of each layer’s activations and class-specific
weights or gradients of original model. The EB improves gradient maps by
introducing contrastive top-down attention. And the LRP adopts layer-wise
relevance propagation to achieve a pixel-wise decomposition. The above ap-
proaches introduce different backpropagation heuristics, which can focus on
salient notions of input data. However, they are not model-agnostic, with
most of them being limited to original network framework and/or many nec-
essary modifications of model structure [37]. LIME [14] is a representative
system of model-agnostic approaches, which adopts the self-explanatory lin-
ear regression to local area and pinpoints important features based on the
regression coefficients. The SHAP model [38] uses the Shapley values of a
conditional expectation function of the original model to measure the impor-
tance of each feature for a particular prediction.

2.3. Graph neural networks interpretability methods

To the best of our knowledge, few explainers for GNNs are explored re-
cently. Pope et al. [39] extended the gradient-based saliency map meth-
ods to GNNs, which utilizes the network parameters and classifier output
of original GNNs to construct the activation response of the corresponding
neurons. Baldassarre et al. [40] employed two main classes of techniques,
gradient-based and decomposition-based, to learn important components of
input that also relies on propagating gradients/relevance from the output to
the input of original model. Ying et al. [15] proposed an explanation method
by identifying a small subgraph structure and a subset of node features that
maximizes the mutual information with original GNNs prediction in entire
input graph. Although the above works have made breakthrough progress
in GNNs interpretation, the consideration of local fidelity and fine-grained
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Figure 1: Overview of the proposed TraP2 framework, which contains a three-layer archi-
tecture with Translation layer, Perturbation layer and Paraphrase layer.

explanation on feature-level is neglected, which can provide abundant infor-
mation to explain original GNNs’ behaviors.

3. Preliminary

3.1. Formulaic Definition of Explanation on Graph

A graph can be formulated as G = (V,E,X), in which V is a set of n
nodes {v1, ..., vn}, E denotes a set of edges and X = {x1, ..., xn|∀xi ∈ Rd}
represents the attributes for all nodes. d is the number of features. For
simplicity, we assume all edges have an identical type, thus an adjacency
matrix A ∈ Rn×n can be assigned to represent V and E. Y ∈ {1, ..., C}
refers to the node or graph label according to different tasks.

Whatever node or graph classification, an explanation can be uniformly
considered as a small subgraph Ĝ = (V̂ , Ê, X̂) which makes a great contri-
bution for the prediction of the GNNs being explained. The combination of
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V̂ ⊆ V and Ê ⊆ E highlights the explanation graph structure. Furthermore,
the interpretable features of nodes inside V̂ are marked as X̂.

For simplifying the following formulation, we explicitly define two func-
tions: generating reachability matrix and fetching specified elements from
an adjacency matrix. Reachability matrix records the connectivity between
nodes within k-hop. It is able to be derived from multiplying the adjacency
matrix A by itself. We formulate the function of generating it as [Ak]. Fetch-
ing an element of the ith row and jth column from a given matrix M is
formulated as [M ]i,j. In particular, [M ]i,: represents fetching ith row in M .

3.2. Graph Neural Networks

GNNs update the representation of each node through summarizing the
local information similar to convolution operation in CNNs. At each layer l,
graph structure (V,E) is kept unchanged, only the features of the graph are
updated:

ml+1
i =

∑
j∈Ni

F(hli, h
l
j, eij) , h

l+1
i = G(ml+1

i , hli) (1)

where Ni defines the neighbor nodes around node i. F and G are message
and update function respectively. The representation of node i in layer l is
denoted as hli. h0i is initialized as xi. eij symbolizes the type of edge from
node i to j. The updated representation after final layer L can be mapped
as f : hL ⇒ Y for a specific task, i.e. node classification (regression), graph
classification (regression) and etc.. Formally, GNNs can be formulated as
f(A,X).

4. Method

In this section, we describe the uniform framework of our model - TraP2.
TraP2 has three components: 1) Translation Layer: accessible subgraphs
to be explained are remained from complete input graphs; 2) Perturbation
Layer: translated subgraphs are respectively perturbed in aspects of graph
structure and node feature. Meanwhile, the degree of these perturbation is
assessed as “perturbation energy level”; 3) Paraphrase Layer: a local faithful
interpretation is trained to explain the behaviors of GNNs, which is shown
in Figure 1.

In this section, we first introduce the explanation process of node classi-
fication on node i and then extend it into other graph tasks.
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4.1. Translation Layer: Transference from Source Domain to Interpretation
Domain

In some cases, the domain to be explained for one node is not the entire
graph (Source Domain) as shown in Figure 1 (a). To be more precise, GNNs
with k layers can only aggregate messages from k-hop, e.g. 2-3, neighbors
[5]. According to Equation (1), final representation of node i, hli, is obtained
in l recursive updates. In each update, nodes located in one-hop farther
from node i are aggregated. Thus only nodes within l-hop from node i
is considered in GNNs. It directly results in that the feasible region for
explanation is merely a small subgraph (Interpretation Domain) as shown
in Figure 1 (b) instead of entire graph Figure 1 (a). Benefited from it, the
solution space can be potentially shrank.

Inspired by it, translation layer is applied to transforms the source graph-
structured domain into a limited interpretable domain for node i:

V I = {x|x > 0,∀x ∈ [Ak]i,:} (2)

AI = [A]V I×V I ∈ {0, 1}n̂×n̂ (3)

where V I and AI denote the node set and corresponding adjacency matrix
in interpretation domain respectively. n̂ is the number of elements in set V I .

4.2. Perturbation Layer: Turbulence in Interpretation Domain

In order to realize a local-fidelity based explanation, the strategies of
perturbation are proposed to probe the responses of GNNs in local vicinity.
Accordingly, a series of novel perturbation patterns are designed for graph.
These perturbed instances can be distinguished from the aspects of both
graph structure and feature as shown in Figure 1 (c). In particular, we
introduce the concept of perturbation energy level that magnitude of each
disturbance is quantified. And it’ll be further delivered into paraphrase layer
for establishing attention for each perturbation. Finally we monitor and
record the corresponding behavior response of GNNs to be explained in the
disturbances.

4.2.1. Perturbation on Graph Structure

We first define an action set on graph structure: i) adding new edges
between nodes in V I , ii) removing existing edges from AI .
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A random action variable, zE, is applied to trigger these two actions
alternatively:

zE ∼ Bernoulli(1, p1) (4)

where p1 is the probability for actions. As a graph can be represented as a
binary adjacency matrix which can be deformed through alternating 0 and
1 for each element in it. The composition of a perturbed graph AP under
different patterns can be decomposed as:

[AP ]j,k =


[AI ]j,k ⊕ (zE − 1), Adding Pattern

[AI ]j,kz
E, Removing Pattern

[AI ]j,k ⊕ z
E, Adding & Removing

(5)

in which [AP ]j,k ∈ {0, 1} and ⊕ denotes xor operation. Actions of adding and
removing edges are alternatively or simultaneously regarded in these three
patterns respectively.

Furthermore, specific constraint on perturbation patterns can be addi-
tionally imposed. For an instance, if AI is relatively sparse that number of
nodes located within 1-hop from node i is extremely smaller than farther
hops, an arbitrary perturbation on AI probably results in a great impact
- far from the vicinity. Given a specified case that all directly connected
node around node i is a single vertex j which is further expended with many
other farther nodes, it implies that node j provide a most valuable clue for
analyzing node i due to the smallest hop distance. In such situation, large
indiscriminate perturbations probably result in constant absences of node j
and thus explainer is forced to neglect this informative node in paraphrase
layer. To solve it, the perturbations occurred on the edges that directly
connect with node i should be prohibited as [AP ]i,j = [AI ]i,j,∀(i, j) ∈ E.

4.2.2. Perturbation on Feature

Similarly, we design a perturbation pattern for feature by scaling or mask-
ing its representation. zF is applied as the random action variable for per-
turbation on feature:

zF ∼

{
Bernoulli(1, p2), Masking Pattern

N (0, 1), Scaling Pattern
(6)

Features of node i and zF are combined as:

[XP ]i,d = [X]i,dz
F (7)
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4.2.3. Perturbation Energy Level

“Perturbation energy level” explicitly quantifies the energy consumption
of perturbation according to both graph structures and features. Obviously,
more complicated perturbations consume huger amount of energy, which al-
ways introduce more severe deformation that more edges are removed and
added and features inside nodes are masked. Then corresponding response
from GNNs also quite differs from the original graph. In contrast, samples
produced by slighter perturbations with smaller energy consumption always
locate in an immediate vicinity of the original samples. As a result, obser-
vation on smaller perturbations with slightly altered prediction provides a
more important clue to track the “logic” of GNNs, emphasized in learning
stage of paraphrase layer.

For the respect of graph structure, we assume that the combination of
the distance between perturbed position and node i, and the deformation
degree - scale of altered edges - jointly indicate the energy level. Concretely,
the closer perturbation and larger deformation usually consume more energy
and vice versa.

We define the measurement of perturbation distance as hop value and
formulate a normalized coefficient for k-hop as:

wk =
K

k + 1
(8)

αk =
e(wk)∑

i∈{1,...,K} e
(wi)

(9)

where K is the pre-defined maximum, e.g. number of layers in original GNNs.
Finally, we obtain the energy level by combining the coefficients with the
deformation:

γA =
K∑
k=1

αksim([(AP)k]i,:, [(A
I)k]i,:) (10)

For the energy level of feature, we measure the similarity between original
and perturbed node feature:

γX =
N∑
i=1

sim([XP ]i,:, [X]i,:) (11)

where

sim(u, v) = e(
−cosine(u,v)2

δ2
) (12)
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in which δ is the width with distance function cosine(·). It suggests that
higher energy is consumed with more difference in node features.

To this end, complete energy level is defined as follows:

γ = λAγA + λXγX (13)

where λA and λX control the balance between perturbation on graph struc-
ture and feature.

4.2.4. Monitor on Multiple Perturbations

Given a single instance, the complex decision boundaries of GNNs being
explained can be hardly identified by limited witnesses. Thus multiple per-
turbations are applied and we formulate a series of independent instances
perturbed as {(AP(j), XP(j), γ(j))}mj=1 in which m is the frequency of the per-
turbations. Meanwhile, for each perturbation, we constantly monitor and
record the behavior feedback f(y|AP(∗), XP(∗)) of the GNNs being explained. ∗
represents a perturbation.

4.3. Paraphrase Layer: Explanation on Interpretation Domain

Once multiple behavior responses of GNNs under various perturbations
are collected and learnt sequently, a local decision boundary can be identified
by the explainer.

4.3.1. Learning Phase

In order to learn a local faithful explanation, we denote an explainer
as g which can be any kind of potentially explainable models, including
linear models and non-linear models. wθ ∈ Rn̂d is the trainable parameters,
the size of which is completely correlated with the scale of AI(∗) and X.
d is unchangeable and derived from the number of features inside X. As
mentioned in section 4.1, the size of AP(∗) is largely reduced from A according
to a transformation executed by the translation layer. That is to say that n̂
equals to the number of vertices within limited hop - defined by the GNNs to
be explained - from the explained node. Accordingly, it ensures that n̂� n.
And g has ability to generate explanations for an even relatively large graph.

The explainer g is calculated as:

g(y|AP(∗), XP(∗);wθ) = σ(wθ(||nj=1([(A
P
(∗))

k]i,j · [XP(∗)]j,:))) (14)

where symbol || indicates a concatenation operation, · is a scalar multiplica-
tion and σ denotes a nonlinearity function.
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In addition, unlike GNNExplainer, the explanation of TraP2 on feature
is node-dependent as shown in Figure 1 (d).

We combine explainer g with GNNs being explained f to fit a local deci-
sion boundary:

min
wθ

m∑
j=1

C∑
c=1

1

γ(j)
L(f(y = c|AP(j), XP(j)),

g(y = c|AP(j), XP(j))) + λΩ(wθ) (15)

where L is a measurement of the difference between explainer and GNNs in
the locality. Fewer energy consumption γ(j) causes more attention on this
perturbation in that they are closer to the local decision boundary. Ω(wθ)
is regarded as a regularization term to encourage wθ to be discrete and be
interpretable by humans.

4.3.2. Identifying Phase

In our work, the obtained parameters wθ directly represent the contribu-
tion score of a single feature for a node. Further we compute the contribution
(explanation) of node j with wθ:

I ij =

(j+1)∗d∑
q=j∗d

|[wθ]q| (16)

where |[wθ]q| indicates the contribution, an absolute value, from the dth fea-
ture inside node j. A main goal that explainers aim at is locating nodes that
relatively maximum extents of contributions are made. Therefore, the direc-
tion of contributions, either positive or negative, have no effect on quantifying
the extent.

At last, by sorting of the contribution scores across {I i1, ..., I in̂} and {|[wθ]1|,
..., |[wθ]n̂d|}, we can achieve the V̂ ⊆ V I and X̂ with higher scores re-
spectively. Furthermore, Ê can be extracted from existing edges inside
E and nodes belonging to V̂ . Thus, a complete explanation of node i,
Ĝ = (V̂ , Ê, X̂), is determined.

4.4. Extension on Graph Classification Task

Our proposed TraP2 can not only explain on node classification but also
other graph machine learning tasks, e.g. graph classification.
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In node tasks, only one node i need to be explained, thus TraP2 ap-
propriately executes one time. However, every node in the graph all makes
contributions to graph prediction. According to it, for each node, we inde-
pendently perform a translation, perturbation and paraphrase as mentioned
above. Specifically, there are two small changes in paraphrase layer. i) The c
in Equation (15) belongs to label of graph instead of node; ii) In identifying
stage, the contribution scores of each node j must be pooled across all nodes:

Ij =
1

n

n∑
i=1

I ij (17)

5. Experiment

In this section, we conduct experiments on two kinds of tasks, node and
graph classification to evaluate the performance of TraP2.

5.1. Datasets

For these tasks, we follow existing study to apply the same benchmark
datasets [15].

• BA-SHAPES is a Barabási-Albert (BA) graph with 300 nodes and 80
five-node house attachments which are randomly attached. The classes
are determined by that nodes locate on the top, middle, bottom or out
of a house.

• BA-COMMUNITY consists of two BA graphs as in Figure 2. The
definition of class for each graph is consistent with BA-SHAPES. In
addition, normally distributed features are assigned for each node.

• TREE-CYCLE is a 8-level balanced binary tree randomly attached
with 80 six-node cycles. The classes are distinguished by whether nodes
locate on the cycles.

• TREE-GRID is similar with TREE-CYCLE except of that six-node
cycles are replaced by 3-by-3 grids.

• MUTAG is a dataset composed of 4, 337 molecule graphs which are
labeled with the mutagenic effect on the Gram-negative bacterium
S.typhimurium [41].
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• REDDIT-BINARY is a dataset of 2, 000 graphs that online discus-
sion threads on Reddit are recorded. Inside each graph, nodes indicate
users and edges stand for the reply between users. The labels of the
graphs are the types of user interactions [42].

5.2. Baseline Methods

We compare TraP2 with four baseline methods:

• Random is an approach that all explanation elements are randomly
generated.

• Greedy is a method that the nodes causing the highest accuracy differ-
ence from original GNNs are added iteratively, when the edges between
these nodes and the node being explained are masked one by one.

• Grad is similar to a saliency map method that the gradient is derived
from the loss of GNNs being explained [39].

• GNNExplainer explores a small subgraph of the entire graph to max-
imize the mutual information with the prediction of original GNNs.

5.3. Implementation

The implementation and hyperparameters 1 for GNNs to be explained and
GNNExplainer are completely derived from the original work. For TraP2,
in translation layer, we set k in Equation (2) to 3 corresponding to the
trained GNNs. Sample rate p1 and p2 in Equation (4) and (6) are respectively
set as 0.5 and 0.8 for all datasets. The width δ with distance function in
Equation (12) is assigned as 25. We choose 1 for both λA and λX in Equation
(13). The frequency of perturbation is 1500. L1 regularization is selected as
our regularization term Ω(wθ) in Equation (15). In paraphrase layer, g is
trained in 300 epochs with 0.01 learning rate. To account for the property
of TREE-CYCLE and TREE-GRID datasets that number of nodes within
1-hop is smaller than 2 and 3-hops, we constrict the perturbation on graph
structure that edges belonging to 1-hop from the node being explained are
kept unchanged as mentioned in Section 4.2.

1https://github.com/RexYing/gnn-model-explainer
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5.4. Investigation on TraP2

In our work, five desired attributions: accuracy, fidelity, decisiveness,
insight and inspiration are investigated for evaluating the performance of all
explainers.

Dataset Random Greedy Grad GNNExplainer TraP2
BA-SHAPES 1.9 60.8 81.4 81.7 81.9

BA-COMMUNITY 1.6 65.3 66.4 68.6 71.2
TREE-CYCLE 47.7 56.1 71.7 71.8 72.2
TREE-GRID 74.6 75.5 70.2 76.3 86.5

Table 1: Explanation Accuracy on four benchmark datasets.

Dataset Metrics Grad GNNExplainer TraP2

BA-SHAPES
Fidelity 0.042 0.030 0.020
Contrast 1.01 1.47 6.98

BA-COMMUNITY
Fidelity 0.15 0.11 0.09
Contrast 1.06 1.51 5.08

TREE-CYCLE
Fidelity 0.275 0.406 0.272
Contrast 1.00 1.06 3.51

TREE-GRID
Fidelity 0.718 0.069 0.057
Contrast 1.01 1.45 4.50

Table 2: Explanation Fidelity and Contrast on four benchmark datasets.

5.4.1. Question 1: Can TraP2 make an accurate explanation for ground-truth
knowledge?

One of the most essential criterion of an explanation is the accuracy
that the interpretation should match ground truth knowledge exactly. We
define the ground truth explanation for BA-SHAPES, BA-COMMUNITY,
TREE-CYCLE and TREE-GRID as their attachments, i.e. house, cycle and
grid shape. For each node being explained, we train an explainer and sort
the contribution scores of each node. We only preserve the top n nodes -
number of the nodes inside ground truth - with higher scores and calculate
the matching accuracy rate with the ground truth. Intuitively, a better
explanation is expected to achieve a higher accuracy. The results of node
classification on four datasets are shown in Table 1. TraP2 outperforms
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other baseline methods on all datasets, even up to 10.2% higher than the
state-of-the-art approach in TREE-GRID that most complicated structures
of grid and tree are combined tightly. It is noteworthy that Random method
surprisingly obtains a reasonable accuracy in TREE-CYCLE and TREE-
GRID. The reason is that the scale of interpretation domain is relatively
small.

5.4.2. Question 2: Is TraP2 faithful to the authentic prediction?

A faithful explainer is attributed as a repeater that the original behaviors
of GNNs can be reproduced without loss. That is to say that either entire
graph or explanation subgraph is fed into trained GNNs, the outputs ought to
be identical. However, there is no guarantee that ground truth explanations
are consistency with the internal logic of GNNs explained. From another
aspect, fed a subgraph composed of ground truth explanations, GNNs may
produce predictions which is extremely different from original outputs. In
a conclusion, explainers with high accuracy are not the equivalent of the
interpreters with high fidelity.

We formally formulate the fidelity as the absolute difference between the
prediction from the entire graph and the explanation subgraph consisting of
the n nodes from Question 1. Smaller difference explicitly indicates the more
faithful explanation. Extensive experiments are conducted on TraP2 and two
state-of-the-art approaches with relatively high accuracy.

The fidelity scores are listed in Table 2. For a deeper analysis, explainers
with high accuracy are not the equivalent of the interpreters with high fidelity.
Although GNNExplainer exceeds Grad on all datasets under accuracy metric,
it does not outperform Grad on fidelity for all cases. In contrast, Grad with
lowest accuracy unexpectedly defeats the GNNExplainer in TREE-CYCLE
dataset. For our method, TraP2 surpasses all alternative methods in four
datasets, which proves the highest fidelity of TraP2 among them.

5.4.3. Question 3: Does TraP2 decisively provide explanations?

Another valuable characteristic of an explainer is whether it can make
an explanation without hesitation. As a decisive explainer, it is expected
to have an ability to firmly determine a distinguished boundary among the
explanation elements with high-contrast contribution value.

We define the contrastivity by subtracting the average contribution score
of the nodes outside of the n nodes, extracted from Question 1, from the
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Figure 2: Visual comparisons of the node classification examples on four datasets. The
blue nodes indicate the ground truth, the interpreted node is marked in orange. Best
viewed on a computer screen.

lowest score inside of the n nodes. A higher contrastivity implies that a clear
boundary is simple to identify.

As shown in Table 2, TraP2 achieves the highest contrastivity value across
all datasets and approaches. Especially, the superiority is apparently clear
that the improvements on GNNExplainer and Grad are about 3.6 and 4.9
times on average respectively. Compared with the low contrastivity of Grad
and GNNExplainer, Trap2 can be regarded as a definitely high-contrast
method among them.

5.4.4. Question 4: Can TraP2 make insightful explanation for models’ pre-
dictions?

In addition to accurately identifying the relevant subgraph structure, an
explainer should highlight the most meaningful features inside the node and
provide a more insightful explanation for understanding model. We com-
pare the selected important features in each node for GNN’s prediction with
different approaches. In BA-Community dataset (Figure 3), the TraP2 cor-
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Figure 3: Visual comparisons of the node features on MUTAG and BA-Community
datasets. Best viewed on a computer screen.

rectly recognizes the important feature component in related nodes. Further-
more, a toy experiment is conducted using same mechanism in GNNExplainer
for node-independent feature contribution, which achieves the accuracy of
70.3 and still higher than other baselines. Compared to TraP2 with node-
dependent feature contribution , accuracy decreases by 0.9%. It implies that
the joint optimization of subgraph structure and node-dependent features in
our method is helpful to improve the accuracy of explanation. Similarly, in
Figure 3, the atoms (i.e. C, H, O and N) of molecule have different features
in graph. These node features of each atom are also identified by TraP2
accurately. In comparison, GNNExplainer also captures the most important
four positions of features, but does not achieve fine-grained discrimination.
However, other methods can hardly identify or give incorrect explanations
inside the node.

5.4.5. Question 5: How TraP2 find inspirational pattern from graphs?

Supposing we have no prior knowledge about the GNNs - treating the
original model as a black box, can the explainers provide us with a meaning-
ful discovery? Obviously Grad requires exposed internal details of explained
GNNs, while Trap2 and other baselines can be all categorized as model-
agnostic approaches that no details are accessible for explainers. To answer
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Figure 4: Visual comparisons of the graph classification examples on two datasets. Best
viewed on a computer screen.

this question, we revisit the visualization results. For node classification, Fig-
ure 2 shows the different methods for four different datasets and highlights
the explanation subgraphs of each method. From the figure, it can be seen
that TraP2 achieves the best identification performances of key structures of
house, cycle and grid. Specifically, Grad and Greedy strategy can recognize
part real structures, but they are unsatisfactory because they can not provide
an intuitive and understandable subgraph structure. Compared with these
two models, GNNExplainer locates more crucial nodes. However, it still
encounters some incomplete solutions. But the prediction effect of the ran-
dom method varies greatly each time, which is reflected in both the accuracy
and unstable subgraph structure. As illustrated in Figure 4, for REDDIT-
BINARY dataset, the task is to identify whether a given graph belongs to a
question/answer-based (Q & A) community. TraP2 automatically finds two
dense interaction patterns from complex relationship network. The original
network actually represents a Q & A interaction between two experts (the
yellow nodes) and multiple visitors (the blue nodes). Similarly, the carbon
ring is correctly identified by TraP2, which indicates the mutagenic factor in
MUTAG dataset.

6. Conclusion

In this paper, based on local fidelity, we propose a novel explanation
framework TraP2, in which local behaviors probed from perturbed instances
in vicinity are trapped to generate a high-faithful explanation. Our explana-
tion further explain each task on not only node but also features inside each
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nodes. We also propose the fidelity and the contrastivity evaluation metrics
to validate the explanation performances. Extensive comparative evalua-
tions on multiple datasets are implemented, which validates the superiority
of TraP2 over several state-of-the-art explainers for GNNs. Overall, TraP2
is well adapted and applied to different interpretation tasks, which provides
better explanation performance for GNNs. Based on the outstanding perfor-
mance of our work, we will extend our TraP2 to support more graph mining
task such as link prediction and graph generation.
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