arXiv:2102.05334v2 [cs.CV] 2 Sep 2021

Enhancing Real-World Adversarial Patches through
3D Modeling of Complex Target Scenes

Yael Mathov®*, Lior Rokach?®, Yuval Elovici?

“Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel

Abstract

Adversarial examples have proven to be a concerning threat to deep learning models, particularly in the image domain.
However, while many studies have examined adversarial examples in the real world, most of them relied on 2D photos
of the attack scene. As a result, the attacks proposed may have limited effectiveness when implemented in realistic
environments with 3D objects or varied conditions. There are few studies on adversarial learning that use 3D objects,
and in many cases, other researchers are unable to replicate the real-world evaluation process. In this study, we present
a framework that uses 3D modeling to craft adversarial patches for an existing real-world scene. Our approach uses
a 3D digital approximation of the scene as a simulation of the real world. With the ability to add and manipulate
any element in the digital scene, our framework enables the attacker to improve the adversarial patch’s impact in
real-world settings. We use the framework to create a patch for an everyday scene and evaluate its performance using
a novel evaluation process that ensures that our results are reproducible in both the digital space and the real world.
Our evaluation results show that the framework can generate adversarial patches that are robust to different settings in

the real world.

Keywords: Adversarial example, Adversarial learning, 3D modeling

1. Introduction

The development of deep learning models has con-
tributed to the development of solutions for challenges
previously considered unsolvable. However, a concern-
ing vulnerability in those models was discovered: An
imperceptible perturbation to a legitimate input sample
creates an adversarial example that causes the model
to output an incorrect prediction with high confidence
(Szegedy et al., 2013). Although adversarial examples
were initially observed in the digital space (Goodfel-
low et al., 2014; [Papernot et al.| |2016), they were later
demonstrated in the real world (Kurakin et al.l [2016);
making the threat even greater. While several studies
have presented various use cases for real-world adver-
sarial perturbations in the image domain (Sharif et al.,
20165 Evtimov et al., 2017; |Lee and Kolter, |2019), they
all utilized a similar methodology: First, one or more
2D photos of the target scene are used to craft an ad-
versarial perturbation that can be digitally added to the

*Corresponding author
Email addresses: yaelmath@post.bgu.ac.il (Yael Mathov),
liorrk@bgu.ac.il (Lior Rokach), elovici@bgu.ac.il (Yuval
Elovici)

Preprint submitted to Elsevier

entire image or applied as a patch to a portion of an im-
age. Then, the perturbation is recreated in the real world
(i.e., printed) and placed in the scene. Finally, photos of
the scene with the adversarial perturbation are fed to the
neural network for evaluation.

Although that methodology has shown promising re-
sults, such 2D image-based methods do not accurately
represent the 3D real world (as shown in Fig.[T). The
main challenge stems from the fact that while both the
photos of the scene and the adversarial perturbation are
flat, a real-world scene is not. A flat patch must be
placed on a flat surface and must always face the cam-
era; otherwise, parts of the patch will be hidden, and the
attack may fail. Furthermore, crafting the adversarial
perturbation based on photos of the scene limits the at-
tacker’s ability to model real-world properties as part of
the attack. Changes to the environmental settings, such
as lighting, must be manually added to the real-world
scene, and only then can the attacker use them as part of
the attack. In addition, such attacks can only be imple-
mented when the attacker fully controls the target scene,
which not a realistic assumption.

Several studies focused on crafting adversarial pertur-
bations for 3D objects. A prominent example (Athalye

September 3, 2021

Figure 1: Some of the challenges that should be addressed when craft-
ing an adversarial patch for a real-world scene: 1) The patch is placed
on a curved surface. 2) The patch is partially hidden by the object it
is placed on. 3) The patch should have the same lighting as the rest
of the scene. 4) The patch is hidden by an object that is placed in
front of it. 5) Objects casting shadows on one another. 6) The scene
includes an object that affects multiple objects (e.g., an object casts a
shadow on more than one object). 7) The scene may have different
environmental conditions (i.e., point yellow light).

presents the expectation over transforma-

tion (EOT) framework for crafting adversarial pertur-
bations that are robust to random transformations (e.g.,
rotation, translation); the framework relies on the at-
tacker’s ability to model those transformations as part
of the attack process. [Athalye et al| (2018)) used EOT
to perturb the texture of a digital 3D object, which was
later printed using a color 3D printer. Although success-
ful, the attack targeted a single object, as opposed to the
complex scenes that are more common in the real world.
As Fig.[I]shows, a realistic scene contains environmen-
tal characteristics (e.g., ambient lighting) and different
objects that can affect one another (e.g., hide, shadow).
Failing to consider those attributes can impair the at-
tack’s performance. Additionally, EOT relies on a spe-
cific implementation (limiting the ability to use external
modeling and rendering tools) and a 3D color printer, a
piece of equipment that is not accessible to many peo-
ple. Both issues complicate the attack and make it less
feasible.

Another limitation of prior work in this area is the in-
ability to perform the experiment in the real world mul-
tiple times and obtain similar results. In some studies,
performing the same real-world experiment more than
once can be challenging thus limiting the ability to eval-
uate the attack. For instance, it is impossible to replicate
and validate an experiment in which a set of photos of
the scene was obtained from random positions if the au-
thors do not document the exact positions of the cam-
era. In other studies, different researchers cannot repli-

cate the results because the target scene or evaluation
process cannot be (exactly) recreated by subsequent re-
searchers. Therefore, in cases like these, the scientific
community cannot properly assess methods proposed in
prior research on real-world adversarial perturbations.

In this paper, we present a framework that utilizes 3D
computer graphic methods to craft adversarial patches
that can be added to an existing real-world scene. Our
approach allows the attacker to target complex realistic
scenes, with multiple objects, environmental character-
istics, etc. The framework uses a digital 3D replica of
the target scene to simulate the real world, thus allow-
ing the attacker to assess the limitations of the patch and
improve it without risking detection. Since the attacker
controls the digital replica, he/she can add, change, and
remove different elements and as a result, can create
an adversarial patch that is more robust to real-world
transformations. The framework is designed to allow
the integration of external modeling and rendering tools,
which gives the attacker the flexibility to implement the
attack using the tools he/she prefers. We implement the
framework using open-source tools, and thus the attack
is also accessible to an attacker with a limited budget.

Additionally, we propose an evaluation process that is
specifically designed so that the experiment can be per-
formed multiple times and replicated in future studies.
The two-step evaluation process is used in several ex-
periments to evaluate our attack in both the digital space
and the real world. We also examine whether the use of
a digital replica of the scene to create and improve an
adversarial patch can simulate the patch’s performance
in the real world. To do so, we use the framework to
create adversarial patches of multiple target classes and
use the evaluation process to compare their performance
in the digital space and the real world. Our results show
that using the digital replica to evaluate the adversarial
patch can expose useful information about the patch’s
performance in the real world. Furthermore, in realis-
tic settings, unexpected changes may occur in the target
scene. Therefore, we examine the patch’s robustness to
changes in the scene that were not modeled as part of the
scene’s replica. To do so, we evaluate how changing or
adding new objects to the scene affects the patch’s abil-
ity to fool the target neural network. Finally, by pub-
lishing our evaluation setup and code 2021),
researchers can reproduce our results and improve upon
them.

The main contributions of this study are:

o We present a framework for crafting and improving
adversarial patches for an existing real-world scene
in the risk-free environment of the digital space.

e We demonstrate how the framework can be used to
craft a low-budget adversarial patches using free,
open-source, and common 3D modeling tools.

e We present an evaluation process that enables re-
producible experiments in the digital space and the
real world.

2. Background

When discovered by [Szegedy et al.|(2013)), adversar-
ial perturbations were considered a minor bug, but that
changed with the development of advanced adversarial
attacks and the growing number of failed attempts to
defend against them (Goodfellow et al., 2014} [Paper-
not et al., 2016} (Carlini and Wagner, 2017). Adversar-
ial perturbations’ success at fooling neural networks led
to an interest in implementing attacks in the real world
(Kurakin et al.l 2016). While the first real-world stud-
ies performed were unable to reproduce the results ob-
tained in the digital space, these studies set the stage
for research on novel forms of adversarial perturbations.
One example is adversarial patches, which are small
shapes that, when added to a specific part of an im-
age, could fool object classifiers (Evtimov et al., 2017}
Brown et al.l 2017)) or object detectors (Lee and Kolter]
2019; Liu et al.} 2018)). Adversarial patches can also be
printed and placed in a real-world scene, but their per-
formance is limited. In all of these cases, the adversarial
patches were crafted using a set of 2D photos of the tar-
get scene but were used in a 3D space; as a result, the
flat patch produced would be unable to address the real-
world challenges presented in Fig. [T} Such challenges
pushed to the development of methods to improve the
robustness of adversarial perturbations in real world set-
tings.

The use of the EOT framework, presented by |Atha-
lye et al.| (2018)), to craft perturbations that are robust to
specific transformations offered a solution. This frame-
work builds a set of images by transforming the original
sample, using parameters that were randomly sampled
from the transformation function’s distribution, and use
the set to craft a robust adversarial perturbation. For ex-
ample, to craft an adversarial example that is robust to
rotation, the training set includes samples of the orig-
inal image rotated at different angles. To demonstrate
the framework’s abilities, EOT was used to perturb the
texture of a digital 3D object, which was later printed in
the real world using a color 3D printer. The study fo-
cused on perturbing the texture of a single digital object
and thus did not consider the challenges of a complex

realistic scene (presented in Fig. [I). The EOT frame-
work was demonstrated on a premodeled digital 3D ob-
ject that was later printed in the real world, however an
attacker is more likely to target an existing real-world
scene. Moreover, the implementation of the rendering
process and use of a color 3D printer complicate the at-
tack, making it less accessible to inexperienced attack-
ers.

While some studies examined how the representation
of 3D data affects the model’s robustness to adversarial
perturbations (Su et al.l 2018)), others suggested meth-
ods for perturbing the structure (mesh) or texture of 3D
objects (Xiang et al.,[2019; |Xiao et al., 2019). However,
the methods focused on manipulating a single 3D ob-
ject, thus failing to consider the unique characteristics of
a complex real-world scene. [Zeng et al.|(2019) showed
a more realistic approach which perturb different ele-
ments of a digital 3D scene to gain more insights about
attacks in the real world. Although using 3D objects to
create realistic adversarial examples seems promising,
the studies mentioned above used premade digital ob-
jects, and did not target an existing complex real-world
scene or examine the attack outside of the digital space.

Our study aims to use the techniques mentioned
above to craft adversarial patches that are robust in real-
world settings. We also improve upon previous research
by allowing the attacker to work in a flexible environ-
ment that simulates the real world. By creating a digi-
tal replica of the target scene, we give the attacker con-
trol of every element in the scene. Then, the attacker
can effectively utilize EOT by transforming the digital
scene to improve the adversarial patch’s robustness to
the same transformations in the real world.

3. Suggested Approach

3.1. Assumptions and Threat Model

We assume an attacker that wants to add a sticker to
an existing real-world scene to hide an object from an
object detection system that uses a deep learning model.
By doing so, all photos of the scene will result in a false
prediction by the neural network. We assume the at-
tacker has complete knowledge of the target neural net-
work (e.g., parameters, architecture) but not the other
system components (e.g., camera). Moreover, the at-
tacker can examine the real-world scene to create a 3D
digital replica of it, such that the neural network clas-
sifies the rendered images of the replica as the original
class. Finally, we assume that the attacker has physical
access to the actual scene to add the patch in the real
world. While this study demonstrates an attack under

white-box settings, our framework can use black-box
attack methods to craft an adversarial patch under more
restrictive settings.

3.2. Framework Overview

We suggest the following framework for crafting an
adversarial patch for an existing real-world scene. Fig.
presents the six steps of the framework: model, render,
combine, craft, evaluate, and apply. The first five steps
are performed in the digital space, while in the sixth
step, the adversarial patch is transferred from the digital
space to the real world.

First, the attacker uses 3D modeling techniques to
create a 3D digital replication of the real-world scene
and adds an empty digital patch object to the replica;
in the following steps the texture of the empty object
will be perturbed to craft the adversarial patch. Second,
the digital replica is rendered into 2D images, such that
each image is a rendering of the scene under real-world
transformations (e.g., rotation, a change in the lighting).
The rendering process results in two outputs: a back-
ground image of the scene (without the patch) and the
properties of the patch (all pixels that include the patch).
Third, the attacker uses a differentiable method to com-
bine the background and patch properties into one im-
age to create a set of the scene’s images. This way,
the attacker can use a wide variety of external render-
ing tools without implementing a differentiable render-
ing process or approximating the gradients of a non-
differentiable rendering. Fourth, the images are then
used to perturb the patch’s texture, using any method of
crafting an adversarial perturbation. Fifth, the attacker
adds the adversarial patch to the scene’s digital replica,
renders images of the scene, and feeds them to the neu-
ral network. As a result, the attacker can examine the
patch’s effect on the scene and improve it if needed. Fi-
nally, the attacker prints the final patch on a sticker and
adds it to the real-world scene.

3.2.1. Modeling a Digital Replica of the Real-World
Scene

The first step is to create a 3D digital replica that ap-
proximates the real-world target scene. To build this
replica, the attacker can choose any tool (e.g., Blender,
Maya) or resources (e.g., use free 3D objects, buy 3D
designs, use a 3D scanner). Then the attacker adds an
empty 3D object to the digital scene to serve as the
adversarial patch in the replica. In this step, the at-
tacker should consider the following elements: the ob-
jects in the scene, the ambient characteristics, and the
adversarial patch. First, the replica is built from digital

3D objects that represent the objects in the real-world
scene. Then, the scene’s ambient characteristics (e.g.,
light sources, smoke) are added to the replica to im-
prove the replica’s similarity to the real world. Finally,
the digital patch object is added to the scene according
to its expected location in real life. Decisions regarding
the location, shape, and size of the patch should be made
based on the attacker’s goals and the camera’s expected
location.

The modeling stage is affected by the expertise and
resources of the attacker. Our findings show that a
successful attack can be launched by roughly approx-
imating the target scene, however when more realistic
replications are modeled, the success rate will likely in-
crease. This finding demonstrates a trade-off between
the attacker’s effort and the success rate, which can be
used to balance the goals and capabilities of the attacker.

3.2.2. Rendering 2D Images with Realistic Transforma-
tions

The EOT process uses a collection of images with
different transformations (“views”) to craft a single per-
turbation that fools the target neural network for all
views. Unlike past studies that could only use EOT
with a limited number of transformation functions, our
framework’s design allows the attacker to transform any
of the scene’s properties, including the scene’s objects
(one or more), ambient characteristics, camera view,
and more. As presented by |Athalye et al.| (2018)), flexi-
bility in choosing the transformations results in a better
adversarial perturbation. Therefore, in this step, the at-
tacker aims to create a collection of views, such that
each view represents the digital replica under a different
set of transformations.

We define T = {T},...,T} such thateach T; (1 < i <
k) is a distribution of transformation functions #; on the
digital replica (i.e., the scene). For example, a trans-
formation function that rotates the scene through an an-
gle 6 around the x-axis can be sampled from U(30, 90);
hence, 6 € [30,90]. Similarly, we define C as the dis-
tribution for the transformation functions on the digital
replica’s camera (e.g., the camera’s position). For each
set of transformation functions sampled from 7 and C,
the rendering process R applies the transformations to
the 3D digital replica S with patch texture P and outputs
a 2D image of the 3D scene with the ¢ transformations
from viewpoint ¢ (a view). In this step, the attacker sam-
ples transformation functions multiple times to build a
collection of views X:

X =]EZ~T,C~C [R(Sa P9 t’ C)]

2)

Physical
objects

Camera

3D
modeling
tool

Ambient
elements

3D digital
scene

Transform-
ations

Rendering

®

Patch
properties
buffers

Crafting
patch

Scene
background
buffer

®

(Digital

adversarial
patch

-
2

[Digital adversarial patch]

©

v

[Physical adversarial patch]

Figure 2: The framework’s steps: 1) Model a digital replication for the real-world scene. 2) Render 2D images with realistic transformations. 3)
Combine the output of the rendering process into differentiable images. 4) Craft the adversarial patch. 5) Examine the adversarial patch in the
digital space and improve the attack if needed. 6) Apply the patch to the physical scene.

3.2.3. Combining the Rendering Output Buffers

In the next step (i.e., crafting), the set of views is
used to perturb the patch’s texture P to create the ad-
versarial patch. As shown in previous studies, crafting
the adversarial perturbation is usually done by solving
an optimization problem by calculating or approximat-
ing the attack’s loss gradient concerning the patch. Be-
cause our framework allows the use of external render-
ing tools, an attacker can use a non-differentiable ren-
dering process to craft X. As a result, the attacker can-
not calculate g—)}ﬁ, those preventing him/her from using
gradient-based methods for crafting adversarial pertur-
bations. Past studies overcome this issue by implement-
ing the rendering process as a differentiable part of the
attack (Athalye et all 2018}, [Xiang et al, 2019) or by
approximating the loss gradient (Xiao et al},[2019;[Zeng|
[2019). However, these solutions limit the attacker
from using external tools and increase the knowledge
required to implement an attack.

Therefore, we suggest modifying the output of the
rendering process, which is a simple configuration
change that can be done in almost any rendering tool.
Then, instead of outputting a single image, the result of
the rendering process is multiple buffers that can be split
into two types: the background and the patch’s proper-
ties. The background is an image of the scene without
the patch, and the patch’s properties form a set of buffers

with information that allows the patch to be added to the
background in a realistic manner; combining the two
creates an image of the scene. Hence, the rendering
stage results in a set X = {(b;, p;)}_,, where for sam-
ple x; = (b;, p;) € X, b; is the scene background, and p;
are the patch properties. Additionally, for a sample x;,
let B(P, b;, p;) be a differentiable method that combines
P, b;, and p; into an image of the rendered scene. Given
the result of the rendering step X, the attacker builds a
set of views X that are differentiable by P:

X ={(B(P,b;, p)) : V(b;, pi) € X}

An example of combining buffers into a scene im-
age is presented in Fig.[3] The background buffer b; is
an image of the scene without the patch, and the two
patch properties buffers p; are the patch’s texture map
and lighting. Each pixel in the texture map contains the
coordinates of a pixel in the patch’s texture P, thus al-
lowing the framework to build an image of the patch’s
colors by sampling pixels from P (shown in Fig. Ba).
Then, the patch’s color and lighting and the scene back-
ground are combined into one complete image of the
complete scene (shown in Fig. Bb). Since the image
is built using simple operators, like sampling P, addi-
tion, and multiplication, the image B(P, b;, p;) is differ-
entiable by P.

Patch Texture

Texture Map

fagisaiise

Sampling

Patch Color

(a) Sampling the texture

Patch Color Patch Lighting

(b) Combining the buffers

Figure 3: Creating the images of the scene from the patch properties and background buffers. (a) Sampling the texture of the patch to create an
image of the patch’s colors. (b) Combining three buffers to create an image of the scene: the patch’s colors, the shading of the patch, and an image

of the background without the patch.

3.2.4. Crafting the Adversarial Patch

After combining the buffers into a set of images X,
the attacker can use them to craft the adversarial patch.
Crafting an adversarial perturbation under white-box
settings is usually done by feeding a benign input sam-
ple to the target learning model, calculating both the at-
tack loss based on the model’s output and the loss gra-
dient with respect to the input sample, and perturbing
the original input sample. The attack loss is used to en-
sure that the adversarial perturbation meets the attack’s
requirements, such as fooling the target model to out-
put a specific result, limiting the perturbation size, etc.
In most attacks, the original input sample is gradually
changed by an iterative optimization process that adds a
small perturbation to the sample in each iteration. While
most attacks rely on a similar methodology, they differ
by parameters and configuration (e.g., the attack loss,
optimization process, number of iterations). Given our
framework’s design, most methods for crafting adver-
sarial perturbations can be used in this step to perturb
the texture of the empty patch digital object into an ad-
versarial patch.

Since combining the rendering output buffers results
in a set of images X that are differentiable by the
patch texture P, the attacker can use any gradient-based
method to craft an adversarial perturbation to P. Most
methods perturb the patch texture P to fool a neural
network M by optimizing an objective function with
a customized attack loss £, e.g., finding P such that

arg minP(L(M(f())). The attacker can construct £ to
create a targeted attack, apply constraints, etc. Then,

since it is easy to calculate ‘;—)}i, the attacker can also cal-

culate % to solve the optimization problem with
a gradient-based optimizer (e.g., gradient descent). As
done in previous studies, the objective function and op-
timization method should be selected according to the
attack’s goal and target neural network. While in this
study we demonstrate our framework with a white-box
attack, future work can replace the attack method we
used in this step with a black-box attack (such as
et all} 2017, 2020)) to craft an adversarial patch under
more restrictive settings.

3.2.5. Examining the Patch in the Digital Space

Next, by adding the patch to the digital replica, the
attacker can simulate the adversarial patch’s effect on
the neural network’s prediction concerning the real-
world scene. Examining the adversarial patch in the real
world requires both the attacker’s presence at the origi-
nal scene and the performance of actions that could be
considered abnormal thereby exposing the attacker to
the risk of detection. Using the digital replica to simu-
late the real-world scene allows the attacker to identify
potential problems and improve the patch in a controlled
and safe environment. Since the attacker controls the
digital replica, he/she can simulate events that are chal-
lenging to control in real life (e.g., waning daylight, the
presence of smoke).

Moreover, the attacker can use the digital replica to
compare different adversarial patches, identify the most
effective one, and improve the attack’s success in the
real world. Based on the findings in this step, the at-
tacker might choose to change the attack process, re-
quiring modifications to the scene’s replica, the addition
of new transformations to the rendering step, or changes
to the attack’s optimization function. Since the exami-
nation process is performed in the digital space, the at-
tacker can improve and evaluate the patch as long as the
attacker wishes.

3.2.6. Applying the Patch to the Physical Scene

Finally, the attacker creates the adversarial patch in
the real world and adds it to the scene. For instance,
the patch can be printed on a sticker or a piece of paper
using a home printer.

4. Experimental Setup

In this study, we implement the framework using
free and open-source software to create an adversar-
ial patch for a typical office scene in which a standard
white mug is placed on a desk, as seen in Fig. fal A
webcam (Microsoft LifeCam VX-700) films the scene,
and then we divide the video stream into photos, crop
them into 299 x 299 pixel color images, and feed them
to a state-of-the-art object classifier, InceptionV3 (Xial
et al., 2017). This classifier was trained on the Ima-
geNet dataset (Deng et al., 2009), achieving 1-top ac-
curacy of 78% and 5-top accuracy of 93.9% for valid
input. We validated that the scene is classified as the
original class (i.e., Coffee Mug) for 100% of the images
rendered from the digital replica without the patch. Ad-
ditional information on the experiment setup, code, and
parameters is available in (Mathov, 2021)).

4.1. Crafting the Adversarial Patch

4.1.1. Modeling

To model the replica of the target scene, we use
Blender (Community}, [2018), a free creation software.
We start by approximating the objects in the real-world
scene: For the desk and the walls of the room, we use
default cube shapes in Blender. However, the other
objects are more complex, and a professional exper-
tise in 3D modeling is required to create them from
scratch. Therefore, we use a free, premade mug ob-
ject (SEED.EA| 2018)) and add it to the digital replica.
Afterward, we add a yellow point light source that simu-
lates the light bulb in the original office. Then, to create
the empty placeholder for the adversarial patch, we crop

and edit a part of the mug’s model (SEED.EA| 2018)
and the result around the mug’s 3D object in the digital
scene. For each 3D object, we choose standard config-
urations for the materials and use textures made from
photos of the real-world scene. We note that the replica
is modeled using online tutorials for beginners to pro-
duce a simple approximation of the real-world scene.
Therefore, while our digital scene lacks some realistic
elements (Fig. 4D, it can be easily replicated by attack-
ers and researchers with limited experience in 3D mod-
eling.

4.1.2. Rendering

The rendering process is implemented with Mod-
ernGL (Dombi, [2020), based on the examples in the li-
brary’s repository, and uses the configurations and ma-
terials to portray the ambient elements in the rendered
images (e.g., shadows). Due to the attacker’s assumed
lack of knowledge about the camera, we estimate the
camera’s configurations (e.g., field of view). Then, we
render a set of views X, i.e., images of the scene under
different transformations: For the scene transformations
T, we choose translation and rotation in the x,y, and z
axes, and changes in the light color, and for the camera
transformation C, we choose changes in the camera’s
position. To determine the ranges that define each distri-
bution of the different transformation functions, we ex-
amine both the digital replica and the real-world scene.
Based on our findings, we define the ranges according to
possible changes in the real-world scene while ensuring
that the mug and patch are visible in all views. Addi-
tional information about the rendering step (including
parameters and code) is available in (Mathovl, 2021)).

In this study, we explore two methods for sampling
the parameters for the transformations: random sam-
pling and systematic sampling. Random sampling is
commonly used in the EOT framework, in which a
transformation function ¢; is randomly sampled from
a uniform distribution 7; ~ U(a;,3;); hence, the pa-
rameter that defines #; is randomly sampled from the
range [«@;,[;]. Additionally, we examine a determinis-
tic approach, which we refer to as systematic sampling,
where the transformation functions #; are predefined
by systematically sampling the function’s parameter in
constant even steps across [a;,3;]. For example, we
want to create / scene rotation functions {1, ..., #;;} € T;
that are systematically sampled from the range [«;, 5;].
Therefore, we predefine {¢;, ..., #;;} such that for each
1 < j < [, the rotation function 7;; rotates the scene
through an angle of 6; = a; + M After selecting
the transformation functions, we build the set of views

(a) Real world

(b) Digital replica

Figure 4: The target scene: a white mug placed on an office desk; (a) is a photo of the original real-world scene; and (b) is a rendering of our digital
replica with the empty adversarial patch (blue strip) that was modeled using Blender.

by rendering an image of the scene using every combi-
nation of those parameters for the different transforma-
tion distributions.

4.1.3. Combining

The rendering step outputs a set of views X that is
determined by the sampling method; hence, each view
is defined by a set of scene and camera transformations.
Additionally, for each view, the rendering process out-
puts four buffers that can be split into two types: one
buffer with background image and three buffers with
the patch properties. The patch information buffers in-
clude the texture mapping, lighting, and a mask that
defines the parts of the patch object visible in the ren-
dered image. To build a differentiable image from the
four buffers, we follow a similar process to the one pre-
sented in Fig. 3} We use the texture mapping to sam-
ple the colors from P, merge the result with the patch’s
lighting, and finally, use the mask to combine the back-
ground image with the patch. The result is an image
of the complete scene with the patch, similar to the one
shown in Fig.[db] The building process is implemented
using TensorFlow (Abadi et al.}[2016) and uses simple
operations such as sample, add, and multiply tensors; as
a result, the output image is differentiable by P. We use
this process for each view in X to build a set of differen-
tiable images X.

4.14. Crafting
To craft the adversarial patch, we follow previous
studies and define an objective function with a cus-

tomized attack loss:
L(X,P) = CEX,yi5) — k- CE(X,ypq) + A+ TV(P)

where « and A are tuning parameters, y,, and y;, are the
original and attack target class respectively, CE is the
cross-entropy loss, and TV is the total variation. Then,
to perturb P, we use the Adam optimizer to solve the
following optimization problem:

arg min{ £(X, P)}
P

The attack loss £ uses the cross-entropy loss to cause
the scene with the patch to be classified as y,, and not
as Y,g, While maintaining the smoothness of the patch
by minimizing the total variation distance. Examples of
two adversarial patches are presented in Fig.

4.1.5. Examining

To examine the patch, we use the digital evaluation
process, which is described in Section[d.2] Based on our
findings, we perform several changes in the transforma-
tion ranges and updates to the 3D replica to improve it
(e.g., creating realistic lighting by modeling the room as
a box instead of the three visible walls). The attack was
initially designed for the Armadillo target class; later,
we change the seed and initialization parameters and
use the attack to craft patches for the Armadillo and nine
additional target classes. We use the same attack to per-
form a non-biased comparison between the patches for
the different target classes. However, it is more real-
istic to build a tailored attack for each target class, an
approach we will explore in future research.

Figure 5: The systematic (upper) and random (bottom) adversarial
patches for the Platypus target class.

4.1.6. Applying

We print the patch on an A4 piece of paper using a
Xerox WorkCentre 6605, manually crop it, and apply it
to the mug using transparent adhesive tape.

4.2. Evaluation Process

The ability to perform the same experiment multiple
times under the same conditions and obtain similar re-
sults is essential for our study’s integrity and to enable
future research to reproduce our work. Therefore, we
present a replicable two-step evaluation process, the first
step of which takes place in the digital space; the sec-
ond step takes place in the real world. It is important
to note that the evaluation process was designed for re-
search purposes and is not part of our framework.

4.2.1. Digital Space

In the first step, the digital replica is used to simulate
the evaluation in the real world, similarly to our frame-
work’s examination step (step 5 in Fig.[2). Here, we add
the adversarial patch to the scene, render a set of images
under the expected real-world settings and transforma-
tions (e.g., camera’s position), send the images to the
neural network, and analyze the predictions.

4.2.2. Real-World

To ensure that the real-world evaluation process is re-
producible, we suggest using the evaluation setup that is
presented in Fig.[f] The setup includes a camera slider
that can be placed at different distances from the scene
and allows the camera to film the scene from predefined
positions. As shown in Fig.[7a] the camera is placed on
a spinning platform, which is located on top of a cart
that moves the camera from side to side in front of the
scene. The position of the camera can be changed by

spinning the platform to a specific angle, which is de-
fined by marks on the gradations at the bottom of the
platform. Then, a screw is used to secure the camera in
place to ensure that the camera’s angle does not change
during the experiment. A motor spins a screw rod,
which moves the cart across two metal rods at a constant
speed. We suggest defining small ranges on the slider,
as shown in Fig. /b from which the scene is filmed at
different angles. For example, after choosing a camera
position, we identify the range on the slider in which
the mug is visible to the camera; during the experiment,
the cart moves only in the defined range to avoid filming
irrelevant parts of the scene. Each range should be de-
fined based on the required observation area (from the
center, left, or right sides of the slider), along with the
corresponding position of the camera, and can be set
by physically limiting the cart’s movement or by con-
figuring the motor’s behavior. Additionally, as shown
in Fig. the slider can be moved forward and back-
ward across a grooved base to film the scene from differ-
ent distances. Finally, since the real-world scene might
change, the location and position of each object, includ-
ing the adversarial patch, must be marked, thus ensur-
ing that the same scene can be re-evaluated. By physi-
cally marking each configuration, the same actions can
be performed in future experiments and thus, achieve
similar results.

4.2.3. Our Evaluation Setup

In this study, we use the the evaluation process de-
scribed above, in both the digital space and real world,
to evaluate the performance of the patches that we create
using our framework.

Digital space: We determine 3,360 different posi-
tions and locations for the camera around the object,
based on the patch’s visibility in the digital replica; for
each of them, we render an image and send it to the ob-
ject classifier.

Real world: We build the structure, as shown in
Fig. [f]and Fig.[7)and described above, with the follow-
ing configuration: The slider can be placed at one of
three predefined distances from the scene (close, mid-
dle, and far). We defined three ranges (left, center, and
right) for each distance and mark each of the nine ranges
using metal eye straps. The location of the mug, the po-
sition of the mug’s handle, and the place of the patch on
the mug are marked, thus ensuring that the same scene
is used throughout the various experiments. Sketches
and instructions for replicating our real-world evalua-

tion setup are available in (Mathovl, 2021).

Figure 6: Our real-world evaluation setup: The position of the camera (1) is controlled by spinning a platform with gradations on its base (2). The
platform is located on a cart (3), which moves within predefined ranges (4) on a spinning screw rod (5). The slider can be moved forward and
backward into one of three predefined positions (6). We can rebuild the scene using the markings for the mug’s location and position (7) and the

patch’s location on the mug (8).

MhelcantimoVe’s;

Usedito frompsideltolside)

secure the
camerka

Gradation's

Aspinning|
platfienmis

1 [adk e
pesiiien

(a) Platform (b) Cart and ranges

A\ sErew s useel

PR CISCAREES
e SCEhE

(c) Slider

Figure 7: A closeup of the three main components of the real-world evaluation setup: (a) the spinning platform for the camera, (b) the cart that
moves the camera in front of the scene, and (c) the slider which can be placed at different distances from the scene.

10

5. Results

For each target class, we craft four patches: random,
systematic, google, and imagenet. The random and sys-
tematic patches are adversarial patches crafted by using
our framework with the random or systematic sampling
of the transformations during the rendering step. The
google and imagenet patches are made out of images of
the target class that were obtained from a Google search
or the ImageNet dataset respectively, and are used to en-
sure that the results are non-biased. We note that the im-
ages used for the imagenet patches were collected from
the dataset that was used to train the classifier, Incep-
tion V3. We also examine the classification results for
a mug without a patch (clean) and a patch with random
pixel values (noise). For each target class and its four
patches, we evaluate the percentage of images classified
as the original class (Coffee Mug), target class, or other
classes (out of the ImageNet dataset).

5.1. Results for Evaluation in the Digital Space

After changing the seed and initialization parame-
ters, we craft random, systematic, google, and ima-
genet patches for the following classes: Armadillo, Hat,
(bottle) Nipple, Platypus, Mask, Pencil Box, Syringe,
Screw, Mousetrap, and Ladybug. Then, we perform the
evaluation process in the digital space for clean, with
the noise patch, and each of the patches described. All
of the 3,360 images of the rendered replica for clean
and with the noise patch are classified as the original
class, Coffee Mug. Table E] summarizes the results for
the remaining patches.

We expected that the imagenet patches, which were
taken from the dataset that was used to train Inception
V3, would act like an adversarial patch, thus causing the
scene to be classified as the target class. Although the
scene is simple, the google and imagenet patches, with
clear images of the target class, do not affect the clas-
sifier. On average, 99% of the rendered images of the
replica with the google and imagenet patches are clas-
sified as the original class, and none of them are clas-
sified as the target class. In contrast, more than 99%
and 97% (on average) of the images are classified as
the target class for the systematic and random patches
respectively. When comparing the two types of adver-
sarial patches, the systematic sampling approach is sig-
nificantly better at causing the scene to be classified as
the target class than the random sampling approach (the
p-value is 0.04 for a paired sample t-test).

11

5.2. Results for Evaluation in the Real World

For the real-world evaluation, we use the same
patches we created in the digital space for the follow-
ing target classes: Armadillo, Hat, Nipple, and Platy-
pus. Each of these patches, including the noise patch, is
printed on a piece of paper, cropped, and placed on the
designated location on the coffee mug using transpar-
ent adhesive tape. Then, we follow the setup presented
in Fig. [] to take approximately 700 photos, from all
nine ranges, of the real-world scene with each patch and
clean. Similarly to the evaluation in the digital space,
100% of the photos of the real-world scene for clean
and with the noise patch are classified as the original
class. Table [2| summarize the results for the remaining
patches.

The results for the real-world evaluation are similar
to the results obtained in the digital space. For all target
classes, the scene with the google and imagenet patches
is mainly classified as the original class (for 98.5% of
the photos on average) and is never classified as the tar-
get class. Similarly, the scene with the systematic and
random adversarial patches is mainly classified as the
target class; The average difference between the digital
and real-world results is 5%, and the actual difference
never exceeds 7%.

We further examine the patches with the greatest dif-
ference between the digital space and real-world results.
The google patch for the Armadillo target class and
the imagenet patch for Hat are classified as the original
class in 98.1% and 99.1% of the images respectively, but
only in 95.8% and 95.9% of the photos (respectively)
of the real-world scene. Both patches are classified as
the Candle class from the ImageNet dataset (other) for
photos taken from positions in which the mug’s han-
dle is less visible; therefore, the misclassification might
stem from the cylindrical shape of the mug without the
handle. We also observe that the random patch for the
Platypus class is less effective when the camera is lo-
cated far from the scene, in both the digital space and
the real world. Since the digital space evaluation reveals
its weaknesses, the attacker can utilize this information
to improve the patch by rendering more views in which
the camera is located far from the scene. This is an ex-
ample of how the attacker can identify the patch’s flaws
in advance, learn how to improve the patch, and increase
the chances of a successful attack.

6. Resilience to Unexpected Transformations

In realistic scenarios, the attacker cannot control the
real-world scene, which means that by the time the at-
tacker returns to the scene with the patch, the scene

Table 1: The classification results (percentage) in the digital space for the original (Og), target (Tg), and other (Ot) classes. All of the images

(100%) of clean and noise are classified as the original class.

Systematic Random Google Imagenet

Target | (o0 Ty Ot |Og Te Ot| Og Te Ot| Og Te O

Class
Armadillo | 0.3 995 02 | 0.8 98.5 0.7 | 98.1 0 1.9 98 0 2
Hat 03 996 0.1 |01 995 041]995 0 0.5 99.1 0 09
Nipple 01 976 23|04 931 651|996 0 04 | 100 0 0
Platypus 1 975 15| 13 98 0.7 | 98.1 0 19 | 964 0 3.6
Mask 1 99 0 69 929 021997 0 03997 0 03
Pencil Box 0 999 0.1 |07 987 06997 0 031]99 0 0.1
Syringe 0 989 1.1 | 0.8 95 421992 0 08 (976 0 24
Screw 0.1 998 0.1 |06 976 1.8 | 100 0 0 979 0 2.1
Mousetrap 0 100 0 0.1 99.1 0 100 0 0 979 0 2.1
Ladybug 0 100 0 0 100 0 997 0 03| 100 0 0

Table 2: The classification results (percentage) in the real world for the original (Og), target (Tg), and other (Ot) classes. All of the photos (100%)

of clean and noise are classified as the original class.

Systematic Random Google Imagenet
Target Og Tg Ot | Og Tg Ot | Og Tg Ot | Og Tg Ot
Class
Armadillo | 1.5 928 57 |21 953 26|98 0 42|97 0 03
Hat 0 991 09|02 989 09|93 0 077|959 0 41
Nipple 0 987 13|07 927 66| 100 O 0 9.1 0 09
Platypus 03 926 71|62 8 68192 0 08]9.1 0 09

may have changed. As we discussed, the attacker can
use our framework to improve the patch’s robustness to
predictable changes, yet this is not the case for unex-
pected major transformations to the scene (e.g., the sud-
den removal of an object). If the patch is only effective
in the modeled scene and under expected transforma-
tions, then our framework is less feasible in real-world
settings. Therefore, we want to examine how unex-
pected transformations to the real-world scene affect the
ability of adversarial patches created using our frame-
work to fool the target neural network. To do so, we
use seven new transformations to change the real-world
scene. The adversarial patches are not expected to be
robust to those transformations, since they are not part
of the digital replica.

As shown in Fig. [fa] the original scene contains a
white coffee mug with a handle on the right side and a
patch placed in the middle of the mug, which is placed
on an office desk. We defined the seven unexpected
transformations as up, down, red, wood, color, shape,
and flipped. Up and down are transformations to the

12

patch’s location on the mug: the patch is placed on the
top and bottom of the mug, respectively. We also change
the surface on which the mug is placed to a red circle
(red) and a wooden mat (wood). For color and shape,
we replace the original white mug: for color, we use
a mug of the same shape but with a different color (a
dark background with colorful illustrations), while for
shape, we use a mug of a similar color (light gray in-
stead of white) which has a different shape. The shape
mug is shorter and cone-shaped, and has a smaller han-
dle which is located at a higher position on the mug. Fi-
nally, for flipped, we rotate the mug by 180°. In this ex-
periment, for each transformation (some of the transfor-
mations are shown in Fig. [§), we change the scene and
perform the real-world evaluation process with the two
adversarial patches (systematic and random) used for
the Nipple target class. Table [3] presents how each un-
expected transformation affects the classification results
of the real-world scene with the adversarial patches.

The unexpected transformations cause the scene to be
classified as the target class less often and more often as

(a) Different mugs

(b) Red mat

Figure 8: Unexpected transformations to the real-world scene; (a) the three coffee mugs on the wooden mat used for wood (from left to right:
shape, the original mug, and color), and (b) red: the original coffee mug with an adversarial patch on a red mat.

Table 3: The results of a real-world evaluation for the Nipple patches with seven unexpected transformations added to the scene. The results
indicate the percentage of photos classified as the original, target, or other classes.

Systematic Random
Transformation || Original | Target | Other || Original | Target | Other
Up 0.6 88.9 10.5 2.2 77.9 19.9
Down 2.7 83.7 13.6 2.7 87.8 9.5
Red 1.9 84.6 13.5 2.7 76.5 20.8
Wood 5.8 68.9 25.3 2.4 64.7 329
Color 6.5 39.1 54.4 5.5 28.1 66.4
Shape 0 87.1 12.9 1.2 71.7 27.1
Flipped 2.7 85.8 11.5 4.3 55.1 40.6

other classes. Additionally, the scene is classified as the
original class in only 2.9% of the photos (on average)
and in no more than 6.5% of the photos. This shows
that the neural network fails to identify the mug even
when there are major unexpected changes in the scene.
It seems that the patches are robust to changes in the
patch’s location on the mug; in up and down, the scene
is classified as the original class for no more than 2.7%
of the photos. However, changes in the object that the
mug is placed on show mixed results; while the patches
are more robust to red, wood is classified as the target
class in less than 70% of the photos, and in just up to
5.8% of the photos as the original class. We believe that
the difference may stem from the shape of the mats: un-
like the wooden mat, the red mat and the desk in the
original scene have a solid shape. Similarly, replacing
the original mug also shows mixed results; both patches
perform the worst on color but perform well on shape.
For color, the scene is classified as the target class in
less than 40% of the photos and as the original class in

13

up to 6.5% of the photos. We assume that the use of a
mug with an inconsistent design (i.e., many colorful il-
lustrations) reduces the performance of the patches. Al-
though the patches are the least robust to color, the neu-
ral network still fails to identify the scene in more than
90% of the photos. In contrast, the scene with shape is
classified as the target scene in 71.7% and 87.1% of the
photos for the random and systematic patches respec-
tively, and the systematic patch is never classified as the
original class. Additionally, we find that flipped affects
the adversarial patches differently: systematic performs
well, with 85.8% of the photos classified as the target
class, but for random, only 55.1% of the photos are clas-
sified as the target class. Finally, in most cases, the sys-
tematic patch performs better than the random patch.

This experiment was designed to examine whether
using a digital replica limits the attack to a specific
model of the scene, thus causing the adversarial patch
to become ineffective when unexpected changes occur
in the real world. To do so, we performed noticeable,

yet realistic, transformations to the original real-world
scene: changes in an object’s location and position, the
replacement of an object, and adding a new object to
the scene. The results show that although the transfor-
mations reduce the attacker’s ability to control the neu-
ral network’s prediction, the patches can still fool the
neural network so that it misclassifies the scene. On av-
erage, the scene is not classified as the original label in
more than 97% of the photos, which supports the feasi-
bility of our framework. Therefore, the attacker can im-
prove the attack’s robustness to real-world transforma-
tions by creating a 3D replica of the scene (as we pro-
posed), suffering just a minor reduction in the patch’s
fooling ability if unexpected changes occur in the target
scene.

7. Conclusions

In this work, we demonstrated how 3D modeling
techniques and tools can be used to craft inexpensive ad-
versarial patches that are robust to real-world transfor-
mations. By creating a digital replica of the target scene,
our method gives the attacker control of every aspect of
the scene, including the objects, lighting, and more. The
replica simulates the real-world scene, thus allowing the
attacker to test and improve the attack without the risk of
detection. We also demonstrate that such approach can
improve the patch’s robustness to both expected and un-
expected changes in the real-world scene. Additionally,
we present an evaluation process that enables other re-
searchers to reproduce our experiments and validate our
results. We believe that such an evaluation process can
be used in future studies and contribute to replicating,
examining, and improving other real-world attacks.

In future work, we plan to improve the suggested
framework by adding 3D elements (e.g., reflection and
normal maps) to support more complex scenes. Then,
we will use it to tailor an attack for other domains, like
the facial recognition domain, where our framework can
improve individuals® privacy concerning such systems.
We also aim to create imperceptible perturbations that
attract less attention. Finally, our results suggest that us-
ing the EOT framework with systematic sampling might
be better than random sampling, and we plan to perform
additional experiments to examine this further.

Acknowledgment

We gratefully acknowledge Matan Yesharim for his
major contribution to the development of both the attack
and evaluation process. We also thank Boris Zadov for

14

his professional expertise. Finally, we extend a special
thank you to Mathov Designs for designing and build-
ing the real-world evaluation setup and for allowing us
to publish their designs which will assist the research
community worldwide.

References

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, R. Fergus, Intriguing properties of neural networks, arXiv
preprint arXiv:1312.6199 (2013).

I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing
adversarial examples, arXiv preprint arXiv:1412.6572 (2014).

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
A. Swami, The limitations of deep learning in adversarial settings,
in: 2016 IEEE European symposium on security and privacy (Eu-
roS&P), IEEE, 2016, pp. 372-387.

A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the
physical world, arXiv preprint arXiv:1607.02533 (2016).

M. Sharif, S. Bhagavatula, L. Bauer, M. K. Reiter, Accessorize to a
crime: Real and stealthy attacks on state-of-the-art face recogni-
tion, in: Proceedings of the 2016 acm sigsac conference on com-
puter and communications security, 2016, pp. 1528-1540.

I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash,
A.Rahmati, D. Song, Robust physical-world attacks on deep learn-
ing models, arXiv preprint arXiv:1707.08945 (2017).

M. Lee, Z. Kolter, On physical adversarial patches for object detec-
tion, arXiv preprint arXiv:1906.11897 (2019).

A. Athalye, L. Engstrom, A. Ilyas, K. Kwok, Synthesizing robust ad-
versarial examples, in: International conference on machine learn-
ing, PMLR, 2018, pp. 284-293.

Y. Mathov, Author repository: Enhancing real-world adversar-
ial patches with 3d modeling techniques, https://github.
com/yaliMa/Adversarial-Patch-3D, 2021. Accessed 15 July
2021.

N. Carlini, D. Wagner, Towards evaluating the robustness of neural
networks, in: 2017 ieee symposium on security and privacy (sp),
IEEE, 2017, pp. 39-57.

T. B. Brown, D. Mané, A. Roy, M. Abadi, J. Gilmer, Adversarial
patch, arXiv preprint arXiv:1712.09665 (2017).

X. Liu, H. Yang, Z. Liu, L. Song, H. Li, Y. Chen, Dpatch:
An adversarial patch attack on object detectors, arXiv preprint
arXiv:1806.02299 (2018).

J.-C. Su, M. Gadelha, R. Wang, S. Maji, A deeper look at 3d shape
classifiers, in: Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018, pp. 0-0.

C. Xiang, C. R. Qi, B. Li, Generating 3d adversarial point clouds,
in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 9128-9136.

C. Xiao, D. Yang, B. Li, J. Deng, M. Liu, Meshadv: Adversarial
meshes for visual recognition, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2019, pp.
6898-6907.

X. Zeng, C. Liu, Y.-S. Wang, W. Qiu, L. Xie, Y.-W. Tai, C.-K. Tang,
A. L. Yuille, Adversarial attacks beyond the image space, in: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4302-4311.

P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, C.-J. Hsieh, Zoo: Zeroth or-
der optimization based black-box attacks to deep neural networks
without training substitute models, in: Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, 2017, pp.
15-26.

https://github.com/yaliMa/Adversarial-Patch-3D
https://github.com/yaliMa/Adversarial-Patch-3D

J. Chen, M. I. Jordan, M. J. Wainwright, Hopskipjumpattack: A
query-efficient decision-based attack, in: 2020 ieee symposium
on security and privacy (sp), IEEE, 2020, pp. 1277-1294.

X. Xia, C. Xu, B. Nan, Inception-v3 for flower classification, in:
2017 2nd International Conference on Image, Vision and Comput-
ing (ICIVC), IEEE, 2017, pp. 783-787.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A
large-scale hierarchical image database, in: 2009 IEEE conference
on computer vision and pattern recognition, Ieee, 2009, pp. 248—
255.

B. O. Community, Blender - a 3D modelling and rendering package,
Blender Foundation, Stichting Blender Foundation, Amsterdam,
2018. Accessed 15 July 2021.

SEED.EA, Pica pica - seed coffee mug,
https://sketchfab.com/3d-models/
pica-pica-seed-coffee-mug-b0£7d098678049749b1fc0fe4e881465,
2018. Accessed 15 July 2021.

S. Dombi, Moderngl, high performance python bindings for opengl
3.3+, https://github.com/moderngl/moderngl, 2020. Ac-
cessed 15 July 2021.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A system for
large-scale machine learning, in: 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), 2016,
pp. 265-283.

15

https://sketchfab.com/3d-models/pica-pica-seed-coffee-mug-b0f7d098678049749b1fc0fe4e881465
https://sketchfab.com/3d-models/pica-pica-seed-coffee-mug-b0f7d098678049749b1fc0fe4e881465
https://github.com/moderngl/moderngl

	1 Introduction
	2 Background
	3 Suggested Approach
	3.1 Assumptions and Threat Model
	3.2 Framework Overview
	3.2.1 Modeling a Digital Replica of the Real-World Scene
	3.2.2 Rendering 2D Images with Realistic Transformations
	3.2.3 Combining the Rendering Output Buffers
	3.2.4 Crafting the Adversarial Patch
	3.2.5 Examining the Patch in the Digital Space
	3.2.6 Applying the Patch to the Physical Scene

	4 Experimental Setup
	4.1 Crafting the Adversarial Patch
	4.1.1 Modeling
	4.1.2 Rendering
	4.1.3 Combining
	4.1.4 Crafting
	4.1.5 Examining
	4.1.6 Applying

	4.2 Evaluation Process
	4.2.1 Digital Space
	4.2.2 Real-World
	4.2.3 Our Evaluation Setup

	5 Results
	5.1 Results for Evaluation in the Digital Space
	5.2 Results for Evaluation in the Real World

	6 Resilience to Unexpected Transformations
	7 Conclusions

