
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark

Shiv Ram Dubey1, Satish Kumar Singh1, Bidyut Baran Chaudhuri2

1Computer Vision and Biometrics Laboratory, Indian Institute of Information Technology, Allahabad, India.
2Techno India University, Kolkata, India and Indian Statistical Institute, Kolkata, India.

srdubey@iiita.ac.in, sk.singh@iiita.ac.in, bidyutbaranchaudhuri@gmail.com

This paper is accepted in Neurocomputing. Copyright will be transferred to Elsevier.

Abstract

Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks
have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform
the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are
combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs),
such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented
for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based,
ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are
also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different
types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select
among different choices. The code used for experimental comparison is released at: https://github.com/shivram1987/
ActivationFunctions.

1. Introduction

In recent years, deep learning has shown a tremondous
growth to solve the challenging problems such as object de-
tection [1], semantic segmentation [2], person re-identification
[3], image retrieval [4], anomaly detection [5], skin disease di-
agnosis [6], and many more. Various types of neural networks
have been defined in deep learning to learn abstract features
from data, such as Multilayer Perceptron (MLP) [7], Convolu-
tional Neural Networks (CNN) [8], Recurrent Neural Networks
(RNN) [9], and Generative Adversarial Networks (GAN) [10].
The important aspects of neural networks include weight ini-
tialization [11], loss functions [12], different layers [13], over-
fitting [14], and optimization [15].

The activation functions (AFs) play a very crucial role in neu-
ral networks [16] by learning the abstract features through non-
linear transformations. Some common properties of the AFs are
as follows: a) it should add the non-linear curvature in the opti-
mization landscape to improve the training convergence of the
network; b) it should not increase the computational complexity
of the model extensively; c) it should not hamper the gradient
flow during training; d) it should retain the distribution of data
to facilitate the better training of the network. Several AFs have
been explored in recent years for deep learning to achieve the
above mentioned properties. This survey is dedicated to the de-
velopments in the area of AFs in neural networks. The insights
of the different AFs are presented along with the reasoning to
benefit the deep learning community. The major contributions

of this survey are outlined as follows:

1. This survey provides a detailed classification for a wide
range of AFs. It also includes the AFs very comprehen-
sively, including Logistic Sigmoid/Tanh, Rectified Unit,
Exponential Unit, and Adaptive AFs.

2. This survey enriches the reader with the state-of-the-art
AFs with analysis from various perspectives. It specifi-
cally covers the progress in AFs for deep learning.

3. This survey also summarizes the AFs with brief highlights
and important discussions to depict its suitability for dif-
ferent types of data (Refer to Table 6).

4. This survey is compared with the existing survey and per-
formance analysis to show its importance (Refer to Table
7).

5. This paper also presents the performance comparisons
on 4 benchmark datasets of different modalities using 18
state-of-the-art AFs with different types of networks (Re-
fer to Tables 8, 9 and 11).

The evolution of AFs is illustrated in Section 2. The progress
in Logistic Sigmoid and Tanh, rectified, exponential, adaptive
and miscellaneous AFs are summarized in Section 3, 4, 5, 6,
and 7, respectively. Some aspects of AFs are discussed in Sec-
tion 8. A comprehensive performance analysis is conducted in
Section 9. A summary with conclusions and recommendations
is provided in Section 10.

ar
X

iv
:2

10
9.

14
54

5v
3

 [
cs

.L
G

]
 2

8
Ju

n
20

22

https://github.com/shivram1987/ActivationFunctions
https://github.com/shivram1987/ActivationFunctions

Figure 1: An illustration of Linear, Logistic Sigmoid and Tanh AFs.

2. Evolution of Activation Functions

A linear function can be thought of as a simple AF which
outputs c × x for input x with c as a constant. The linear AF
is illustrated in Fig. 1 for c = 1, i.e., identity function. Note
that the linear AF does not add non-linearity into the network.
However, the non-linearity needs to be introduced in the neural
networks. Otherwise, a neural network produces the output as a
linear function of inputs inspite of having several layers. More-
over, in practice data is generally not linearly separable; hence,
the non-linear layers help to project the data in non-linear fash-
ion in feature space which can be used with different objective
functions. This section provides an overview of the evolution
of AFs for deep learning. A classification is presented in Fig. 2
in terms of the different properties and characteristic types.

Logistic Sigmoid/Tanh Unit Based Activation Functions: In
order to introduce the non-linearity into the neural networks,
the Logistic Sigmoid and Tanh AFs have been used in the early
days. The firing of bilogical neurons was the motivation of us-
ing the Logistic Sigmoid and Tanh AFs with artificial neurons.
The Logistic Sigmoid AF is a very popular and traditional non-
linear function. It is given as,

Logistic Sigmoid(x) =
1

1 + e−x . (1)

This AF squashes the output between [0, 1] as shown in Fig.
1. The output of the Logistic Sigmoid function is saturated
for higher and lower inputs, which leads to vanishing gradient
problem. The vanishing gradient problem depicts to a scenario
where the gradient of objective function w.r.t. a parameter be-
comes very close to zero and leads to almost no update in the
parameters during the training of the network using stochastic
gradient descent technique. Hence, the training is almost killed
under vanishing gradient scenario. Moreover, the output not
following a zero-centric nature leads to poor convergence. The
Tanh function has also been used as the AF in neural networks.
It is similar to the Logistic Sigmoid function while exhibiting
the zero centric property as depicted in Fig. 1. The Tanh func-

Activation Functions (AFs)

Sigmoid/ Tanh Unit
Based AFs

Properties of
AFs

Different
Applications

Characteristics
Type

Rectified Unit Based
AFs

Exponential Unit
Based AFs

Adaptive Unit Based
AFs

Miscellaneous
AFs

Parametric vs
Non-parametric

Monotonic vs
Non-monotonic

Smooth vs
Non-smooth

Bounded vs
Un-bounded

Image Based
Applications

Text Based
Applications

Games Related
Applications

Time Series
Applications

Signal Based
Applications

Output Range
of AFs

Figure 2: Classification of activation functions.

tion is written as,

Tanh(x) =
ex − e−x

ex + e−x . (2)

The Tanh function also squashes the inputs, but in [−1, 1]. The
drawbacks of Logistic Sigmoid function such as vanishing gra-
dient and computational complexity also exist with Tanh func-
tion. The Logistic Sigmoid and Tanh AFs majorly suffer from
vanishing gradient. Several improvements have been proposed
based on the Logistic Sigmoid and Tanh AFs which are de-
scribed in Section 3 in detail.

Rectified Linear Unit Based Activation Functions: The satu-
rated output and increased complexity are the key limitations of
above-mentioned Logistic Sigmoid and Tanh based AFs. The
Rectified Linear Unit (ReLU) [17] has become the state-of-the-
art AF due to its simplicity and improved performance. The
ReLU was also used in the AlexNet model [8]. Various variants
of ReLU have been investigated by tackling its drawbacks, such
as non-utilization of negative values, limited non-linearity and
unbounded output, as detailed in Section 4.

Exponential Unit Based Activation Functions: The major
problem faced by the Logistic Sigmoid and Tanh based AFs
is with its saturated output for large positive and negative input.
Similarly, the major problem with ReLU based AFs is with the
under-utilization of negative values leading to vanishing gradi-
ent. In order to cope up with these limitations the exponential
function based AFs have been used in the literature. The Expo-
nential Linear Unit (ELU) [27] based AF utilizes the negative
values with the help of the exponential function. Several AFs
have been introduced in the literature as the ELU variants which
are presented in Section 5 in detail.

Learning/Adaptive Activation Functions: Most of the Sig-
moid, Tanh, ReLU, and ELU based AFs are designed manually
which might not be able to exploit the data complexity. The
learning based adaptive AFs are the recent trends. This class
of AFs contains learnable parameters, e.g. Adaptive Piecewise
Linear (APL) [28] and Swish [29] AFs contain two and one
learnable parameters, respectively. Recently, several learning
based AFs have been proposed as illustrated in Section 6.

Table 1: Advantage and disadvantage of primary AFs.

AFs Diminishing Limited Optimization Lack of Computational
gradients non-linearity difficulty adaptibility inefficiency

Sigmoid Yes No Yes Yes Yes
Tanh Yes No Partial Yes Yes
ReLU Partial Yes Partial Yes No
ELU No Partial No Yes Partial
APL No Partial No No No

Swish No Partial No No Partial

Table 2: Summary of Logistic Sigmoid and Tanh based activation functions.

Name of AF Parametric Monotonic Smooth Bounded
Logistic Sigmoid No Yes Yes Yes
Tanh No Yes Yes Yes
Scaled Tanh (sTanh), 1998 [18] Yes Yes Yes Yes
Rectified Hyperbolic Secant (ReSech), 2016 [19] No No Yes Yes
Scaled Sigmoid (sSigmoid), 2016 [20] No Yes Yes Yes
Penalized Tanh (pTanh), 2016 [20] No Yes No Yes
Hexpo, 2017 [21] No Yes Yes Yes
Improved Sigmoid (ISigmoid), 2018 [22] No Yes Yes No
Sigmoid-Weighted Linear Units (SiLU), 2018 [23] No No Yes For negative inputs
Linearly Scaled Hyperbolic Tangent (LiSHT), 2019 [24] No No Yes No
Elliott, 2019 [25] No Yes Yes Yes
Soft-Root-Sign (SRS), 2020 [26] Yes No Yes Yes

Miscellaneous Activation Functions: In recent years, many
other AFs have also been investigated as presented in Section
7. These activations include Softplus units, probabilistic func-
tions, polynomial functions, and kernel functions.

Table 1 highlights the advantage and disadvantage of the pri-
mary AFs in terms of the diminishing gradients, limited non-
linearity, optimization difficulty, computational inefficiency
and lack of adaptibility. It can be noticed that the Tanh function
is computationally inefficient because it involves the computa-
tion of exponential multiple times [30]. However, in implemen-
tation it can be computed using single exponential with the help
of Sigmoid function. These limitations in the existing AFs have
been the driving factors for the development of recent AFs as
surveyed in the further sections of this paper.

3. Logistic Sigmoid and Tanh Based AFs

The traditional AFs such as Logistic Sigmoid and Tanh were
used very extensively in the early days of neural networks.
However, these AFs had shown the hurdle to train the deep net-
works due to their saturated output. Several attempts have also
been made to improve these AFs for different networks. Table
2 presents the comparison of Logistic Sigmoid and Tanh based
AFs in terms of their properties including parametric, mono-
tonic, smooth and bounded.

In order to tackle the limited output range and zero gradient
problems of Tanh, a scaled Hyperbolic Tangent (sTanh) is used
in [18] which is defined as,

sTanh(x) = A × Tanh(B × x) (3)

with the output range in [−A, A]. A Parametric Sigmoid Func-
tion (PSF) is proposed as a continuous, differentiable, and

bounded function as,

PS F(x) =
1

(1 + e−x)m (4)

where m is a hyperparameter [31]. The gradient flow is im-
proved for the higher value of m. The sum of shifted log-
sigmoid is also explored as an AF [32] which retains the sym-
metry in the generated features. The Rectified Hyperbolic Se-
cant (ReSech) AF is differentiable, symmetric, and bounded
[19] which is given as,

ReS ech(x) = x × S ech(x) (5)

with the output range in [−1, 1]. However, it exhibits the vanish-
ing gradient problem due to saturating behavior for both large
positive and large negative inputs. The training of deep net-
works become difficult due to the uniform slope of the Logistic
Sigmoid and Tanh AFs near the origin [20]. To minimize this
limitation, the Scaled Sigmoid (sSigmoid) is defined as,

sS igmoid(x) = (4 × S igmoid(x) − 2) (6)

with the output range in [−2, 2] and the Penalized Tanh (pTanh)
is defined as,

pTanh(x) =

Tanh(x), x ≥ 0
a × Tanh(x), x < 0

(7)

with the output range in [−a, 1] where a ∈ (0, 1). However,
sSigmoid and pTanh AFs also suffer from the vanishing gradi-
ent problem. It is noticed that the pTanh AF performs better for
Natural Language Processing (NLP) tasks [33].

A noisy AF is defined to overcome the vanishing gradient
problem [48]. Due to the added noise the gradients may flow
easily even in the saturating regime. The vanishing gradient

Table 3: Summary of Rectified Linear Unit based activation functions.

Name Parametric Monotonic Smooth Bounded
Rectified Linear Unit (ReLU), 2010 [17] No Yes No For negative inputs
Leaky ReLU (LReLU), 2013 [34] No Yes No No
Parametric ReLU (PReLU), 2015 [35] Yes Yes No No
Randomized ReLU (RReLU), 2015 [35] No Yes No No
Concatenated ReLU (CReLU), 2016 [36] No Yes No For negative inputs
Bounded ReLU (BReLU), 2016 [37] No Yes No Yes
Parametric Tanh Linear Unit (PTELU), 2017 [38] Yes Yes Yes For negative inputs
Flexible ReLU (FReLU), 2018 [39] Yes Yes No For negative inputs
Elastic ReLU (EReLU), 2018 [40] No Yes No For negative inputs
Randomly Translational ReLU (RTReLU), 2018 [41] No Yes No For negative inputs
Dual ReLU (DualReLU), 2018 [42] No Yes No No
Paired ReLU (PairedReLU), 2018 [43] Yes Yes No No
Average Biased ReLU (ABReLU), 2018 [44] No Yes No For negative inputs
Natural-Logarithm (NLReLU), 2019 [45] No Yes No For negative inputs
Multi-bin Trainable Linear Units (MTLU), 2019 [46] Yes No No No
Lipschitz ReLU (L-ReLU), 2020 [47] Yes Depends upon φ and η Depends upon φ and η Depends upon φ and η

problem is minimized by the Hexpo function [21] which is sim-
ilar to Tanh with a scaled gradient. It is given as,

Hexpo(x) =

−a × (e−x/b − 1), x ≥ 0
c × (ex/d − 1), x < 0

(8)

in the output range of [−c, a]. The output of the sigmoid func-
tion is multiplied with its input in sigmoid-weighted linear unit
(SiLU) AF [23] as

S iLU(x) = x × S igmoid(x) (9)

in the output range of (−0.5,∞). At the same time an improved
logistic Sigmoid (ISigmoid) AF [22] is proposed to solve the
vanishing gradient problem of Sigmoid with the help of a piece-
wise combination of sigmoidal and linear functions. It is de-
fined as,

IS igmoid(x) =


α × (x − a) + S igmoid(a), x ≥ a
S igmoid(x), −a < x < a
α × (x + a) + S igmoid(a), x ≤ −a

(10)
in the output range of (−∞,∞). The Linearly scaled hyper-
bolic tangent (LiSHT) AF scales the Tanh in a linear fashion to
overcome the vanishing gradient issue [24]. The LiSHT can be
defined as,

LiS HT (x) = x × Tanh(x) (11)

in the output range of [0,∞). The LiSHT function is symmetric,
but is has the shortcoming of including unbounded and non-
negative outputs only. The Elliott AF [25] is similar to Sigmoid
function in terms of the characteristics diagram and defined as,

Elliott(x) =
0.5 × x
1 + |x|

+ 0.5 (12)

in the output range of [0, 1]. The Soft-Root-Sign (SRS) AF [26]
is defined as,

S RS (x) =
x

x
α

+ e−x/β (13)

in the output range of [α×β
β−α×e , α] where α and β are the learn-

able parameters. The use of additional parameters increases the

complexity of the SRS function. Most of the variants of Sig-
moid/Tanh AFs have tried to overcome the vanishing gradient
issue. However, this issue is still present in most of these AFs.

4. Rectified Activation Functions

A summary of rectified AFs is illustrated in Table 3. Recti-
fied Linear Unit (ReLU) is a simple function which is the iden-
tity function for positive input and zero for negative input and
given as,

ReLU(x) = max(0, x) =

x, if x ≥ 0
0, otherwise

. (14)

Hence, the range of ReLU is [0,∞). The gradient for positive
and negative inputs is one and zero, respectively. The ReLU
function solves the problem of computational complexity of the
Logistic Sigmoid and Tanh functions. The downside of ReLU
is with the vanishing gradient problem for the negative inputs.
In spite of having the vanishing gradient problem, the ReLU AF
has been used very extensively with the deep learning models.
The advancements in ReLU based AFs are discussed in the rest
of this section.

4.1. On the Non-utilization of Negative Values of ReLU

Vanishing gradient is the main problem with ReLU AF which
is caused due to the non-utilization of negative values. A Leaky
Rectified Linear Unit (LReLU) is the extension of ReLU by
utilizing the negative values [34]. The LReLU is defined as,

LReLU(x) =

x, x ≥ 0
0.01 × x, x < 0

(15)

in the output range of (−∞,∞). The LReLU has been used
in many applications with promising performance. One ma-
jor problem associated with LReLU is the finding of the right
slope in linear function for negative inputs. Different slopes
might be suited for different problems and different networks.

Thus, it is extended to Parametric ReLU (PReLU) by consid-
ering the slope for negative input as a trainable parameter [35].
The PReLU is given as,

PReLU(x) =

x, x ≥ 0
p × x, x < 0

(16)

in the output range of (−∞,∞) where p is the trainable parame-
ter. However, it can lead to overfitting easily which is the down-
side of PReLU. The Maxout layer, which computes the maxi-
mum of several linear units, is also used as AF [49]. Both ReLU
and Leaky ReLU can be seen as the special cases of Maxout.
The randomized ReLU (RReLU) considers the slope of LReLU
randomly during training sampled from an uniform distribution
U(l, u) [50]. The RReLU is defined as,

RReLU(x) =

x, x ≥ 0
R × x, x < 0

(17)

in the output range of (−∞,∞) where R ∼ U(l, u), l < u and
l, u ∈ [0, 1). It uses a deterministic value x/

(
l+u
2

)
during test

time.
The ReLU is not able to utilize the potential useful informa-

tion from the negative values. In most of the networks, the fea-
ture map given as the input to AF is dense near zero. Thus,
a small jitter in the rectification point can lead to difficulty
in training. Concatenated ReLU (CReLU) [36] concatenates
the ReLU’s output over original input and negated input. The
CReLU can be given as,

CReLU(x) = [ReLU(x),ReLU(−x)] (18)

in the output range of [0,∞). The CReLU is derived from the
fact that the lower layer kernels in CNN models form pairs with
opposite phases. The shifting of the feature map with multiple
biases is also performed before the ReLU layer [51]. How-
ever, it increases the model complexity as more ReLUs are re-
quired. A Parametric Tan Hyperbolic Linear Unit (P-TELU) is
also used as an AF [38]. The P-TELU is defined as,

PT ELU(x) =

x, x ≥ 0
α × Tanh(β × x), x < 0

(19)

in the output range of [−α,∞) where {α, β} ≥ 0 are the learnable
parameters.

The Flexible ReLU (FReLU) [39] captures the negative val-
ues with a rectified point which is considered as trainable in the
Shifted ReLU [39]. The FReLU is given as,

FReLU(x) = ReLU(x) + b (20)

in the output range of [b,∞). A similar arrangement is also
followed by Random Translation ReLU (RTReLU) [41] by uti-
lizing an offset, sampled from a Gaussian distribution, given
as,

RTReLU(x) =

x + a, x + a > 0
0, x + a ≤ 0

(21)

in the output range of [0,∞) where a is a random number. At
test time, the offset is set to zero. A data dependent Average
Biased ReLU (AB-ReLU) [44] is also investigated to tackle the
negative values by a horizontal shifting based on the average of
features. The ABReLU can be written as,

ABReLU(x) =

x − β, x − β ≥ 0
0, x − β < 0

(22)

having the output range in [0,∞) where β is computed as the
average of input activation map to the activation function. The
batch dependent threshold for the ReLU is used by the Dynamic
ReLU (D-ReLU) [60]. The Dual ReLU (DualReLU) [42] is a
two dimensional AF for recurrent neural networks. The Dual-
ReLU is given as,

DualReLU(a, b) = max(0, a) −max(0, b) (23)

in the output range of (−∞,∞) where a and b are the inputs in
different dimensions. Similar to the CReLU, the PairedReLU
AF is used for image super-resolution [43]. The PairedReLU is
given as,

PairedReLU(x) = [max(s× x−θ, 0),max(sp× x−θp, 0)] (24)

in the output range of (−∞,∞). However, the computational
complexity of PairedReLU is increased as compared to CReLU.
In another attempt, V-shaped ReLU (vReLU) AF [61] is defined
as,

vReLU(x) =

x, x ≥ 0
−x, x < 0

(25)

having the output range in [0,∞]. The vReLU activation func-
tion suffers from the non-symmetric output. The SignReLU
AF utilizes the negative values using the Softsign function [62].
The positive part of SignReLU is the same as the ReLU.

A Displaced ReLU (DisReLU) [63] is designed as a gener-
alization of Shifted ReLU [39]. The DisReLU displaces the
rectification point to consider the negative values, given as,

DisReLU(x) =

x, x ≥ −δ
−δ, x < −δ

(26)

having the output range in [−δ,∞]. A Bendable Linear Unit
(BLU) AF is investigated as,

BLU(x) = β × (
√

x2 + 1 − 1) + x (27)

where −1 ≤ β ≤ 1 is a learnable parameter to adapt the shape
between the identity function and a rectifier function [64]. A
Lipschitz ReLU (L-ReLU) AF uses the piecewise linear func-
tions to model the degree of presence and the degree of absence
of features [47]. The L-ReLU is defined as,

L-ReLU(x) =

max(φ(x), 0), x ≥ 0
min(η(x), 0), x < 0

(28)

where φ and η are non-linear functions. Moreover, the range of
L-ReLU also depends upon the values of φ and η functions.

Table 4: Summary of Exponential Linear Unit based activation functions.

Name Parametric Monotonic Smooth Bounded
Exponential Linear Unit (ELU), 2016 [27] Yes Yes Yes For negative inputs
Scaled ELU (SELU), 2017 [52] Yes Yes Yes For negative inputs
Continuously Differentiable ELU (CELU), 2017 [53] Yes Yes No For negative inputs
Parametric ELU (PELU), 2017 [54] Yes Yes No For negative inputs
Multiple PELU (MPELU), 2018 [55] Yes Yes No For negative inputs
Fast ELU (FELU), 2019 [56] Yes Yes No For negative inputs
Parametric Rectified Exponential Unit (PREU), 2019 [57] Yes No Yes For negative inputs
Elastic ELU (EELU), 2020 [58] Yes Yes No For negative inputs
Parametric Deformable ELU (PDELU), 2020 [59] Yes Yes Yes For negative inputs

4.2. On the Limited Non-linearity of ReLU
S-shaped ReLU (SReLU) increases the non-linearity in

ReLU by combining three linear functions with four learnable
parameters [65]. On a similar line, Multi-bin Trainable Linear
Unit (MTLU) [46] considers multiple bins to increase the non-
linear capacity. The MTLU can be written as,

MT LU(x) =


a0 × x + b0, x ≤ c0

ak × x + bk, ck−1 < x ≤ ck

...

aK × x + bK , cK−1 < x

(29)

having the output range in (−∞,∞). The number of bins and
the range of bins are the hyperparameters, whereas the linear
function of a bin is trainable (i.e., a0, ..., aK b0, ..., bK are the
learnable parameters). The non-differentiable nature at mul-
tiple points is the drawback of the MTLU. An Elastic ReLU
(EReLU) considers a slope randomly drawn from a uniform
distribution during the training for the positive inputs to con-
trol the amount of non-linearity [40]. The EReLU is defined
as,

EReLU(x) = max(R × x, 0) (30)

in the output range of [0,∞) where R is a random number.
At the test time, the EReLU becomes the identity function for
positive inputs. The Linearized Sigmoidal Activation (LiSHA)
function considers three linear functions to increase the non-
linearity characteristics [66]. It is also extended to adaptive
linear sigmoidal AF by learning the slope of upper and lower
linear functions. The ReLU is combined with Tanh as Recti-
fied Linear Tanh (ReLTanh) [67] to increase the non-linearity
of ReLU and to overcome the vanishing gradient problem of
Tanh. However, the ReLTanh is unbounded in both the positive
and negative directions. Natural-Logarithm ReLU (NLReLU)
modifies the ReLU’s output for positive inputs using the loga-
rithm function to increase the degree of nonlinearity [45]. The
NLReLU is defined as,

NLReLU(x) = ln(β ×max(0, x) + 1.0) (31)

having the output range in [0,∞) where β is a constant. The
NLReLU does not affect the negative regime, thus suffers from
vanishing gradient. The concept of Leaky ReLU (LReLU) is
further improved to Dynamic ReLU [68] by considering a mean
square error (MSE) based additional hyperparameter. Thus,
it can control the slope of the Dynamic ReLU in every epoch

based on the convergence. A Piecewise Linear Unit (PLU) [69]
is defined as,

PLU(x) = max(α × (x + c) − c,min(α × (x − c) + c, x)) (32)

having the output range in [−∞,+∞], where α and c are the
constants. Basically, the PLU activation function consists of
three linear functions in pieces, but continuous. Hence, it avoids
the saturation and leads to a good amount of gradient flow
through the activation function during backpropagation in order
to resolve the vanishing gradient problems of ReLU and Tanh.
However, the PLU activation is unbounded in both positive and
negative directions.

4.3. On the Unbounded Output of ReLU

The unbounded outputs of ReLU and many of its variants
may lead to training instability. Moreover, the bounded AF is
needed for the dedicated hardware based embedded system ap-
plications. ReLU is extended to Bounded ReLU (BReLU) [37]
defined as,

BReLU(x) = min(max(0, x), A) (33)

having the output range in [0, A]). The training stability is im-
proved in BReLU due to two rectifications (i.e., at 0 and A).
ReLU is a common choice in practice in deep learning. ReLU
based AFs are generally efficient. The major drawbacks of
ReLU, such as gradient diminishing for negative inputs, limited
non-linearity and unboundedness, are improved in the different
AFs. However, the ReLU variants are not able to resolve all the
issues of ReLU.

5. Exponential Activation Functions

The exponential AFs tackle the gradient diminishing prob-
lem of ReLU. Table 4 lists the properties of the exponential
AFs. The Exponential Linear Unit (ELU) [27] is given as,

ELU(x) =

x, x > 0
α × (ex − 1), x ≤ 0

(34)

having the output range in [−1,∞) where α is a learnable pa-
rameter. The ELU function exhibits all the benefits of the ReLU
function. The ELU is differentiable, saturates for large nega-
tive inputs and reduces the bias shift. The negative saturation
regime of ELU adds some robustness to noise as compared to
the Leaky ReLU and Parametric ReLU. The ELU is extended

to Scaled ELU (SELU) [52] by using a scaling hyperparameter
to make the slope larger than one for positive inputs. The SELU
can be defined as,

S ELU(x) = λ ×

x, x > 0
α × (ex − 1), x ≤ 0

(35)

having the output range in [−λ,∞) where α is a hyperparame-
ter. Basically, the SELU induces self-normalization to automat-
ically converge towards zero mean and unit variance. The Para-
metric ELU (PELU) [54] changes the saturation point and expo-
nential decay and also regulates the slope of the linear function
for the positive inputs for differentiability. The PELU AF can
be written as,

PELU(x) = λ ×

 a
b × x, x ≥ 0
a × (ex/b − 1), x < 0

(36)

having [−a,∞) output range, where a and b are the trainable
parameters. The parametric ELU is also explored in Continu-
ously differentiable ELU (CELU) [53] for the negative inputs.
The CELU is given as,

CELU(x) =

x, x ≥ 0
α × (ex/α − 1), x < 0

(37)

having the output range in [−α,∞) where α is a learnable
parameter. The PELU is also extended to multiple PELU
(MPELU) [55] by using two learnable parameters to repre-
sent MPELU as either rectified, exponential or combined. The
MPELU can be expressed as,

MPELU(x) =

x, x > 0
αc × (eβc×x − 1), x ≤ 0

(38)

having the output range in [−αc,∞), where αc and βc are the
trainable parameters.

A soft exponential AF interpolates between the exponential,
linear and logarithmic functions using the trainable parameter
[70]. A Shifted ELU (ShELU) AF is also explored as a locally
optimal function [71]. A Parametric Rectified Exponential Unit
(PREU) [57] is designed as,

PREU(x) =

α × x, x > 0
α × x × eβ×x, x ≤ 0

(39)

having the output range in [−1,∞), where α and β are the train-
able parameters. The PREU utilizes the negative information
near to zero effectively. The efficiency of ELU is improved in
Fast ELU (FELU) AF [56] with the help of the simple displace-
ment bits and integer algebra operations. The FELU is defined
as,

FELU(x) =

x, x > 0
α × (ex/ln(2) − 1), x ≤ 0

(40)

having the output range in [−α,∞) with α as a learnable pa-
rameter. Recently, the properties of ELU and RELU have been

utilized to design an Elastic ELU (EELU) AF [58]. The EELU
is defined as,

EELU(x) =

k × x, x > 0
α × (eβ×x − 1), x ≤ 0

(41)

having the output range in [−α,∞) where α and β are the train-
able parameters. The EELU preserves a small non-zero gradi-
ent for the negative input and exhibits an elastic slope for the
positive input. A Parametric Deformable ELU (PDELU) AF
tries to shift the mean value of output closer to zero using the
flexible map shape [59]. The PDELU is defined as,

PDELU(x) =

x, x > 0
α × ([1 + (1 − t) × x]

1
1−t − 1), x ≤ 0

(42)

having the output range in [−1,∞) where α is a learnable pa-
rameter. A ReLU-Memristor-like AF (RMAF) [72] uses two
hyperparameters to have ReLU like shape for positive input and
to give more importance to the negative values near to zero. An
Exponential Linear Sigmoid SquasHing (ELiSH) is defined in
[73] as,

ELiS H(x) =

x/(1 + e−x), x ≥ 0
(ex − 1)/(1 + e−x), x < 0

(43)

Moreover, it is also extended to HardELiSH which is a mul-
tiplication of HardSigmoid and Linear in the positive part and
HardSigmoid and ELU in the negative part. Here, HardSigmoid
is defined as,

HardELish(x) = max(0,min(1, (x + 1)/2)). (44)

The ELU based AFs exploit the negative inputs without com-
promising with the non-linearity. Some ELU variants also mod-
ify the function for positive inputs to make it bounded.

6. Learning/Adaptive Activation Functions

Most of the aforementioned AFs are not adaptive and might
not be able to adjust based on the dataset complexity. This prob-
lem is tackled using learning/adaptive AFs as summarized in
Table 5. Some of the earlier mentioned AFs are also adaptive,
such as PReLU [57], SReLU [65], PTELU [38], MTLU [46],
PELU [54], MPELU [55], PREU [57], EELU [58], PDELU
[59], SRS [26], etc.

The Adaptive Piecewise Linear (APL) is defined as a sum of
hinge-shape functions [28]. It is given as,

APL(x) = max(0, x) +

S∑
s=1

as ×max(0, bs − x), (45)

where a and b are the trainable parameters and S is a hyperpa-
rameter representing the number of hinges. The output range of
APL is [0,∞). Due to the trainable parameters, different neu-
rons can learn different AFs.

Table 5: Summary of adaptive and learning based activation functions.

Name Parametric Monotonic Smooth Bounded
Adaptive Piecewise Linear Unit (APL), 2015 [28] Yes No No No
Spline AF (SAF), 2016 [74] Yes Yes Yes No
Bi-Modal Derivative Adaptive Activation (BDAA), 2017 [75] Yes Yes Yes Yes
Adaptive AF (AAF), 2018 [76] Yes Yes No No
Swish, 2018 [29] Yes No Yes No
ESwish, 2018 [77] Yes No Yes No
Trainable AF (TAF), 2018 [78] Yes No Yes No
Self-Learnable AF (SLAF), 2019 [79] Yes No Yes No
Mexican ReLU (MeLU), 2019 [80] Yes No No No

Ramachandran et al. [29] have performed an automatic
search, which resulted in a Swish AF. It is defined as,

S wish(x) = x × S igmoid(β × x) (46)

where β is a learnable parameter. The output range of Swish
is (−∞,∞). Based on the learnt value of β the shape of the
Swish AF is adjusted between the linear and ReLU functions.
The smaller and higher values of β lead towards the linear and
ReLU functions, respectively. Thus, it can control the amount
of non-linearity based on the dataset and network complexity.
Swish is also extended to E-Swish by multiplying the Swish
with a learnable parameter to control the slope in the positive
direction [77]. The E-Swish is defined as,

ES wish(x) = β × x × S igmoid(x) (47)

having the output the range in (−∞,∞) and β is trainable pa-
rameter. A flatten-T Swish considers zero function for negative
inputs similar to the ReLU [81]. The Adaptive Richard’s Curve
weighted Activation (ARiA) is also motivated from Swish and
replaces the sigmoidal function with Richard’s Curve [82]. The
ARiA AF uses five hyper-parameters to control the shape of the
non-linearity.

The basic AFs are combined with learnable weights in adap-
tive AFs [76]. The Adaptive AF (AAF) designed over PReLU
[35] and PELU [54] is given as,

AAF(x) = σ(w × x) × PRELU(x) + (1 − σ(w × x)) × PELU(x)
(48)

having the output range in [0, 1], where σ is the sigmoidal func-
tion and w is a learnable parameter. In practice, AAF is costly
as multiple AFs are involved. In [83], the AF for each neuron is
selected from a library of AFs. In [84], different combinations
of the identity function, ReLU, and Tanh are learnt automati-
cally. In another attempt, an Adaptive Blending Unit (ABU) is
defined to allow the networks to learn its preferred AFs [85].
The ABU combines a set of AFs with trainable weights. A
Lookup Table Unit (LuTU) function [86] uses a single period
cosine mask based smoothing and linear interpolation using a
set of anchor points. Activation ensembles are used at each
layer in [87] with the contribution of each AF controlled by
the trainable weights. Similarly, the Self-Learnable AF (SLAF)
computes the sum of the different functions in an ensemble with
the learnt coefficients [79]. The SLAF can be expressed as,

S LAF(x) =

N−1∑
i=0

ai × xi (49)

in the output range of (−∞,∞), where ai is the trainable pa-
rameter. A Mexican ReLU (MeLU) AF is proposed in [80] by
using a “Mexican hat type” function and given as,

MeLU(x) = PReLU(x) +

k∑
j=1

c j ×max(λ j − |x − a j|, 0) (50)

in the output range of (−∞,∞), where c j is the trainable param-
eter and λ j & a j are the real numbers.

A cubic spline interpolation is also used to learn the AF from
data [74] which is given as,

S AF(x) = Φ(s; q) (51)

having the output range in (−∞,∞) where Φ(.) is parameterized
by a vector q cubic in nature. Fourier series basis expansion is
used for nonparametrically learning AFs (NPF) [88]. Hyperac-
tivations utilize a hypernetwork on top of an activation network,
which are used to explore the AFs search space [89]. A shal-
low neural network is used in the activation network to produce
the output for each input, whereas a neural network is used in
the hypernetwork to produce weights for another network. A
bi-modal derivative adaptive activation (BDAA) function uses
twin maxima derivative sigmoidal function [75] by controlling
the maxima’s position with an adaptive parameter. The BDAA
is given as,

BDAA(x) =
1
2
×

(
1

1 + e−x −
1

1 + e−x−a

)
(52)

in the output range of [0, 1] where a is a learnable parameter.
The authors have exploited the Bi-modal derivatives on four
AFs. Linear regression is used in [78] to train AF for each
neuron which results in different AFs for the different neurons.
The TAF is defined as,

T AF(x) =
√

(x − a)2 + b2 (53)

in the output range of [b,∞), where a and b are the trainable pa-
rameters. Recently, a trainable parameter was used in different
non-adaptive AFs such as Sigmoid, Tanh, and ReLU to make it
adaptive [90].

The adaptive and trainable AFs are the recent trend to ad-
just the non-linearity based on the data and network complex-
ity. However, the minimal burden is increased in terms of the
increased number of parameters. Though the complexity of tun-
able AFs is relatively increased w.r.t. non-tunable AFs, it is

negligible w.r.t. all parameters of the entire network in practice.
The same is also observed experimentally as reported in Table
10 in terms of the training time.

7. Miscellaneous Activation Functions

This section covers other attempts in AFs such as Softplus,
Probabilistic, Polynomial, Subnetwork and Kernel.

7.1. Softplus Activation Functions
The softplus function [91] was proposed in 2001 as log(ex+1)

and mostly used in statistical applications. After the break-
through of deep learning the softmax function is used as the
AF [92]. Softmax function produces the categorical probability
distribution equivalent output. Softplus unit based AF is also
used in deep neural networks [93]. The smooth nature of the
Softplus facilitates the differentiability. The noisy softplus AF
[94] is suitable for the spiking neural networks (SNNs). A Soft-
plus Linear Unit (SLU) is also proposed by considering softplus
with rectified unit [95]. The SLU AF is defined as,

S LU(x) =

α × x, x ≥ 0
β × log(ex + 1) − γ, x < 0

(54)

where α, β and γ are the trainable parameters with α controlling
the slope in the positive direction, β controlling the saturation
points in the negative direction and γ controlling the offset in
the negative direction w.r.t. the horizontal axis. The Rectified
Softplus (ReSP) AF introduces the rectification for positive in-
put in Softplus activation [96]. In order to make the softplus
function to follow the zero mean, a shifting and scaling of the
outputs is performed in [97]. A Rand Softplus (RSP) AF mod-
els the stochasticity-adaptability of biological neurons as,

RS P(x) = (1 − ρ) ×max(0, x) + ρ × log(1 + ex) (55)

where ρ is a stochastic hyperparameter [98]. It improves the
capability of the network towards the noise. The softplus func-
tion is also used with Tanh function in Mish activation function
[99], which is given as,

Mish(x) = x × Tanh(S o f tplus(x)). (56)

The Mish is a non-monotonic and smooth AF. It has recently
been used by the YOLOv4 model for object detection [100].
However, the increased complexity in Mish due to the multiple
functions can be a limitation for the deep networks.

7.2. Probabilistic Activation Functions
So far, stochastic AFs have not been much explored due

to expensive sampling processes. Few AFs exist in this cate-
gory such as Randomized ReLU (RReLU) [50], Elastic ReLU
(EReLU) [40], Randomly Translational ReLU (RTReLU) [41]
and Gaussian Error Linear Unit (GELU) [101]. GELU [101]
considers nonlinearity as the stochastic regularization driven
transformation and defined as,

GELU(x) = x × P(X ≤ x). (57)

where P is the probability. The complexity of GELU increases
due to use of probabilistic nature. The GELU is also extended to
the Symmetrical Gaussian Error Linear Unit (SGELU) [102] to
enhance its ability of bidirectional convergence. Doubly trun-
cated Gaussian distributions [103] is a family of nonlinearities
which can generate different AFs such as Sigmoid, Tanh and
ReLU by setting the appropriate truncation points. Probabilis-
tic AF (ProbAct) introduces the adaptable and trainable vari-
ance in the ReLU’s output [104]. It leads to the generalization
of the models. However, all other drawbacks of ReLU exist
with ProbAct also.

7.3. Polynomial Activation Functions

Smooth Adaptive AF (SAAF) is defined as the piecewise
polynomial function [105]. Two power functions symmetric
to the linear part of ReLU are combined in [106] to improve
the performance of ReLU. A piecewise polynomial approxima-
tion based AF is also learnt from the data [107]. This activation
leads to the light-weight models suitable for the FPGAs and mi-
crocontrollers. The AF is also treated as the cumulative distri-
bution function [108]. The ReLU is also extended to a Rectified
Power Unit (RePU) for positive inputs as,

RePU(x) =

xs, x ≥ 0
0, x < 0

(58)

where s is a hyperparameter [109]. The RePU is suitable for
smoother gradients near zero. However, vanishing gradient, un-
bounded and asymmetric nature are the downsides of RePU.
The rational function of polynomials is better suited as com-
pared to the polynomial functions in order to approximate the
ReLU [110]. Recently, a Padé approximation is used to develop
a non-smooth Padé Activation Unit (PAU) [111] as,

PAU(x) =
P(x)
Q(x)

(59)

where P(x) and Q(x) are two polynomials of order m and n,
respectively. The PAUs can approximate the commonly used
hand-designed AFs. Moreover, it can also learn the new AFs
with compact representations. Recently, a Rational AF (RAF)
[112] was proposed to tackle the problem of non-smooth nature
of the PAU function.

7.4. Activations as a Subnetwork

A Variable AF (VAF) is used as a subnetwork of ReLUs
[113]. It uses the ensemble of ReLUs in a subnetwork using
learnable parameters. In a very similar approach, the maximum
of multiple linear functions is used in the Dynamic ReLU (DY-
ReLU) [114]. In Wide Hidden Expansion (WHE) [115], each
WHE intermediate channel is followed by one AF before con-
necting to the output channel to increase the non-linearity of the
network. An AF Unit (AFU) [116] uses a small neural network
to model the activation. All neurons in the original network
share the weights in AFU. The advantage of the AFU is that
different AFs can be learnt by different layers.

7.5. Kernel Activation Functions

A Kernel-based non-parametric AF (KAF) [117] uses an in-
expensive kernel expansion to make the activation flexible. The
KAF is further extended to multikernel AFs (multi-KAF) [118].
Several AFs are also introduced for complex valued neural net-
works [119], [120], [121].

8. Aspects of Activation Functions

This section summarizes the effect of weight initialization,
understanding of AFs and suitability with different types of
data. The learning of the network speeds up drastically by us-
ing the orthogonal weight initialization based on the dynamical
isometry [122]. A set of conditions in parameter initialization
also boosts the performance of networks with sigmoidal acti-
vations [123]. The symmetric probability distribution based
weights and biases initialization leads the network to suffer
with the dying ReLU problem. However, the asymmetric ini-
tialization resolves the dying ReLU problem [124]. The over-
parameterization during initialization also benefits in the train-
ing [125]. The data-dependent weight initialization using a sub-
set of data minimizes the issues of the ReLU [126], whereas an
initial parameter sharing based initialization guarantees the dy-
namical isometry for the ReLU [127].

Several researchers have tried to understand the working and
impact of AFs through different strategies. The lower and up-
per bounds are established for network complexity to realize
that the ReLU in deep networks approximates the smooth func-
tions more efficiently as compared to shallow networks [128].
A ReLU network with only one hidden layer is trained to reach
the global optimum in polynomial time even with exponen-
tially growing input dimension [129]. The ReLU type AF
based neural networks produce the overconfident predictions
far away from the training data [130]. However, this can be re-
solved by employing adversarial confidence enhanced training.
A Gaussian margin driven time and accuracy tradeoff analysis
is also done on the ReLU’s learning [131]. The singular val-
ues for ReLU layers are analyzed to understand the interaction
of ReLU with the linear components [132]. The approxima-
tion of Gaussian posterior distribution over the ReLU network
weight’s fixes the overconfidence problem [133].

Despite most of the AFs are tested over image data, there are
few research papers dealing with the AFs over other types of
data. Table 6 summarizes the insights and remarks of state-of-
the-art AFs for various networks and datasets.

9. Performance Comparison and Analysis

This survey is compared with the existing sur-
vey/performance analysis and the experimental performance
analysis of selected AFs is performed over Image, Text and
Speech data.

9.1. Comparison with Existing Survey/Performance Analysis
A performance analysis of AFs was conducted using mul-

tilayer perceptron network in [134]. Among compared AFs,
the Tanh has shown better performance. A comparative per-
formance analysis of different AFs suggests an Elliott func-
tion as better suited for classification using LSTM networks
[25]. The ELU outperforms the ReLU, LReLU, and SELU
AFs over MNIST classification task using Deep Neural Net-
works [135]. As per [136], the ELU is reported in [135] to
outperform the ReLU, LReLU, PReLU and PELU over suf-
ficiently large datasets for speech recognition. However, for
smaller datasets, the ReLU is preferred. A similar trend is also
reported in [137] with a note that the ELU and SELU AFs ex-
hibit faster convergence as compared to the ReLU and LReLU
AFs. In [138], 21 AFs are listed without experimental results
comparison. In contrast to [138], this paper presents a compre-
hensive survey of AFs. The ReLU based deep networks per-
form superior or mildly worse than the spline methods [139]. A
review of adaptive functions is conducted in [140] by consider-
ing 9 functions, including Sigmoid, Tanh, PReLU, and adapt-
Tanh. In [141], the comparison between ReLU and LReLU is
performed using CNN on MNIST dataset. An empirical study
is also done for the variations of ReLU activation by general-
izing it with the help of parameters [142]. The comparison of
AFs is also performed for generalized learning vector quanti-
zation [143]. The ReLU activation has performed better for
object, face, and text datasets [144]. However, the SELU and
Maxout have performed better for medical and sound datasets,
respectively [144]. The piecewise AF is better suited for fa-
cial expression recognition in [145]. A survey of adaptive AFs
is conducted in [146] without experimental comparison. The
evaluation of seven AFs is conducted in [147] using a simple
network over CIFAR10 dataset, whereas in our survey we cover
different AFs and also perform the experimental comparison.

A summary of the comparison with existing surveys and per-
formance analysis of AF is shown in Table 7. Following are the
observations:

• This survey presents a detailed classification to cover the
wide range of AFs as compared to the existing surveys and
performance analysis.

• This survey covers exhaustive state-of-the-art AFs to date,
whereas the existing survey/performance analysis covers
either a limited number of AFs or only basic AFs.

• The performance analysis conducted in this paper consid-
ers a wide range of neural networks over different types
of data for eighteen AFs, whereas the existing analysis is
limited to a single type of data and network.

• This survey highlights the trends to help the researchers to
further explore the better AFs and practitioners to choose
based on the data and network types.

9.2. Experimental Performance Analysis
In order to compare the AFs, three experiments are con-

ducted in this paper, including image classification, language

Table 6: Summary of the existing state-of-the-art activation functions.

Activation Models Datasets Insights and Remarks
On Image Datasets

Wide Hidden Expansion
(WHE) - 2020 [115]

ResNet, SENet, and Mo-
bileNet

CIFAR100 and ImageNet classi-
fication, Pascal VOC 2007 and
COCO detection

Upto 2% higher Top-1 accuracy than baseline mod-
els of recognition and detection

Soft-Root-Sign (SRS) - 2020
[26]

VGG and MobileNet CIFAR10 and CIFAR100 classi-
fication

The SRS is better with MobileNet over both datasets
and with VGG over CIFAR100. The LReLU is bet-
ter with VGG over CIFAR10.

Relu-Memristor-Like AF
(RMAF) - 2020 [72]

ResNet, AlexNet,
SqueezeNet, and DenseNet

CIFAR10, CIFAR100, MNIST
and ImageNet classification

The RMAF performs better than the ReLU, ELU,
SELU, PReLU, Tanh and Swish.

Parametric Deformable ELU
(PDELU) - 2020 [59]

NIN and ResNet CIFAR10 and CIFAR100 classi-
fication

The PDELU performs better than the ReLU, ELU
and FReLU.

Pade Activation Unit (PAU) -
2020 [111]

VGG8, MobileNetV2,
ResNet and DenseNet

MNIST, Fashion-MNIST, CI-
FAR10 and ImageNet classifica-
tion

The PAU encode AFs as rational functions and per-
forms better than many existing AFs.

Elastic Exponential Linear
Unit (EELU) - 2020 [58]

A simple CNN model and
VGG16

CIFAR10, CIFAR100, Ima-
geNet, and Tiny ImageNet
classification

The EELU shows better results than the ReLU, ELU,
EPReLU and Swish.

Dynamic ReLU (DY-ReLU) -
2020 [114]

MobileNetV2 ImageNet classification and
COCO detection

The DY-ReLU is suitable for light-weight networks.

Variable AF (VAF) - 2019
[113]

Shallow CNN models MNIST, Fashion MNIST and
CIFAR10 classification

The VAF shows promising performance.

Multi-bin Trainable Linear
Unit (MTLU) - 2019 [46]

FDnet and FSRnet Image denoising and Super-
resolution

The MTLU is significantly faster having comparable
results with the state-of-the-arts.

Swish - 2018 [29] MobileNet, ResNet, WRN
and DenseNet

CIFAR10, CIFAR100 and Ima-
geNet classification

The learnable parameter in Swish leads to improved
performance than Softplus.

On Time Series Datasets
Variable AF (VAF) - 2019
[113]

Multi-Layered Neural Net-
work

Regression tasks (Kinematics,
Energy Cooling, Yatch, etc.)

Better performance over Kinematics, Energy Cool-
ing and Yatch datasets.

Self-Learnable AFs (SLAF) -
2019 [79]

Multi-Layered Neural Net-
work

Boston Housing and Learning
Sparse Polynomial regression

The newer parameter space makes the optimization
easier.

On Text Datasets
Soft-Root-Sign (SRS) - 2020
[26]

A 6 layer transformer net-
work

IWSLT 2016 German-English
translation

The SRS is better over tst2011 and tst2012 test
sets, whereas the SELU and LReLU are better over
tst2013 and tst2014 test sets, respectively.

Swish - 2018 [29] A 12 layer transformer net-
work

WMT 2014 English-German
dataset

The performance of Swish is comparable to state-of-
the-arts.

PenalizedTanh - 2018 [33] MLP, CNN and RNN Sentence classification, Docu-
ment classification and Sentence
tagging

The PenalizedTanh exhibits the stability across the
different tasks in contrast to the Swish function.

On Signal Datasets
Rectified Linear Tanh
(ReLTanh) - 2019 [67]

Stacked autoencoder (SAE)
based DNN

Vibration signals for rotating
machinery fault diagnosis

The ReLTanh leads to larger gradients for faster
learning and reduces the vanishing gradient.

On Game Datasets
Sigmoid-weighted Linear
Unit (SiLU) - 2018 [23]

Deep reinforcement learn-
ing algorithm

SZ-Tetris, 10 × 10 Tetris, and
Atari 2600 games

The SiLU AF outperforms the ReLU function for re-
inforcement learning.

translation and speech recognition. Eighteen state-of-the-art
AFs are considered for analysis, including Logistic Sigmoid,
Tanh, Elliott [25], ReLU [8], LReLU [34] PReLU [35], ELU
[27], SELU [52], GELU [101], CELU [53], Softplus [93],
Swish [29], ABReLU [44], LiSHT [24], Soft-Root-Sign (SRS)
[26], Mish [99], PAU [111] and PDELU [59]. Note that Swish,
ABReLU, LiSHT, SRS, Mish, PAU and PDELU are the most
recent functions. Google Colab based computational resource
is used in most of the experiments. Few experiments are also
performed over a desktop system consisting of 8 GB GPU. The
PyTorch framework is used in all the experiments.

The CIFAR10 and CIFAR100 datasets1 [148] are used for the
image classification experiment in this paper. The CIFAR10
dataset contains 50, 000 training images and 10, 000 test im-

1https://www.cs.toronto.edu/˜kriz/cifar.html

ages from 10 object categories. The CIFAR100 dataset contains
50, 000 training images and 10, 000 test images from 100 object
categories. We also utilize the language translation and speech
recognition datasets for the experiments. For the experiments
over CIFAR-10 and CIFAR-100 datasets, training is performed
for 100 Epochs. The batch size is 128 for CIFAR-10 and 64 for
CIFAR-100. The learning rate is 0.001 for first 80 Epochs and
0.0001 for last 20 Epochs. Random crop and random horizontal
flip are the data augmentation used during training. Data nor-
malization is performed both during train and test times. Adam
optimizer is used for the training with cross entropy loss. All
existing activation functions except softmax are replaced with
the corresponding activation function in different networks.

The test accuracy is reported in Tables 8 and 9 on CIFAR10
and CIFAR100 datasets, respectively. In these Tables, the mean
and standard deviation of image classification accuracy over

https://www.cs.toronto.edu/~kriz/cifar.html

Table 7: Comparison of this survey with the existing surveys and performance evaluations.

Method Models Activations Datasets Remarks
Karlik and Ol-
gac [134]

Multilayer Perceptron
(MLP)

5 AFs, including Bi-polar sig-
moid, Uni-polar sigmoid, Tanh,
etc.

Classification The Tanh performs better compared
to other traditional AFs.

Vydana and
Vuppala (2017)
[136]

Hidden Markov Model-
Deep Neural Network
(HMM-DNN)

5 AFs, including ReLU, LReLU,
PReLU, ELU, and PELU

TIMIT and WSJ speech
recognition

The ELU is better over sufficiently
larger size datasets. However,
the ReLU is preferred for smaller
datasets.

Alcantara
(2017) [135]

A neural network with
2 hidden layers having
100 neurons/layer

4 AFs, including ReLU, LReLU,
ELU, and SELU

MNIST classification The ELU AF outperforms others.

Pedamonti
(2018) [137]

A neural network with
2 hidden layers having
100 neurons/layer

5 AFs, including Sigmoid,
ReLU, LReLU, ELU, and SELU

MNIST classification The ELU and SELU AFs exhibit the
faster convergence as compared to
the ReLU and LReLU AFs.

Lau and Lim
(2018) [140]

Deep Neural Network
(DNN)

ReLU and Adaptive ReLU MNIST classification The adaptive AFs improve the gen-
eralization of the network.

Farzad et al.
(2019) [25]

Long Short Term Mem-
ory (LSTM)

23 AFs, including Elliott, Gaus-
sian, Logarithmic, Loglog, etc.

IMDB, Movie Review,
MNIST classification

Elliott function is better suited to the
LSTM network.

Dubey and Jain
(2019) [141]

Simple Convolutional
Neural Network (CNN)

2 AFs, including ReLU and
Leaky ReLU

MNIST classification The ReLU performed better than
Leaky ReLU (LReLU).

Banerjee et al.
(2019) [142]

Convolutional Neural
Network (CNN)

Generalized ReLU MNIST classification Network learns the parameters for
different ReLU variations.

Villmann et al.
(2019) [143]

Generalized learning
vector quantization
(GLVQ)

12 AFs, including Sigmoid,
Swish, ReLU, Softplus, etc.

Tecator, Indian Pine and
Wisconsin-Breast-Cancer
classification

The Sigmoid, Swish and Softplus
AFs are better suited with GLVQ.

Castaneda et al.
(2019) [144]

6 different models for
different applications

3 AFs, including ReLU, SELU
and Maxout

Object, Face, Text, Medical
and Sound datasets

The ReLU is better for object, face
and text datasets, whereas SELU
and Maxout are better for medical
and sound datasets, respectively.

Wang et al.
(2020) [145]

Inception-v3 model 6 AFs, including Sigmoid, Tanh,
ReLu, etc.

JAFFE and FER2013 facial
expression recognition

The combination of log, softdesign
and ReLU AFs provides improved
performance.

Szandala (2020)
[147]

A simple network 7 AFs, including Sigmoid, Tanh,
ReLU, LReLU, Swish, etc.

CIFAR10 classification The LReLU performs better. The
ReLU is efficient.

Our survey and
performance
analysis

MobileNet, VGG,
GoogLeNet, ResNet,
SENet, DenseNet, etc.

Exhaustive list of AFs, includ-
ing performance analysis over
18 state-of-the-art activations

CIFAR10 classification,
Language translation,
Speech recognition

A classification to categorize and
analyze the AFs and a performance
comparison of the state-of-the-art
activations.

Table 8: Experimental results comparison over CIFAR10 dataset.

Accuracy CNN Models
Activations MobileNet VGG16 GoogleNet ResNet50 SENet18 DenseNet121
Sigmoid 88.60 ± 0.17 87.69 ± 0.49 87.33 ± 2.48 80.13 ± 3.33 90.29 ± 0.29 89.92 ± 1.96
Tanh 87.21 ± 0.24 90.49 ± 0.11 90.16 ± 1.86 89.09 ± 1.47 90.44 ± 0.09 91.80 ± 0.69
Elliott [25] 88.48 ± 0.18 87.94 ± 0.49 89.84 ± 3.43 81.60 ± 3.91 90.25 ± 0.25 91.53 ± 1.04
ReLU [8] 90.10 ± 0.22 92.84 ± 0.19 93.43 ± 0.48 93.74 ± 0.34 93.70 ± 0.16 93.96 ± 0.51
LReLU [17] 90.10 ± 0.19 91.09 ± 0.09 89.28 ± 0.82 93.83 ± 0.42 93.66 ± 0.19 93.85 ± 0.48
PReLU [35] 90.43 ± 0.18 92.19 ± 0.08 92.85 ± 0.55 92.99 ± 0.62 92.76 ± 0.26 92.82 ± 0.63
ELU [27] 90.92 ± 0.25 88.55 ± 1.17 92.47 ± 0.76 93.53 ± 0.66 93.39 ± 0.20 92.89 ± 0.62
SELU [52] 90.11 ± 0.32 92.25 ± 0.28 91.87 ± 0.84 93.53 ± 0.52 89.96 ± 0.31 92.71 ± 0.73
GELU [101] 90.71 ± 0.20 92.42 ± 0.09 93.16 ± 0.61 93.81 ± 0.46 93.72 ± 0.18 93.90 ± 0.41
CELU [53] 91.04 ± 0.17 88.11 ± 0.14 92.60 ± 0.60 94.09 ± 0.17 91.63 ± 0.22 93.46 ± 0.35
Softplus [93] 91.05 ± 0.22 92.69 ± 0.20 92.66 ± 0.66 93.34 ± 0.65 93.25 ± 0.11 93.07 ± 0.70
Swish [29] 90.66 ± 0.34 92.32 ± 0.20 92.68 ± 0.53 93.02 ± 0.85 93.24 ± 0.19 93.16 ± 0.51
ABReLU [44] 88.97 ± 0.47 92.36 ± 0.15 93.34 ± 0.23 93.29 ± 0.52 93.35 ± 0.14 93.26 ± 0.55
LiSHT [24] 86.53 ± 0.49 89.83 ± 0.28 90.27 ± 0.80 90.89 ± 0.66 90.25 ± 0.84 87.91 ± 0.93
SRS [26] 89.43 ± 0.81 92.06 ± 0.26 91.36 ± 1.19 92.28 ± 0.48 78.05 ± 1.37 90.64 ± 1.93
Mish [99] 90.82 ± 0.15 92.85 ± 0.25 93.29 ± 0.61 93.69 ± 0.63 93.66 ± 0.12 93.62 ± 0.62
PAU [111] 90.67 ± 0.17 92.00 ± 0.26 92.80 ± 0.65 93.67 ± 0.52 93.08 ± 0.20 93.05 ± 0.53
PDELU [59] 90.18 ± 0.19 92.80 ± 0.13 93.49 ± 0.30 93.42 ± 0.71 93.71 ± 0.07 93.96 ± 0.59

5 trials are reported for each AF. Moreover, the better results
are highlighted. Different types of CNN models are used in
this experiment, such as plain models (i.e., MobileNet [149]
and VGG16 [150]), inception model (i.e., GoogLeNet [151])

and skip/residual connection based models (i.e., ResNet50
[152], SENet18 [153], and DenseNet121 [154]). The Mo-
bileNet, GoogLeNet and SENet18 are light models, whereas
the VGG16, ResNet50 and DenseNet121 are heavy models in

Table 9: Experimental results comparison over CIFAR100 dataset.

Accuracy CNN Models
Activations MobileNet VGG16 GoogleNet ResNet50 SENet18 DenseNet121
Sigmoid 61.88 ± 0.18 37.75 ± 0.59 70.31 ± 0.54 46.78 ± 5.42 66.17 ± 1.16 68.31 ± 2.41
Tanh 53.10 ± 0.51 58.43 ± 0.38 67.66 ± 2.32 64.32 ± 1.69 60.13 ± 1.86 69.53 ± 1.68
Elliott [25] 60.70 ± 0.34 33.20 ± 0.97 64.85 ± 6.28 49.88 ± 4.03 66.30 ± 0.28 69.58 ± 2.40
ReLU [8] 61.33 ± 0.34 67.47 ± 0.44 74.05 ± 1.69 71.96 ± 0.94 70.45 ± 0.73 72.99 ± 1.35
LReLU [17] 61.13 ± 0.41 65.72 ± 0.14 63.79 ± 2.38 72.77 ± 0.49 70.58 ± 0.45 73.33 ± 1.25
PReLU [35] 59.86 ± 0.35 65.26 ± 0.40 69.57 ± 1.50 71.08 ± 1.70 69.77 ± 0.48 68.23 ± 1.55
ELU [27] 61.97 ± 0.24 51.35 ± 3.01 72.57 ± 1.76 71.41 ± 1.63 71.27 ± 0.58 72.06 ± 1.93
SELU [52] 59.62 ± 0.39 64.55 ± 0.43 71.47 ± 1.39 69.94 ± 1.92 55.01 ± 0.98 70.15 ± 1.04
GELU [101] 61.20 ± 0.61 67.25 ± 0.38 74.27 ± 0.70 71.58 ± 0.87 71.14 ± 0.29 73.31 ± 1.70
CELU [53] 61.90 ± 0.21 55.78 ± 0.69 72.87 ± 1.52 70.95 ± 1.40 63.43 ± 0.81 72.68 ± 1.16
Softplus [93] 62.59 ± 0.21 67.70 ± 0.19 73.08 ± 1.66 71.99 ± 2.03 71.16 ± 0.46 72.54 ± 1.73
Swish [29] 59.40 ± 0.41 66.05 ± 0.82 71.56 ± 1.66 71.12 ± 2.08 68.42 ± 1.62 71.34 ± 1.10
ABReLU [44] 56.21 ± 0.53 66.95 ± 0.09 71.83 ± 2.26 71.96 ± 1.43 70.47 ± 0.91 73.79 ± 1.45
LiSHT [24] 54.09 ± 1.54 58.87 ± 0.81 66.66 ± 2.50 65.28 ± 1.33 66.01 ± 1.04 65.61 ± 1.10
SRS [26] 54.93 ± 0.80 58.22 ± 1.09 70.39 ± 1.09 67.11 ± 1.46 36.95 ± 0.93 64.52 ± 1.39
Mish [99] 61.81 ± 0.54 68.13 ± 0.40 73.76 ± 1.48 71.89 ± 1.12 70.80 ± 0.68 73.49 ± 1.39
PAU [111] 59.81 ± 0.61 64.14 ± 0.62 70.48 ± 1.53 68.59 ± 2.15 68.29 ± 0.77 67.83 ± 0.35
PDELU [59] 61.35 ± 0.56 67.92 ± 0.32 74.48 ± 1.23 72.11 ± 1.60 70.81 ± 0.47 73.71 ± 1.64

Figure 3: Convergence plots over CIFAR100 dataset.

terms of the number of trainable parameters. Overall, it is ob-
served that the Softplus, ELU and CELU are better suited with
MobileNet. The ReLU, Mish and PDELU exhibit good per-
formance with VGG16, GoogleNet and DenseNet. The ReLU,
LReLU, ELU, GELU, CELU, ABReLU, and PDELU activa-
tion functions are better for the networks having residual con-
nections, such as ResNet50, SENet18 and DenseNet121. In or-
der to demonstrate the convergence of different AFs, the train-
ing loss vs epochs is plotted in Fig. 3 on CIFAR100 dataset
using different models. The PAU has emerged as a promis-
ing AF with fastest convergence in most of the cases. The
PReLU, GELU and PDELU AFs are also consistent with good
convergence. Note that the training diverges with SRS for the

SENet18 model. Sigmoid and Elliott AFs showed the poorest
convergence. The time taken for the training is also computed
for different AFs using different CNN models on CIFAR100
dataset and reported in Table 10. These results are computed
using a desktop computer system having 32 GB RAM and 8
GB Nvidia GPU Card for 100 epochs of training. The time is
represented in hh:mm:ss format. It is clear that PDELU AF
is very inefficient. Moreover, SRS and Elliott also take more
time for training. The activations such as ReLU, ELU, CELU,
and Softplus depict a good tradeoff between the accuracy and
training time.

The results for language translation and speech recognition
for different AFs are illustrated in Table 11. The German to

Table 10: Training time (hh:mm:ss) comparison over CIFAR100 dataset.

Training Time CNN Models
Activations MobileNet VGG16 GoogleNet ResNet50 SENet18 DenseNet121
Sigmoid 00:33:15 00:49:16 04:55:54 03:36:03 01:13:14 04:12:24
Tanh 00:33:18 00:49:55 04:58:02 03:33:03 01:13:18 04:09:24
Elliott [25] 00:49:52 00:59:13 06:53:55 05:38:49 01:41:38 07:46:55
ReLU [8] 00:31:22 00:47:19 04:55:10 03:32:30 01:15:33 04:15:06
LReLU [34] 00:31:48 00:49:03 05:01:30 03:33:00 01:18:38 04:14:09
PReLU [35] 00:44:24 00:49:01 05:42:18 03:55:57 01:27:05 04:55:47
ELU [27] 00:31:05 00:47:38 04:57:37 03:36:47 01:13:25 04:08:39
SELU [52] 00:29:40 00:47:31 04:54:57 03:33:47 01:13:27 04:09:17
GELU [101] 00:29:43 00:47:22 04:55:53 03:32:32 01:13:32 04:11:26
CELU [53] 00:29:36 00:46:47 05:00:44 03:31:40 01:14:08 04:18:11
Softplus [93] 00:29:44 00:47:06 04:58:55 03:32:03 01:14:02 04:12:08
Swish [29] 00:43:13 00:55:37 06:18:38 04:58:38 01:32:15 06:41:14
ABReLU [44] 00:38:51 00:53:49 05:43:59 04:27:02 01:25:30 05:42:53
LiSHT [24] 00:37:01 00:54:10 05:40:00 04:25:57 01:23:59 05:38:15
SRS [26] 01:06:38 01:11:36 08:43:09 07:35:35 02:05:33 11:10:27
Mish [99] 00:40:19 00:54:23 05:59:48 04:46:45 01:28:53 06:10:27
PAU [111] 00:41:59 00:54:10 05:54:22 04:12:31 01:25:37 05:39:57
PDELU [59] 05:23:38 04:01:55 34:22:00 36:48:48 08:32:40 50:23:00

Table 11: Experimental results for German to English language translation and
speech recognition tasks.

Language
Translation

Speech Recognition

Activations Bleu Score Average
CER

Average
WER

Sigmoid 14.59 ± 0.47 0.53 ± 0.18 1.19 ± 0.39
Tanh 20.93 ± 0.91 0.26 ± 0 0.68 ± 0
Elliott [25] 14.49 ± 0.96 0.40 ± 0.01 0.93 ± 0.01
ReLU [8] 18.88 ± 0.86 0.24 ± 0.01 0.66 ± 0.01
LReLU [34] 18.89 ± 0.82 0.24 ± 0 0.66 ± 0.01
PReLU [35] 20.04 ± 0.98 0.24 ± 0 0.65 ± 0
ELU [27] 19.40 ± 1.33 0.25 ± 0 0.67 ± 0
SELU [52] 20.85 ± 0.64 0.26 ± 0 0.69 ± 0.01
GELU [101] 18.75 ± 1.83 0.24 ± 0 0.65 ± 0
CELU [53] 18.71 ± 0.55 0.25 ± 0 0.67 ± 0
Softplus [93] 16.78 ± 0.84 0.30 ± 0.01 0.76 ± 0.02
Swish [29] 19.51 ± 0.97 0.24 ± 0.01 0.65 ± 0.01
ABReLU [44] 17.55 ± 0.63 0.25 ± 0 0.68 ± 0
LiSHT [24] 20.39 ± 0.93 0.29 ± 0.01 0.74 ± 0.01
SRS [26] 20.66 ± 0.78 0.28 ± 0 0.72 ± 0
Mish [99] 19.56 ± 1.15 0.24 ± 0 0.65 ± 0
PAU [111] 20.11 ± 1.24 0.24 ± 0 0.65 ± 0.01
PDELU [59] 19.07 ± 0.95 0.25 ± 0 0.67 ± 0.01

English translation is used to test the performance of the AFs
over text data. Benchmark Seq2Seq model consisting of a Long
Short Term Memory (LSTM) based autoencoder network is
used for the experiment. The model and dataset are downloaded
from Kaggle2. The AF is applied to the feature embedding
before the dropout layer. For the language translation experi-
ments, the number of Epochs is set to 50 with 0.001 learning
rate and 256 batch size. The embedding size of encoder and
decoder is 300. The dropout factor is 0.5 for both encoder and
decoder. Adam optimizer is used for the training with cross
entropy loss. The Bleu score [155] with 4-gram is reported in
Table 11 in 2nd column for different AFs. The mean and stan-
dard deviation of Bleu score over 5 trials are reported for each

2https://www.kaggle.com/parthplc/pytorch-seq2seq-machine-
translation/notebook

AF. It is noticed that the Tanh and SELU AFs are better suit-
able for language translation. The PReLU, LiSHT, SRS and
PAU AFs also perform better for language translation.

The speech recognition experiment is also performed to show
the performance of the different AFs for time-series signal data.
The end-to-end speech recognition based Deep Speech 2 frame-
work available from assemblyai3 is used. The model consists of
2 layers of residual convolution layers to learn the relevant au-
dio features, and 2 layers of bidirectional gated recurrent units
(GRUs) to use the learned residual convolutional audio fea-
tures. The 100 hours of transcribed audio English data from
LibriSpeech dataset is used for the experiment. For the speech
recognition experiments, torchaudio 0.4.0 and torch 1.4.0 are
used. The model consists of 2 CNN layers and 2 RNN layers.
The dimension of a RNN layer is 512. Number of classes is
29 in the dataset. Dropout factor is 0.5. The learning rate is
0.0005, batch size is 10 and the number of Epochs is 10. The
mean and standard deviation over 5 trials of character error rate
(CER) and word error rate (WER) are reported in Table 11 for
speech recognition. The recent AFs such as PReLU, GELU,
Swish, Mish and PAU AFs are found as the most suitable for
speech recognition in this experiment.

10. Conclusion and Recommendations

An extensive and up to date survey of activation functions is
conducted in this paper. Different types of AFs are considered,
including Logistic Sigmoid and Tanh based, ReLU based, ELU
based, and Learning based. However, the main focus is given to
the recent developments in AFs in view of the deep learning ap-
plications of neural networks. The overview of AFs presented
in this paper focuses on the aspects including the detailed cov-
erage of AFs, classification and performance comparison over
image, text and speech data.

3https://www.assemblyai.com/blog/end-to-end-speech-recognition-pytorch

Following are the concluding remarks of the survey and per-
formance analysis conducted through this paper:

• Most of the improvements in Logistic Sigmoid and Tanh
targets to tackle the non zero-mean and zero-gradient
problems. However, these improvements carry forward
the drawback of increased complexity.

• The ReLU variants try to tackle the three major prob-
lems of ReLU, namely under-utilization of negative val-
ues, limited nonlinearity and unbounded output. These ac-
tivations perform well for some applications, e.g. LReLU
and ABReLU works better with residual networks. How-
ever, most of these activations fail to perform better than
ReLU, e.g. LReLU, PReLU and ABReLU do not improve
for MobileNet, VGG and GoogleNet models. Note that,
the ReLU, Leaky ReLU and PReLU AFs are the most
common choice among researchers due to its simplicity.
Moreover, many networks consider the ReLU as a default
choice for the AF.

• The exponential based AFs also focus over the better uti-
lization of the negative values and to avoid the saturation
for important features. However, most of the exponential
activations suffer due to the non-smooth functions.

• The learning based adaptive AFs try to find the best pa-
rameters to represent the non-linearity needed for the given
dataset. This category of AF has gained more popularity
in recent years. However, the major problem associated
with such AF is to find the better base function and num-
ber of trainable parameters. Some AFs diverge during the
training if not initialized properly.

• In contrast to existing surveys, this survey covers an ex-
haustive list different types of AFs. Moreover, a perfor-
mance analysis on different types of data using several AFs
provides new insights for future research.

Following are the recommendations curated from this survey
and performance analysis:

• In order to speed up the training, both negative & positive
values should be used to ensure the near zero mean.

• The most important aspect in deep learning is to find the
network having matching complexity as the dataset com-
plexity. If the complexity of the model is high then it may
lead to overfitting and if the complexity of the model is
low then it may lead to under convergence. Thus, the
AF should bridge this gap based on the model and dataset
complexity during training automatically.

• The Logistic Sigmoid and Tanh AFs should be avoided for
Convolutional Neural Networks as it leads to poor con-
vergence. However, this type of AF is commonly used as
gates in recurrent neural networks.

• Despite the ReLU being a popular choice, recently pro-
posed AFs such as Swish, Mish, and PAU are also worth
trying for different problems.

• The ReLU, Mish and PDELU activation functions have
shown a good performance with VGG16 and GoogleNet.
The ReLU, LReLU, ELU, GELU, CELU, and PDELU
functions are better for the networks having residual con-
nections for image classification.

• In general, the parametric AFs show better convergence as
it can adapt the data faster by learning the parameter from
the data. Specially, PAU, PReLU and PDELU have shown
better convergence.

• Some AFs lead to increased training time complexity.
PDELU and SRS are such examples. However, AFs such
as ReLU, SELU, GELU, and Softplus depict a promising
tradeoff between the accuracy and training time.

• The exponential AFs generally lead to the increased non-
linearity due to utilization of the negative values.

• The Tanh and SELU AFs are found better for language
translation along with PReLU, LiSHT, SRS and PAU.

• It is suggested to use the PReLU, GELU, Swish, Mish and
PAU AFs for speech recognition.

References

[1] F. Shao, L. Chen, J. Shao, W. Ji, S. Xiao, L. Ye, Y. Zhuang, J. Xiao,
Deep learning for weakly-supervised object detection and localization:
A survey, Neurocomputing (2022).

[2] Y. Mo, Y. Wu, X. Yang, F. Liu, Y. Liao, Review the state-of-the-art tech-
nologies of semantic segmentation based on deep learning, Neurocom-
puting (2022).

[3] Y. Guo, F. Feng, X. Hao, X. Chen, Jac-net: Joint learning with adap-
tive exploration and concise attention for unsupervised domain adaptive
person re-identification, Neurocomputing (2022).

[4] S. R. Dubey, A decade survey of content based image retrieval using
deep learning, IEEE Transactions on Circuits and Systems for Video
Technology (2021).

[5] X. Xia, X. Pan, N. Li, X. He, L. Ma, X. Zhang, N. Ding, Gan-based
anomaly detection: A review, Neurocomputing (2022).

[6] H. Li, Y. Pan, J. Zhao, L. Zhang, Skin disease diagnosis with deep learn-
ing: a review, Neurocomputing 464 (2021) 364–393.

[7] C. H. Dagli, Artificial neural networks for intelligent manufacturing,
Springer Science & Business Media, 2012.

[8] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Advances in Neural Information
Processing Systems, 2012, pp. 1097–1105.

[9] A. Graves, A.-r. Mohamed, G. Hinton, Speech recognition with deep
recurrent neural networks, in: IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2013, pp. 6645–6649.

[10] K. K. Babu, S. R. Dubey, Pcsgan: Perceptual cyclic-synthesized gener-
ative adversarial networks for thermal and nir to visible image transfor-
mation, Neurocomputing (2020).

[11] J. Liu, Y. Liu, Q. Zhang, A weight initialization method based on neural
network with asymmetric activation function, Neurocomputing (2022).

[12] Y. Srivastava, V. Murali, S. R. Dubey, A performance evaluation of
loss functions for deep face recognition, in: National Conference on
Computer Vision, Pattern Recognition, Image Processing, and Graph-
ics, Springer, 2019, pp. 322–332.

[13] S. S. Basha, S. R. Dubey, V. Pulabaigari, S. Mukherjee, Impact of fully
connected layers on performance of convolutional neural networks for
image classification, Neurocomputing 378 (2020) 112–119.

[14] Q. Xu, M. Zhang, Z. Gu, G. Pan, Overfitting remedy by sparsifying
regularization on fully-connected layers of cnns, Neurocomputing 328
(2019) 69–74.

[15] S. R. Dubey, S. Chakraborty, S. K. Roy, S. Mukherjee, S. K. Singh, B. B.
Chaudhuri, diffgrad: An optimization method for convolutional neural
networks, IEEE transactions on neural networks and learning systems
31 (11) (2019) 4500–4511.

[16] W. Duch, N. Jankowski, Survey of neural transfer functions, Neural
Computing Surveys 2 (1) (1999) 163–212.

[17] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann
machines, in: International Conference on Machine Learning, 2010, pp.
807–814.

[18] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning ap-
plied to document recognition, Proceedings of the IEEE 86 (11) (1998)
2278–2324.

[19] A. N. S. Njikam, H. Zhao, A novel activation function for multilayer
feed-forward neural networks, Applied Intelligence 45 (1) (2016) 75–
82.

[20] B. Xu, R. Huang, M. Li, Revise saturated activation functions, Interna-
tional Conference on Learning Representations Workshop (2016).

[21] S. Kong, M. Takatsuka, Hexpo: A vanishing-proof activation function,
in: International Joint Conference on Neural Networks, 2017, pp. 2562–
2567.

[22] Y. Qin, X. Wang, J. Zou, The optimized deep belief networks with im-
proved logistic sigmoid units and their application in fault diagnosis for
planetary gearboxes of wind turbines, IEEE Transactions on Industrial
Electronics 66 (5) (2018) 3814–3824.

[23] S. Elfwing, E. Uchibe, K. Doya, Sigmoid-weighted linear units for neu-
ral network function approximation in reinforcement learning, Neural
Networks 107 (2018) 3–11.

[24] S. K. Roy, S. Manna, S. R. Dubey, B. B. Chaudhuri, Lisht: Non-
parametric linearly scaled hyperbolic tangent activation function for
neural networks, arXiv preprint arXiv:1901.05894 (2019).

[25] A. Farzad, H. Mashayekhi, H. Hassanpour, A comparative performance
analysis of different activation functions in lstm networks for classifica-
tion, Neural Computing and Applications 31 (7) (2019) 2507–2521.

[26] Y. Zhou, D. Li, S. Huo, S.-Y. Kung, Soft-root-sign activation function,
arXiv preprint arXiv:2003.00547 (2020).

[27] D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep net-
work learning by exponential linear units (elus), in: International Con-
ference on Learning Representations, 2016.

[28] F. Agostinelli, M. Hoffman, P. Sadowski, P. Baldi, Learning activation
functions to improve deep neural networks, International Conference on
Learning Representations Workshops (2015).

[29] P. Ramachandran, B. Zoph, Q. V. Le, Searching for activation func-
tions, International Conference on Learning Representations Workshops
(2018).

[30] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553)
(2015) 436–444.

[31] P. Chandra, Y. Singh, An activation function adapting training algorithm
for sigmoidal feedforward networks, Neurocomputing 61 (2004) 429–
437.

[32] S. S. Sodhi, P. Chandra, Bi-modal derivative activation function for sig-
moidal feedforward networks, Neurocomputing 143 (2014) 182–196.

[33] S. Eger, P. Youssef, I. Gurevych, Is it time to swish? compar-
ing deep learning activation functions across nlp tasks, arXiv preprint
arXiv:1901.02671 (2019).

[34] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve
neural network acoustic models, in: International Conference on Ma-
chine Learning, Vol. 30, 2013, p. 3.

[35] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: IEEE interna-
tional conference on computer vision, 2015, pp. 1026–1034.

[36] W. Shang, K. Sohn, D. Almeida, H. Lee, Understanding and improving
convolutional neural networks via concatenated rectified linear units, in:
International Conference on Machine Learning, 2016, pp. 2217–2225.

[37] S. S. Liew, M. Khalil-Hani, R. Bakhteri, Bounded activation functions
for enhanced training stability of deep neural networks on visual pattern
recognition problems, Neurocomputing 216 (2016) 718–734.

[38] R. Duggal, A. Gupta, P-telu: Parametric tan hyperbolic linear unit acti-
vation for deep neural networks, in: IEEE International Conference on
Computer Vision Workshops, 2017, pp. 974–978.

[39] S. Qiu, X. Xu, B. Cai, Frelu: Flexible rectified linear units for improving
convolutional neural networks, in: International Conference on Pattern

Recognition, 2018, pp. 1223–1228.
[40] X. Jiang, Y. Pang, X. Li, J. Pan, Y. Xie, Deep neural networks with

elastic rectified linear units for object recognition, Neurocomputing 275
(2018) 1132–1139.

[41] J. Cao, Y. Pang, X. Li, J. Liang, Randomly translational activation in-
spired by the input distributions of relu, Neurocomputing 275 (2018)
859–868.

[42] F. Godin, J. Degrave, J. Dambre, W. De Neve, Dual rectified linear units
(drelus): A replacement for tanh activation functions in quasi-recurrent
neural networks, Pattern Recognition Letters 116 (2018) 8–14.

[43] Z. Tang, L. Luo, H. Peng, S. Li, A joint residual network with paired
relus activation for image super-resolution, Neurocomputing 273 (2018)
37–46.

[44] S. R. Dubey, S. Chakraborty, Average biased relu based cnn descriptor
for improved face retrieval, arXiv preprint arXiv:1804.02051 (2018).

[45] Y. Liu, J. Zhang, C. Gao, J. Qu, L. Ji, Natural-logarithm-rectified activa-
tion function in convolutional neural networks, in: International Confer-
ence on Computer and Communications, 2019, pp. 2000–2008.

[46] S. Gu, W. Li, L. V. Gool, R. Timofte, Fast image restoration with multi-
bin trainable linear units, in: IEEE International Conference on Com-
puter Vision, 2019, pp. 4190–4199.

[47] M. Basirat, P. Roth, L* relu: Piece-wise linear activation functions for
deep fine-grained visual categorization, in: IEEE Winter Conference on
Applications of Computer Vision, 2020, pp. 1218–1227.

[48] C. Gulcehre, M. Moczulski, M. Denil, Y. Bengio, Noisy activation func-
tions, in: International Conference on Machine Learning, 2016, pp.
3059–3068.

[49] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, Y. Bengio,
Maxout networks, arXiv preprint arXiv:1302.4389 (2013).

[50] B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified activa-
tions in convolutional network, arXiv preprint arXiv:1505.00853 (2015).

[51] H. Li, W. Ouyang, X. Wang, Multi-bias non-linear activation in deep
neural networks, in: International Conference on Machine Learning,
2016, pp. 221–229.

[52] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing
neural networks, in: Advances in Neural Information Processing Sys-
tems, 2017, pp. 971–980.

[53] J. T. Barron, Continuously differentiable exponential linear units, arXiv
(2017) arXiv–1704.

[54] L. Trottier, P. Gigu, B. Chaib-draa, et al., Parametric exponential lin-
ear unit for deep convolutional neural networks, in: IEEE International
Conference on Machine Learning and Applications, 2017, pp. 207–214.

[55] Y. Li, C. Fan, Y. Li, Q. Wu, Y. Ming, Improving deep neural network
with multiple parametric exponential linear units, Neurocomputing 301
(2018) 11–24.

[56] Z. Qiumei, T. Dan, W. Fenghua, Improved convolutional neural network
based on fast exponentially linear unit activation function, IEEE Access
7 (2019) 151359–151367.

[57] Y. Ying, J. Su, P. Shan, L. Miao, X. Wang, S. Peng, Rectified exponential
units for convolutional neural networks, IEEE Access 7 (2019) 101633–
101640.

[58] D. Kim, J. Kim, J. Kim, Elastic exponential linear units for convolutional
neural networks, Neurocomputing 406 (2020) 253–266.

[59] Q. Cheng, H. Li, Q. Wu, L. Ma, N. N. King, Parametric deformable
exponential linear units for deep neural networks, Neural Networks 125
(2020) 281–289.

[60] J. Si, S. L. Harris, E. Yfantis, A dynamic relu on neural network, in:
IEEE Dallas Circuits and Systems Conference, 2018, pp. 1–6.

[61] H. Hu, Vrelu activation functions for artificial neural networks, in: In-
ternational Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery, 2018, pp. 856–860.

[62] G. Lin, W. Shen, Research on convolutional neural network based on
improved relu piecewise activation function, Procedia Computer Science
131 (2018) 977–984.

[63] D. Macêdo, C. Zanchettin, A. L. Oliveira, T. Ludermir, Enhancing batch
normalized convolutional networks using displaced rectifier linear units:
A systematic comparative study, Expert Systems with Applications 124
(2019) 271–281.

[64] L. B. Godfrey, An evaluation of parametric activation functions for deep
learning, in: IEEE International Conference on Systems, Man and Cy-
bernetics, 2019, pp. 3006–3011.

[65] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, S. Yan, Deep learning with
s-shaped rectified linear activation units, in: AAAI Conference on Arti-
ficial Intelligence, 2016.

[66] V. S. Bawa, V. Kumar, Linearized sigmoidal activation: A novel acti-
vation function with tractable non-linear characteristics to boost repre-
sentation capability, Expert Systems with Applications 120 (2019) 346–
356.

[67] X. Wang, Y. Qin, Y. Wang, S. Xiang, H. Chen, Reltanh: An activation
function with vanishing gradient resistance for sae-based dnns and its
application to rotating machinery fault diagnosis, Neurocomputing 363
(2019) 88–98.

[68] X. Hu, P. Niu, J. Wang, X. Zhang, A dynamic rectified linear activation
units, IEEE Access 7 (2019) 180409–180416.

[69] A. Nicolae, Plu: The piecewise linear unit activation function, arXiv
preprint arXiv:1809.09534 (2018).

[70] L. B. Godfrey, M. S. Gashler, A continuum among logarithmic, linear,
and exponential functions, and its potential to improve generalization in
neural networks, in: International Joint Conference on Knowledge Dis-
covery, Knowledge Engineering and Knowledge Management, Vol. 1,
2015, pp. 481–486.

[71] B. Grelsson, M. Felsberg, Improved learning in convolutional neural net-
works with shifted exponential linear units (shelus), in: International
Conference on Pattern Recognition, 2018, pp. 517–522.

[72] Y. Yu, K. Adu, N. Tashi, P. Anokye, X. Wang, M. A. Ayidzoe, Rmaf:
Relu-memristor-like activation function for deep learning, IEEE Access
8 (2020) 72727–72741.

[73] M. Basirat, P. M. Roth, The quest for the golden activation function,
arXiv preprint arXiv:1808.00783 (2018).

[74] S. Scardapane, M. Scarpiniti, D. Comminiello, A. Uncini, Learning ac-
tivation functions from data using cubic spline interpolation, in: Italian
Workshop on Neural Nets, 2017, pp. 73–83.

[75] A. Mishra, P. Chandra, U. Ghose, S. S. Sodhi, Bi-modal derivative adap-
tive activation function sigmoidal feedforward artificial neural networks,
Applied Soft Computing 61 (2017) 983–994.

[76] S. Qian, H. Liu, C. Liu, S. Wu, H. San Wong, Adaptive activation
functions in convolutional neural networks, Neurocomputing 272 (2018)
204–212.

[77] E. Alcaide, E-swish: Adjusting activations to different network depths,
arXiv preprint arXiv:1801.07145 (2018).

[78] Ö. F. Ertuğrul, A novel type of activation function in artificial neural
networks: Trained activation function, Neural Networks 99 (2018) 148–
157.

[79] M. Goyal, R. Goyal, B. Lall, Learning activation functions: A
new paradigm of understanding neural networks, arXiv preprint
arXiv:1906.09529 (2019).

[80] G. Maguolo, L. Nanni, S. Ghidoni, Ensemble of convolutional neu-
ral networks trained with different activation functions, arXiv preprint
arXiv:1905.02473 (2019).

[81] H. H. Chieng, N. Wahid, P. Ong, S. R. K. Perla, Flatten-t swish: a
thresholded relu-swish-like activation function for deep learning, arXiv
preprint arXiv:1812.06247 (2018).

[82] N. Patwardhan, M. Ingalhalikar, R. Walambe, Aria: Utilizing richard’s
curve for controlling the non-monotonicity of the activation function in
deep neural nets, arXiv preprint arXiv:1805.08878 (2018).

[83] M. Dushkoff, R. Ptucha, Adaptive activation functions for deep net-
works, Electronic Imaging 2016 (19) (2016) 1–5.

[84] F. Manessi, A. Rozza, Learning combinations of activation functions, in:
IEEE International Conference on Pattern Recognition, 2018, pp. 61–66.

[85] L. R. Sütfeld, F. Brieger, H. Finger, S. Füllhase, G. Pipa, Adaptive blend-
ing units: Trainable activation functions for deep neural networks, arXiv
preprint arXiv:1806.10064 (2018).

[86] M. Wang, B. Liu, H. Foroosh, Look-up table unit activation function
for deep convolutional neural networks, in: IEEE Winter Conference on
Applications of Computer Vision, 2018, pp. 1225–1233.

[87] D. Klabjan, M. Harmon, Activation ensembles for deep neural networks,
in: IEEE International Conference on Big Data, 2019, pp. 206–214.

[88] C. Eisenach, Z. Wang, H. Liu, Nonparametrically learning activation
functions in deep neural nets, in: International Conference on Learning
Representations Workshops, 2017.

[89] C. J. Vercellino, W. Y. Wang, Hyperactivations for activation function
exploration, in: Conference on Neural Information Processing Systems

Workshop on Meta-learning, 2017.
[90] A. D. Jagtap, K. Kawaguchi, G. E. Karniadakis, Adaptive activation

functions accelerate convergence in deep and physics-informed neural
networks, Journal of Computational Physics 404 (2020) 109136.

[91] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, R. Garcia, Incorporating
second-order functional knowledge for better option pricing, in: Ad-
vances in Neural Information Processing Systems, 2001, pp. 472–478.

[92] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks,
in: International Conference on Artificial Intelligence and Statistics,
2011, pp. 315–323.

[93] H. Zheng, Z. Yang, W. Liu, J. Liang, Y. Li, Improving deep neural net-
works using softplus units, in: International Joint Conference on Neural
Networks, 2015, pp. 1–4.

[94] Q. Liu, S. Furber, Noisy softplus: a biology inspired activation function,
in: International Conference on Neural Information Processing, 2016,
pp. 405–412.

[95] H. Zhao, F. Liu, L. Li, C. Luo, A novel softplus linear unit for deep
convolutional neural networks, Applied Intelligence 48 (7) (2018) 1707–
1720.

[96] C. Xu, J. Huang, S.-p. Wang, A.-q. Hu, A novel parameterized activation
function in visual geometry group, in: International Conference on Data
Science and Business Analytics, 2018, pp. 386–389.

[97] K. Sun, J. Yu, L. Zhang, Z. Dong, A convolutional neural network model
based on improved softplus activation function, in: International Confer-
ence on Applications and Techniques in Cyber Security and Intelligence,
2019, pp. 1326–1335.

[98] Y. Chen, Y. Mai, J. Xiao, L. Zhang, Improving the antinoise ability of
dnns via a bio-inspired noise adaptive activation function rand softplus,
Neural Computation 31 (6) (2019) 1215–1233.

[99] D. Misra, Mish: A self regularized non-monotonic neural activation
function, arXiv preprint arXiv:1908.08681 (2019).

[100] A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, Yolov4: Optimal speed and
accuracy of object detection, arXiv preprint arXiv:2004.10934 (2020).

[101] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), arXiv
preprint arXiv:1606.08415 (2016).

[102] C. Yu, Z. Su, Symmetrical gaussian error linear units (sgelus), arXiv
preprint arXiv:1911.03925 (2019).

[103] Q. Su, L. Carin, et al., A probabilistic framework for nonlinearities in
stochastic neural networks, in: Advances in Neural Information Pro-
cessing Systems, 2017, pp. 4486–4495.

[104] J. Lee, K. Shridhar, H. Hayashi, B. K. Iwana, S. Kang, S. Uchida,
Probact: A probabilistic activation function for deep neural networks,
arXiv preprint arXiv:1905.10761 (2019).

[105] L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. H. Saltz, Convnets with
smooth adaptive activation functions for regression, Proceedings of Ma-
chine Learning Research 54 (2017) 430.

[106] Y. Berradi, Symmetric power activation functions for deep neural net-
works, in: International Conference on Learning and Optimization Al-
gorithms: Theory and Applications, 2018, pp. 1–6.

[107] E. López-Rubio, F. Ortega-Zamorano, E. Domı́nguez, J. Muñoz-Pérez,
Piecewise polynomial activation functions for feedforward neural net-
works, Neural Processing Letters 50 (1) (2019) 121–147.

[108] F. Farhadi, V. P. Nia, A. Lodi, Activation adaptation in neural networks,
arXiv preprint arXiv:1901.09849 (2019).

[109] B. Li, S. Tang, H. Yu, Powernet: Efficient representations of polynomi-
als and smooth functions by deep neural networks with rectified power
units, arXiv preprint arXiv:1909.05136 (2019).

[110] M. Telgarsky, Neural networks and rational functions, in: International
Conference on Machine Learning, 2017, pp. 3387–3393.

[111] A. Molina, P. Schramowski, K. Kersting, Padé activation units: End-to-
end learning of flexible activation functions in deep networks, Interna-
tional Conference on Learning Representations (2020).

[112] A. T. Nicolas Boullé, Yuji Nakatsukasa, Rational neural networks, arXiv
preprint arXiv:2004.01902 (2020).

[113] A. Apicella, F. Isgrò, R. Prevete, A simple and efficient architecture for
trainable activation functions, Neurocomputing 370 (2019) 1–15.

[114] Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, Z. Liu, Dynamic relu, arXiv
preprint arXiv:2003.10027 (2020).

[115] M. Wang, B. Liu, H. Foroosh, Wide hidden expansion layer for deep
convolutional neural networks, in: IEEE Winter Conference on Appli-
cations of Computer Vision, 2020, pp. 934–942.

[116] A. Asif, et al., Learning neural activations, arXiv preprint
arXiv:1912.12187 (2019).

[117] S. Scardapane, S. Van Vaerenbergh, S. Totaro, A. Uncini, Kafnets:
Kernel-based non-parametric activation functions for neural networks,
Neural Networks 110 (2019) 19–32.

[118] S. Scardapane, E. Nieddu, D. Firmani, P. Merialdo, Multikernel activa-
tion functions: formulation and a case study, in: INNS Big Data and
Deep Learning conference, 2019, pp. 320–329.

[119] S. Scardapane, S. Van Vaerenbergh, A. Hussain, A. Uncini, Complex-
valued neural networks with nonparametric activation functions, IEEE
Transactions on Emerging Topics in Computational Intelligence (2018).

[120] S. Scardapane, S. Van Vaerenbergh, D. Comminiello, A. Uncini, Widely
linear kernels for complex-valued kernel activation functions, in: IEEE
International Conference on Acoustics, Speech and Signal Processing,
2019, pp. 8528–8532.

[121] M. Kobayashi, Singularities of three-layered complex-valued neural net-
works with split activation function, IEEE Transactions on Neural Net-
works and Learning Systems 29 (5) (2017) 1900–1907.

[122] J. Pennington, S. Schoenholz, S. Ganguli, Resurrecting the sigmoid in
deep learning through dynamical isometry: theory and practice, in: Ad-
vances in Neural Information Processing Systems, 2017, pp. 4785–4795.

[123] E. Sansone, F. G. De Natale, Training feedforward neural networks with
standard logistic activations is feasible, arXiv preprint arXiv:1710.01013
(2017).

[124] L. Lu, Y. Shin, Y. Su, G. E. Karniadakis, Dying relu and initializa-
tion: Theory and numerical examples, arXiv preprint arXiv:1903.06733
(2019).

[125] D. Arpit, Y. Bengio, The benefits of over-parameterization at initializa-
tion in deep relu networks, arXiv preprint arXiv:1901.03611 (2019).

[126] D. Aguirre, O. Fuentes, Improving weight initialization of relu and out-
put layers, in: International Conference on Artificial Neural Networks,
2019, pp. 170–184.

[127] R. Burkholz, A. Dubatovka, Initialization of relus for dynamical isome-
try, in: Advances in Neural Information Processing Systems, 2019, pp.
2382–2392.

[128] D. Yarotsky, Error bounds for approximations with deep relu networks,
Neural Networks 94 (2017) 103–114.

[129] R. Arora, A. Basu, P. Mianjy, A. Mukherjee, Understanding deep neural
networks with rectified linear units, arXiv preprint arXiv:1611.01491
(2016).

[130] M. Hein, M. Andriushchenko, J. Bitterwolf, Why relu networks yield
high-confidence predictions far away from the training data and how to
mitigate the problem, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 41–50.

[131] S. Goel, S. Karmalkar, A. Klivans, Time/accuracy tradeoffs for learn-
ing a relu with respect to gaussian marginals, in: Advances in Neural
Information Processing Systems, 2019, pp. 8582–8591.

[132] S. Dittmer, J. Emily, P. Maass, Singular values for relu layers, IEEE
Transactions on Neural Networks and Learning Systems (2019).

[133] A. Kristiadi, M. Hein, P. Hennig, Being bayesian, even just a bit,
fixes overconfidence in relu networks, arXiv preprint arXiv:2002.10118
(2020).

[134] B. Karlik, A. V. Olgac, Performance analysis of various activation func-
tions in generalized mlp architectures of neural networks, International
Journal of Artificial Intelligence and Expert Systems 1 (4) (2011) 111–
122.

[135] G. Alcantara, Empirical analysis of non-linear activation functions
for deep neural networks in classification tasks, arXiv preprint
arXiv:1710.11272 (2017).

[136] H. K. Vydana, A. K. Vuppala, Investigative study of various activation
functions for speech recognition, in: National Conference on Commu-
nications, 2017, pp. 1–5.

[137] D. Pedamonti, Comparison of non-linear activation functions for
deep neural networks on mnist classification task, arXiv preprint
arXiv:1804.02763 (2018).

[138] C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, Activation func-
tions: Comparison of trends in practice and research for deep learning,
arXiv preprint arXiv:1811.03378 (2018).

[139] K. Eckle, J. Schmidt-Hieber, A comparison of deep networks with relu
activation function and linear spline-type methods, Neural Networks 110
(2019) 232–242.

[140] M. M. Lau, K. H. Lim, Review of adaptive activation function in deep
neural network, in: IEEE-EMBS Conference on Biomedical Engineer-
ing and Sciences, 2018, pp. 686–690.

[141] A. K. Dubey, V. Jain, Comparative study of convolution neural network’s
relu and leaky-relu activation functions, in: Applications of Computing,
Automation and Wireless Systems in Electrical Engineering, Springer,
2019, pp. 873–880.

[142] C. Banerjee, T. Mukherjee, E. Pasiliao Jr, An empirical study on general-
izations of the relu activation function, in: ACM Southeast Conference,
2019, pp. 164–167.

[143] T. Villmann, J. Ravichandran, A. Villmann, D. Nebel, M. Kaden, Ac-
tivation functions for generalized learning vector quantization-a perfor-
mance comparison, arXiv preprint arXiv:1901.05995 (2019).

[144] G. Castaneda, P. Morris, T. M. Khoshgoftaar, Evaluation of maxout acti-
vations in deep learning across several big data domains, Journal of Big
Data 6 (1) (2019) 72.

[145] Y. Wang, Y. Li, Y. Song, X. Rong, The influence of the activation func-
tion in a convolution neural network model of facial expression recogni-
tion, Applied Sciences 10 (5) (2020) 1897.

[146] A. Apicella, F. Donnarumma, F. Isgrò, R. Prevete, A survey on modern
trainable activation functions, arXiv preprint arXiv:2005.00817 (2020).

[147] T. Szandała, Review and comparison of commonly used activation func-
tions for deep neural networks, in: Bio-inspired Neurocomputing, 2020,
pp. 203–224.

[148] A. Krizhevsky, Learning multiple layers of features from tiny images,
Tech Report, Univ. of Toronto (2009).

[149] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural net-
works for mobile vision applications, arXiv preprint arXiv:1704.04861
(2017).

[150] K. Simonyan, A. Zisserman, Very deep convolutional networks for
large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014).

[151] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[152] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-
nition, in: IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 770–778.

[153] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018, pp. 7132–
7141.

[154] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely con-
nected convolutional networks, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 4700–4708.

[155] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, Bleu: a method for au-
tomatic evaluation of machine translation, in: Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

	1 Introduction
	2 Evolution of Activation Functions
	3 Logistic Sigmoid and Tanh Based AFs
	4 Rectified Activation Functions
	4.1 On the Non-utilization of Negative Values of ReLU
	4.2 On the Limited Non-linearity of ReLU
	4.3 On the Unbounded Output of ReLU

	5 Exponential Activation Functions
	6 Learning/Adaptive Activation Functions
	7 Miscellaneous Activation Functions
	7.1 Softplus Activation Functions
	7.2 Probabilistic Activation Functions
	7.3 Polynomial Activation Functions
	7.4 Activations as a Subnetwork
	7.5 Kernel Activation Functions

	8 Aspects of Activation Functions
	9 Performance Comparison and Analysis
	9.1 Comparison with Existing Survey/Performance Analysis
	9.2 Experimental Performance Analysis

	10 Conclusion and Recommendations

