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Deep Attributed Network Representation Learning
via Attribute Enhanced Neighborhood

Cong Li, Min Shi, Bo Qu, Xiang Li

Abstract—Attributed network representation learning aims at
learning node embeddings by integrating network structure and
attribute information. It is a challenge to fully capture the
microscopic structure and the attribute semantics simultaneously,
where the microscopic structure includes the one-step, two-step
and multi-step relations, indicating the first-order, second-order
and high-order proximity of nodes, respectively. In this paper,
we propose a deep attributed network representation learning
via attribute enhanced neighborhood (DANRL-ANE) model to
improve the robustness and effectiveness of node representations.
The DANRL-ANE model adopts the idea of the autoencoder, and
expands the decoder component to three branches to capture
different order proximity. We linearly combine the adjacency
matrix with the attribute similarity matrix as the input of
our model, where the attribute similarity matrix is calculated
by the cosine similarity between the attributes based on the
social homophily. In this way, we preserve the second-order
proximity to enhance the robustness of DANRL-ANE model on
sparse networks, and deal with the topological and attribute
information simultaneously. Moreover, the sigmoid cross-entropy
loss function is extended to capture the neighborhood character,
so that the first-order proximity is better preserved. We compare
our model with the state-of-the-art models on five real-world
datasets and two network analysis tasks, i.e., link prediction and
node classification. The DANRL-ANE model performs well on
various networks, even on sparse networks or networks with
isolated nodes given the attribute information is sufficient.

Index Terms—attributed network representation learning, net-
work structure, link prediction, node classification, social ho-
mophily.

I. INTRODUCTION

NETWORKS are generally utilized to explore and model
complex systems, such as online social networks and

citation networks, where an entity is represented as a node
and the interaction between two entities is represented as an
edge. Network analysis is an effective way to gain insight
into different aspects of complex systems, which derives
many machine learning applications, such as the online ad-
vertisement targeting [1] and anomaly detection [2]. Hence,
identifying effective features of nodes (or edges) in a network
is essential. However, traditional methods tend to manually
mine the specific domain features depending on the expert
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experience, which not only require the high cost of labor
and time, but also limit the scalability of models on different
prediction tasks [3]. Network representation learning (NRL)
[4] as an alternative of automatic feature mining has been
proved to be beneficial to various network analysis tasks, such
as the node classification [5] [6], link prediction [7], clustering
[8] and visualization [9].

Early NRL methods are mostly based on the matrix fac-
torization [10]. To reduce the computational complexity on
large-scale networks, inspired by word modeling, Perozzi et al.
propose DeepWalk [4]. Notably, the above-mentioned shallow
model design cannot well capture the highly non-linearity that
is universal in the networks, which would lead to the sub-
optimal network representation [11]. Then, many deep models,
such as structural deep network embedding (SDNE) [11], have
emerged.

Considering only the network structure is not enough to
learn the informative and accurate node representations, espe-
cially when the network structure is sparse. Social science
theories like the homophily [12] [13] and social influence
theory [14] suggest that there is a strong correlation between
the structure and the attributes. Therefore, many studies focus
on attributed NRL [15] [16] [17], which mainly learn the
consistent node representations from the network structure and
node attributes. Nevertheless, the above models are likely sus-
ceptible to the sparsity of one of the heterogeneous information
sources. Afterwards, the deep coupling paradigm is introduced
to enhance the robustness of the representations. Attributed
network representation learning (ANRL) [18] is one of the
representative examples. However, the ANRL model could be
affected by the characteristics of the local network structure. In
addition, the previous attributed NRL methods rarely preserve
all the microscopic structural information, i.e., the first-order,
second-order, and high-order proximity [19], together, where
these proximities indicate the one-step, two-step, and multi-
step relationship between two nodes. Nevertheless, explicitly
taking full advantage of the microscopic structure tends to be
essential for learning the network representation [20].

To utilize the microscopic structural information as well
as the node attributes, we propose a novel deep coupling
attributed NRL model, namely, the deep attributed network
representation learning via attribute enhanced neighborhood
(DANRL-ANE) model. The proposed model consists of three
coupled modules, i.e., the self-built first-order proximity
preserved, attribute enhanced neighborhood autoencoder and
community-aware skip-gram module, which preserve the first-
order, second-order, and high-order proximity, respectively.
The three modules share connections to the encoder. Espe-
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cially, we model the attributes based on the social homophily,
and incorporate the attribute semantics into the adjacency
matrix to enhance the direct neighborhood of each node.

To summarize, our main contributions are as follows:
(i) We propose a deep three-part coupling model, DANRL-

ANE, which learns the robust and effective node representa-
tions by jointly mining the microscopic structure and node
attributes. The attributes are preprocessed to be used as the
input of our model together with the adjacency matrix, which
is advantageous to obtain the accurate second-order proximity.

(ii) We construct the self-built first-order proximity pre-
served module, which innovatively extends the sigmoid cross-
entropy loss function for capturing the local pairwise rela-
tionship between node pairs on undirected and unweighted
networks.

(iii) Our proposed model is not only good for the machine
learning tasks that benefit from the pairwise properties be-
tween nodes, i.e., the link prediction and node classification,
but also not susceptible to the sparsity and neighborhood
distribution of either the structure or the attributes. Moreover,
our model even can deal with the networks with isolated nodes
when we obtain the sufficient node attributes.

The rest of the paper is organized as follows. We discuss
the related work in Section II, and introduce the preliminaries
involved in the paper in Section III. We give the detailed
description of our model in Section IV, and then show the
experimental settings and results in Section V. Finally, we
conclude the paper in Section VI.

II. RELATED WORK

The network representation is first proposed as the part of
dimensionality reduction technologies [21] [22] [23] in the
early 20th century. However, the early methods suffers from
both computational and statistical performance drawbacks [3].
Afterwards, Perozzi et al. [4] generalize the advancements in
language modeling to large-scale networks. A large number of
related excellent algorithms have been proposed. For example,
DeepWalk [4] uses the uniform sampling to collect the node
sequences [20]. Node2vec [3] extends the DeepWalk model,
which captures the diversity of connectivity patterns in a
network. Intuitively, the skip-gram-based methods capture
the high-order proximity [24]. LINE [25] utilizes different
carefully designed objective functions to preserve the first-
order and second-order proximity. However, all of the above
methods cannot preserve the different k(k ≥ 3)-step relation-
ships in distinct subspaces [20]. Therefore, Cao et al. propose
GraRep [20], which concatenates all the local k(k ≥ 3)-step
representations as the representations of nodes. The mentioned
methods all utilize the network structure only to learn network
representation. Besides the structure, nodes in the real world
are usually affiliated with various attributes.

Then, researchers begin to focus on mining the network
features from attributed networks, such as GAT2VEC [26]
and SANE [27]. To further capture the highly non-linearity,
some algorithms, such as DANE [15], ASNE [16] and MDNE
[17], have been recently designed based on the deep learning
technologies, which all model the network structure, encode

the attribute information, and then depend on the strong
correlation between the structure and the attributes to obtain
the consistent network embedding. Giving an example, DANE
[15] utilizes the autoencoder to preserve the high-order struc-
tural proximity and attribute semantics, the joint probability
to capture the first-order proximity from the structure and
attributes, and the likelihood estimation to learn the node
embeddings by jointly the structure and attributes. The above
methods might be susceptible to the sparsity of either the struc-
ture or the attributes. For learning the robust representations,
Zhang et al [18] propose a deep coupling model ANRL, which
preserves the second-order and high-order proximity from the
topological structure. On the basis of the encoder part, ANRL
constructs a neighbor enhancement autoencoder module, and
designs an attribute-aware skip-gram module. Nevertheless,
the design of the autoencoder makes ANRL limited by the
choice of datasets.

In summary, attributed NRL is still an open problem in at
least two aspects as follows: (1) the network structure and
node attributes are two heterogeneous information sources,
we need to consider how to preserve their characteristics in
a vector space; (2) the first-order, second-order and high-
order proximity define different neighborhood relations among
directly or indirectly connected nodes. To capture local close-
ness proximities could help preserve the entire microscopic
structure features of original networks, yet how to design a
proper model is a challenge. Here, we propose the DANRL-
ANE model under the paradigm of deep coupling, in which
three coupled modules are designed to capture the different
order proximity. Especially, the attribute information is mined
as the supplement of the adjacency matrix.

III. PRELIMINARIES

In this section, we first briefly introduce two types of node
attributes, notations and definitions which are used in this
work. Then, the schematic of attributed network representation
learning is given.

A. Node Attributes
The node attributes refer to the auxiliary information used

to describe a node besides the network structure. For instance,
in social networks, personal information such as age, gender
and hobbies can be used as attributes. As declared in [16],
regardless of the semantics, the attributes could be categorized
into two types: the discrete attributes and continuous attributes.
• Discrete attributes. The typical example of the discrete at-

tributes is the categorical attributes, which can be transformed
into the binary vectors via one-hot encoding.
• Continuous attributes. The continuous attributes naturally

exist in social networks. They could be artificially generated
from the transformation of the categorical variables. The
continuous attributes can be represented as the real-valued
vectors after being preprocessed. For example, in the document
modeling, after obtaining the bag-of-words representation of a
document, it is common to transform it to a real-valued vector
via TF-IDF to reduce the noises [16].

Our proposed model DANRL-ANE is suitable for the net-
works with either discrete attributes or continuous attributes.
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B. Notations

Let G = (V,E,A,X) be an attributed information network,
where V = {vi, ..., vn} denotes a set of nodes, E ⊂ (V × V )
denotes a set of edges among nodes, A is the adjacency matrix
and X is the node attribute matrix. In the adjacency matrix
A, if there is an edge between nodes vi and vj , aij > 0,
particularly, if the network is unweighted, aij = 1; otherwise,
aij = 0. If the network is undirected, aij = aji. In the node
attribute matrix X , the element xik indicates the value of node
vi on the attribute k. In this work, we focus on the undirected
and unweighted networks.

C. The Closeness Proximity

We here introduce the definition of the first-order, second-
order and high-order proximity involved in our model.

Definition 1: First-order proximity
The first-order proximity describes the pairwise proximity

between nodes [11]. For each node pair (vi, vj), if there is an
edge between them, the first-order proximity between nodes
vi and vj is aij ; otherwise, the first-order proximity between
nodes vi and vj is 0.

Definition 2: Second-order proximity
The second-order proximity between a pair of nodes de-

scribes the proximity of the neighborhood structure of the
node pair [11]. Let Ai = [ai1, ai2, ..., ain] denote the first-
order proximity between node vi and all other nodes, then the
second-order proximity between nodes vi and vj is decided by
the similarity measure, such as cosine similarity, between Ai

and Aj . Notice that the second-order proximity captures the
2-step relation between node pairs, which could be measured
by the 2-step transition probability from node vi to node vj ,
equivalently [19].

Definition 3: High-order proximity
Compared with the second-order proximity, the high-order

proximity captures the more global structure, which explores
the k-step (k ≥ 3) relation between node pairs [19]. The
high-order proximity could be measured by the k-step(k ≥ 3)
transition probability from node vi to node vj .
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Fig. 1. An illustration of attributed network representation learning. A
social network with node attribute information is the input, and the vector
representations of nodes is the output. Input: the numbered nodes denote the
users, the edges between nodes represent the social relations between users,
and the same color nodes represent that the users have the similar attribute
information. Output: the vectors preserve the network structural information
and attribute semantics.

D. Attributed network representation learning

The goal of the attributed network representation learning
is that with a given attributed information network G =
(V,E,A,X), learning a mapping function makes the whole
network embedded into a new low-dimensional vector space,
namely, f : G → Y ∈ Rn×d, where d denotes the dimension
of embedding. Then, each node can be represented by a low-
dimensional and dense vector. The vectors store the relation-
ship information between each node and the other nodes, and
record the attribute semantics of the nodes. Taking the node
representations as the input is beneficial for the subsequent
machine-learning-based network analysis tasks. A schematic
of attributed network representation learning is shown in Fig.
1. It can be seen that the nodes close to each other in the
original network and/or nodes with the similar attributes are
also close to each other in the new vector space.

IV. THE DANRL-ANE MODEL

A. Overview

The proposed DANRL-ANE model is a deep three-part
coupling model, which consists of the self-built first-order
proximity preserved module, the attribute enhanced neigh-
borhood autoencoder module and the community-aware skip-
gram module. Fig. 2 shows the framework of DANRL-ANE
model. The input of the encoder is the reconstructed adjacency
matrix, which is obtained by integrating the node attributes
and adjacency matrix. The self-built first-order proximity
preserved module captures the direct relations between nodes,
the attribute enhanced neighborhood autoencoder module re-
constructs the target neighbors of nodes to learn the relations
between the neighborhoods of two nodes, and the community-
aware skip-gram module is trained on the linear node se-
quences to preserve the high-order relations. By training the
three modules iteratively until the model converges, the final
node representations are obtained, namely, the representation
output of the autoencoder.

B. Preprocessing

Considering that the attributes can provide direct evidence
for the similarity measurement between nodes from the at-
tribute level, we propose to construct an attribute similarity
matrix. The formal description is given as follows.

1) Attribute Similarity Matrix X(S) ∈ Rn×n

Every row Xi of an attribute matrix X represents the at-
tribute information of the corresponding node vi. The attribute
similarity x

(S)
ij between nodes vi and vj could be calculated

based on the similarity measurement methods. Inspired by the
previous work [28], we utilize the cosine similarity to calculate
the attribute similarity

x
(S)
ij = CosineSimilarity(Xi, Xj) =

XiX
>
j

|Xi||Xj |
. (1)

Furthermore, we intend to combine the adjacency matrix
A and the attribute similarity matrix X(S) into a new re-
constructed adjacency matrix to strengthen the relationship
between nodes.
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2) Reconstructed Adjacency Matrix R ∈ Rn×n

Different from the attribute similarity matrix X(S), the
adjacency matrix A describes the similarity between nodes
from the structure level. By setting the hyperparameters η and
ψ, we linearly combine the adjacency matrix A and attribute
similarity matrix X(S) to build the reconstructed adjacency
matrix R

R = ηA+ ψX(S). (2)

Decoder

Encoder

……

……

𝑌(𝐾)

Community-aware skip-gram
Self-built first-order 

proximity preserved 

module

෠𝑅

Reconstructed adjacency matrix 𝑹

Fig. 2. The architecture of DANRL-ANE model. DANRL-ANE is a three-part
coupling model: the left is the attribute enbanced neighborhood autoencoder
module, the middle is the community-aware skip-gram module and the right
is the self-built first-order proximity preserved module.

C. Model Design

1) A Joint Optimization Framework of the DANRL-ANE
Model

The entire model consists of three coupled modules, which
share the same encoder component. The encoder aims at
mapping the input data into the representation space by one
or multiple layers of non-linear functions. In our model,
the input-output relationship of each layer of the encoder is
defined as

y
(1)
i = δ(RiW

(1) + b(1))

y
(k)
i = δ(y

(k−1)
i W (k) + b(k)), k ∈ {2, ...,K},

(3)

where Ri is the i-th row of the input matrix R, and records
the reconstructed neighbor relationship of node vi. The symbol
δ(.) denotes the non-linear activation functions, and we choose
the best suitable one based on their performance on different
tasks and datasets. The model parameters W (k) and b(k)

represent the transformation matrix and bias vector in the k-th
layer, respectively, and K is the layer number of the encoder.

The joint optimization objective of the DANRL-ANE model

L = LNS
sg + αLM

ae + βLFoP + γLreg (4)

with

Lreg =
1

2

K∑
k=1

(‖W (k)‖2F + ‖Ŵ (k)‖2F ), (5)

where LFoP , LM
ae, LNS

sg are the loss function of the self-built
first-order proximity preserved module, the attribute enhanced
neighborhood autoencoder module and the community-aware
skip-gram module, respectively, as well as α and β are the
hyperparameters that balance the effect of the modules. The
hyperparameter γ is the coefficient of the l2 norm regularizer
Lreg that is used to prevent overfitting. The number of layers
in the encoder and decoder is K. The matrix W (k) and Ŵ (k)

represents the weight matrix of the encoder and decoder in the
k-th layer, respectively.

We optimize Equation (4) by the stochastic gradient algo-
rithm adopted by ANRL [18].

Next, we give the detailed description of each module.
2) Self-built First-order Proximity Preserved Module

The first-order proximity can reveal the similarity between
nodes intuitively and simply. We here propose a self-built first-
order proximity preserved module. To model the first-order
proximity, inspired by the LINE [25] and DANE [15] model,
we define the joint probability wij(vi, vj) between nodes vi
and vj with the sigmoid function σ(x) = 1

1+exp(−x) . Let

x = y
(K)
i y

(K)T

j , then we obtain

wij(vi, vj) =
1

1 + exp(−y(K)
i y

(K)T

j )
, (6)

where y
(K)
i and y

(K)
j denote the representation of nodes vi

and vj , respectively.
Essentially, the first-order proximity on undirected and

unweighted networks describes the existence or non-existence
of edge between node pairs, which is equivalent to a binomial
classification problem. The sigmoid cross-entropy loss func-
tion is a typical objective function for a binomial classification,
which is defined as

LScE = −[t log ps(s) + (1− t) log(1− ps(s))], (7)

where t represents the label of a sample, and can be either 1 or
0. If the sample belongs to the positive class, t = 1, else t = 0.
The probability ps(s) indicates the possibility that the sample
is predicted to belong to the positive class, and is calculated by
the sigmoid function. Here, t = aij and ps(s) = wij(vi, vj),
equivalently.

Because only the information about the existing edges is
useful for the network representation, we set t = 1, and take
the first term of Equation (7) into consideration. We average all
the losses when the edges exist, and thus obtain the objective
of the self-built first-order proximity preserved module

LFoP =
∑

ai,j=1

(− logwij(vi, vj)), (8)

where aij represents the element of the i-th row and the j-th
column of the adjacency matrix A.

3) Attribute Enhanced Neighborhood Autoencoder Mod-
ule

The deep autoencoder model is widely used to mine the
proximity between the neighborhood structure of node pairs
[11], since it could smoothly capture the data manifolds, and
preserve the similarity between samples [29].
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The autoencoder consists of two parts, i.e. the encoder and
decoder. The decoder is the inverse calculation process of
the encoder. The representation in the representation space is
mapped into the reconstruction space in the decoder process.

The purpose of the autoencoder is to minimize the recon-
struction error between the input data and the reconstructed
data, so that the abstract representation of the mid-layer output
can capture the manifold structure in the input data. To be
specific, the objective of the autoencoder is

Lae =

n∑
i=1

||R̂i −Ri||22, (9)

where n is the number of the nodes in the networks, and R̂i

represents the reconstructed output of the input data Ri.
Although the direct neighborhood of each node gets en-

hanced after integrating the attribute semantics and adjacency
matrix, the reconstructed adjacency matrix R could still be
a sparse matrix, that is, the number of non-zero elements is
far less than that of zero elements. A sparse input matrix
could further make the autoencoder tend to preserve more
zero elements. Since the non-zero elements record the con-
nections between nodes, it is more essential to preserve non-
zero elements as much as possible instead of zero elements.
Inspired by SDNE [11], we employ the Hadamard product
as the penalty factor, and extend the loss function of the
autoencoder. The modified objective is

LM
ae =

n∑
i=1

||(R̂i −Ri)� bi||22, (10)

where � indicates the Hadamard product, bi = {bi,j}nj=1. If
Ri,j = 0, bi,j = 1, else bi,j = χ > 1.

The attribute enhanced neighborhood autoencoder module
takes each row vector of the reconstructed adjacency matrix
R as the sample input, where the row vector denotes the
neighbor structural information with the attribute semantics
of the corresponding node. In other words, the autoencoder
could preserve the second-order proximity.

4) Community-aware skip-gram module
Inspired by DeepWalk [4], we design the community-aware

skip-gram module for capturing the high-order proximity in
this work.

To reduce the time complexity, we adopt the node sequences
sampling procedure performed by node2vec [3], where the
return parameter pn = 1.0 and in-out parameter qn = 1.0, and
use the negative sampling to approximate the following loss
function

Lsg = −
n∑

i=1

∑
c∈C

∑
−b≤j≤b,j 6=0

log p(vi+j |Ri)

= −
n∑

i=1

∑
c∈C

∑
−b≤j≤b,j 6=0

log
exp(h′(i+j)y

(K)T

i )∑n
f=1 exp(h′fy

(K)T

i )
,

(11)

where n is the number of nodes in the network, c ∈ C denotes
the node sequences sampled by the random walk, b is the size
of the window. The input data Ri occupies the i-th row of
the input matrix R. The node vi+j is the context node of the
current node vi located in the generated random sequences in

the window b. The node representation y(K)
i is the output of

the sample input Ri through the K layer encoder. The matrix
H ′ is the transition matrix between the representation output
layer of the autoencoder and the output layer of the skip-gram,
and h′i is in Row i of the transition matrix H ′.

Then, we obtain the following Equation (12)

LNS
sg = −

n∑
i=1

∑
c∈C

∑
−b≤j≤b,j 6=0

{log σ(h′(i+j)y
(K)T

i )+

|neg|∑
s=1

Evn∼Pn(v)[log σ(−h′sy
(K)T

i )]},

(12)

where σ(x) = 1
1+exp(−x) is the sigmoid function, |neg|

denotes the number of the sampled negative samples. The
sampling distribution Pn(v) ∝ d3/4v is set as suggested in [30]
and dv represents the degree of node vn.

Minimizing Equation (12), we can get the result that if the
two nodes co-occur, they have similar embedding vectors.

Algorithm 1 describes the learning process of the entire
model and all model parameters are denoted as Θ.

Algorithm 1 Framework of DANRL-ANE Model
Input: An attributed information network G = (V,E,A,X),

preprocessing hyperparameters η and ψ, hadamard prod-
uct operation parameter χ, walks per node r, walk length l,
window size b, return p, in-out q, negative samples |neg|,
trade-off parameters α and β, regularizer coefficient γ,
embedding dimension d

Output: node vector representations Y ∈ Rn×d

1: Use cosine similarity measurement method on attribute
matrix to achieve attribute similarity matrix XS

2: Obtain the reconstructed adjacent matrix R by linearly
combining the adjacency matrix A with attribute similarity
matrix XS by η and ψ

3: Adopt random walk procedure of node2vec model with p
and q both set as 1, and start r times of random walks
with length l at each node

4: Random initialize all parameters Θ
5: while not converged do
6: Sample a mini-batch of nodes with its context
7: Compute the gradient of OLFoP based on Equation

(8)
8: Update first-order proximity preserved module param-

eters
9: Compute the gradient of OLM

ae based on Equation (10)
and the gradient of OLreg based on Equation (5)

10: Update autoencoder module parameters
11: Compute the gradient of OLNS

sg based on Equation
(12)

12: Update skip-gram module parameters
13: end while
14: Obtain representations Y = Y (K) based on Equation (3)

V. EXPERIMENTS

In the section, compared with the state-of-the-art models, we
verify the superiority of our proposed DANRL-ANE model via
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TABLE I
DATASET STATISTICS

Datasets # Nodes # Edges # Attributes # Labels
Citeseer 3,312 4,714 3,703 6
PubMed 19,717 44,338 500 3

Cora 2,708 5,429 1,433 7
Facebook 4,039 88,234 1,283 -

Flickr 7,575 239,738 12,047 9

two downstream tasks, namely, the link prediction and node
classification on five datasets, including Citeseer, PubMed,
Cora, Facebook and Flickr.

A. Experimental Settings

1) Datasets: In the experiments, we select five public and
widely used datasets, which belong to two network types, i.e.,
the citation networks and social networks. The dataset statistics
are summarized in Table I. To further illustrate the broad
applicability of our model to various networks, we analyze the
basic topological properties of employed datasets, including
the density, average degree, average clustering coefficient and
average distance of the networks, as shown in Table II.
• Citation networks: Citeseer [18], PubMed [18] and Cora

[27].
The node indicates the publication, and the edge indicates

the citing or cited relation between publications. By using the
bag-of-words model to deal with a publication, and stemming
and removing the stop-words, a vocabulary of the remaining
unique words is used as the node attributes.

In Citeseer, publications are classified into six classes,
namely, Agents, AI, DB, IR, ML and HCI; in PubMed,
publications are classified into three classes, namely, Diabetes
Mellitus Experimental, Diabetes Mellitus Type 1 and Diabetes
Mellitus Type 2; and in Cora, publications are classified into
seven classes, namely, Case Based, Genetic Algorithms, Neu-
ral Networks, Probabilistic Methods, Reinforcement Learning,
Rule Learning and Theory. The group categories are regarded
as the labels of nodes.
• Social networks: Facebook [18] and Flickr [31].
(1) Facebook: It is one of the most famous online social

networks. In the dataset, the node denotes the user, and the
edge represents the friendship relation between two users.
Furthermore, the personal profile is treated as the attribute
information used to describe the user. Note that there are no
labels in the dataset, so we cannot employ Facebook for the
node classification.

(2) Flickr: It is an image hosting and sharing website.
Similarly, the node and the edge represent the user and the
following or followed relation between users, respectively. The
users can specify a list of tags that reflect their interests, which
are processed into the attributes. The photos are organized
under the pre-specified categories, so the labels refer to the
photo interest groups that the users join in.

2) Baselines: We compare our model, DANRL-ANE, with
seven state-of-the-art models, which can be divided as the
following groups:

• Structure-only: The set of baseline models aim to capture
the structural information, including: (i) the skip-gram based
models which focus on preserving different order proximity
of the structure, such as DeepWalk, node2vec, LINE and
GraRep, (ii) the autoencoder based model, such as SDNE.
Particularly,

(1) DeepWalk: The truncated random walk is employed to
capture the high-order proximity.

(2) node2vec: The biased random walk is designed to
explore the high-order structural information.

(3) LINE: The objective is to preserve the first-order and
second-order proximity. Specifically, LINE models the direct
and indirect neighbor relationship between node pairs through
joint probability and conditional probability, respectively.

(4) GraRep: All the local k(k ≥ 3)-step relational informa-
tion between node pairs are considered and concatenated as
the final representations of nodes.

(5) SDNE: Laplacian Eigenmaps and the deep model au-
toencoder are employed to preserve the first-order and second-
order proximity, respectively.
• Structure & Attribute: The models preserve the struc-

tural and attribute information based on the deep learning
model autoencoder, which can be further classified: (i) the
consistent learning based model, such as DANE, (ii) the deep
coupling framework based model, such as ANRL.

(1) DANE: The joint probability and autoencoder are used
to mine the corresponding first-order and high-order proximity
from the network structure, and to capture the corresponding
first-order proximity and attribute semantics from the node
attributes. Then, the likelihood estimation is used to learn
the consistent network embedding from the structure and the
attributes.

(2) ANRL: It is a deep coupling model. The neighbor
enhancement autoencoder module encodes the attribute seman-
tics, and captures the second-order proximity. The attribute-
aware skip-gram module is designed to preserve the high-order
proximity. Furthermore, a large number of experiments in [18]
have proved that in the ANRL variants, the performance of
ANRL-WAN is superior. Hence, in the paper, we choose the
ANRL-WAN as the benchmark.

3) Parameter settings: For all baselines, we use the public
source code provided by the original author, and tune the
parameters to make each model achieve the optimal perfor-
mance on the different datasets and experimental tasks. We
set the final embedding dimension d as 128. For LINE, we
concatenate the representations of the first-order and second-
order proximity as the final embeddings. We set the walks
per node r as 10, walk length l as 80, window size b as 10,
negative samples |neg| as 10. The hyperparameters η, ψ, χ,
α, β and γ are tuned by using the grid search. In addition,
after the performance comparison of trying the application
of Relu, LeakyRelu, softsign, tanh and sigmoid in our
model, we use the tanh function, tanhx = sinhx

coshx = ex−e−x

ex+e−x ,
as the non-linear activation function of the autoencoder. Table
III shows the number of layers and dimension of each layer
in the autoencoder, and there is no other layer between the
representation layer of the autoencoder and the output layer
of the skip-gram.
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TABLE II
BASIC NETWORK TOPOLOGY PROPERTIES FOR DATASETS

Properties Density Average degree Average Clustering coefficient Average distance
Citeseer 0.0009 2.81 0.14 unconnected
PubMed 0.0002 4.50 0.06 6.34

Cora 0.0015 3.90 0.24 unconnected
Facebook 0.0108 43.69 0.61 3.69

Flickr 0.0084 63.30 0.33 2.41

TABLE III
DETAILED ARCHITECTURE INFORMATION FOR DATASETS

Datasets # Neurons in each layer
Citeseer 3312—1000—500—128—500—1000—3312
PubMed 19717—1000—500—128—500—1000—19717

Cora 2708—1000—500—128—500—1000—2708
(Link Prediction)

2708—256—128—256—2708 (Node Classification)
Facebook 4039—1000—500—128—500—1000—4039(Link Prediction)

Flickr 7575—256—128—256—7575(Link Prediction)
7575—500—128—500—7575(Node Classification)

TABLE IV
LINK PREDICTION RESULTS ON CITESEER, PUBMED, CORA, FACEBOOK

AND FLICKR DATASETS

Datasets Citeseer PubMed Cora Facebook Flickr
Evaluation AUC AUC AUC AUC AUC
DeepWalk 0.6020 0.7925 0.7209 0.9461 0.7247
node2vec 0.5485 0.7977 0.7244 0.9552 0.7341

LINE 0.5309 0.6213 0.6047 0.5073 0.5262
GraRep 0.6008 0.8123 0.7210 0.8697 0.8899
SDNE 0.6093 0.7562 0.6326 0.8689 0.9023
DANE 0.6579 0.9140 0.7286 0.8780 0.6142

ANRL-WAN 0.9666 0.8035 0.9181 0.7698 0.7800
DANRL-ANE 0.9573 0.9439 0.9279 0.9577 0.9371

? We use bold to highlight the best performance.

B. Link Prediction

Link prediction is a widely used task to evaluate the
performance of network embedding [19], which refers to the
task of predicting either missing interactions or links that may
appear in future in an evolving network [21] [32].

As done in [3], we hold out 50% existing edges as positive
instances, and ensure that the remaining network is con-
nected. Besides, we randomly generate the same number of
nonexistent edges from the original network, which are as
negative instances. The positive and negative instances, to-
gether, constitute the test set. Furthermore, we use the residual
network to train the embedding models, which is to obtain the
representation of each node. Then, these representations are
utilized as the feature inputs to predict the unobserved edges.
Inspired by [18], in the link prediction experiment, we rank
both the positive and negative instances according to the cosine
similarity function, and employ the AUC [33] index to judge
the ranking quality. A higher score indicates that the network
representation is more informative. The link prediction task is
carried out on all datasets. The AUC value for each model
on the Citeseer, PubMed, Cora, Facebook and Flickr dataset
is summarized in Table IV, and the best result is highlighted

in bold. According to the observations, we give the following
analysis.
• Structure vs. Structure: On most datasets, node2vec

achieves better or similar performance than DeepWalk, sug-
gesting that the exploration of more flexible neighborhood
facilitates the learning of node representations with higher
accuracy. Compared with the models that only preserve par-
tial microscopic structural information, such as DeepWalk,
node2vec and LINE, the superior performance exhibited by
GraRep in most of the time suggests that preserving the first-
order, second-order, and higher-order proximity is necessary
for the link prediction task. Furthermore, we compare the deep
model SDNE and shallow model LINE, which both aim at
capturing the first-order and second-order proximity. The result
shows that SDNE consistently achieves better performance
than LINE, especially on social networks. A comparison of
the performance gap on citation networks and social networks,
respectively, reveals that the larger the network average degree
is, the smaller the performance gap is, which suggests that the
autoencoder can capture the second-order proximity that is
beneficial to link prediction.
• Structure vs. Structure & Attribute: We find that

the models considering both the structure and attributes tend
to perform better than those considering only the structure.
Furthermore, our proposed DANRL-ANE model has always
achieved better performance than GraRep, especially on cita-
tion networks, which is worth noting that the node attributes
in the PubMed dataset are relatively sparse. The above phe-
nomenon shows that incorporating the attributes into NRL in
a reasonable way is beneficial to obtain the excellent link
prediction results.
• Structure & Attribute vs. Structure & Attribute: The

comparison among DANRL-ANE, DANE and ANRL-WAN
shows that DANRL-ANE has better experimental results on
almost all datasets, which further proves the importance of
capturing the first-order, second-order, high-order proximity
and the attribute semantics together. Meanwhile, it demon-
strates that DANRL-ANE can learn the robust and efficient
network representation.

C. Node Classification

Node classification aims to predict the categories of nodes
by any known information of the network, which is another
common downstream task to evaluate the performance of
network embedding [19] [21] [32].

In the experiment, we first learn the vector representation
of each node through different models. Then, following the
popular practices [18], we randomly sample 30% nodes from
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the labeled nodes as the training set, and treat the rest as the
test set. Here, SVM is employed as the classifier. To measure
the multilabel classification performance, we use Micro-F1
and Macro-F1 as the evaluation metrics. Notably, the above
classification process is repeated 10 times and we report the
average results. Because we don’t have the ground truth of
node labels in Facebook, the node classification task is only
performed on four datasets, i.e., Citeseer, PubMed, Cora and
Flickr. Furthermore, Table V shows the performance of each
network embedding method on different datasets, in which the
optimal result is strengthened in bold. We analyze the results
as follows.
• Structure vs. Structure: Node2vec also shows similar

or superior results to DeepWalk on different datasets, which
is the same as the previous experiments. Compared with
LINE, SDNE shows poor performance on citation networks,
especially in the PubMed dataset. Analyzing the characteristics
of these networks, we find that the average degree of a network
is a key factor affecting the performance of SDNE, and the
larger the network average degree is, the worse the perfor-
mance of SDNE is. The observation indicates that modeling
the directly connected relationship between two nodes with
joint probability is beneficial to capture the accurate first-
order proximity, which explains why the joint probability is
used in our model. Unlike that in link prediction, GraRep,
which considers all the microscopic structural information, has
worse performance than DeepWalk, node2vec and LINE, on
citation networks. The result reveals that simply concatenating
different order information is not always suitable for any tasks,
which emphasizes that a careful design is critical.
• Structure vs. Structure & Attribute: Table V shows

that the methods incorporating the node attributes into NRL
have better experimental results than those only focusing
on the structure, which demonstrates the integration of the
structural information and attribute semantics is advantageous
to learn informative node vectors. For PubMed, compared
with DeepWalk, the performance of DANE is poor, which is
probably caused by the sparse attributes.
• Structure & Attribute vs. Structure & Attribute:

Based on the above discussion, the optimal result of DANRL-
ANE for PubMed shows that our method is not susceptible
to the sparsity of either network structure or node attributes.
Meanwhile, the superiority of the proposed DANRL-ANE
model over ANRL-WAN and DANE on almost all datasets
proves that our method could learn the robust and efficient net-
work representation, and explains the necessity of preserving
the first-order, second-order and high-order proximity, which
is noteworthy that the Citeseer and Cora dataset are both
disconnected networks. In a word, in the node classification
task, the proposed DANRL-ANE model is applicable to all
kinds of networks, even on sparse networks or networks
with isolated nodes, if we can obtain the sufficient attribute
information.

VI. CONCLUSION

To integrate the microscopic structural and attribute infor-
mation for learning the robust and effective node embed-
dings from various networks, we propose a deep coupling

model DANRL-ANE, where three newly designed modules
are used to preserve the first-order, second-order and high-
order proximity from the structure, respectively. In particular,
the node attributes are incorporated into the adjacency matrix
based on the social homophily, as the input of our model,
so that the structure and attribute information are explored
simultaneously. The extensive experiments on the tasks of link
prediction and node classification show that our DANRL-ANE
model achieves the superior performance comparing with other
representation learning models. The work demonstrates that
integrating more sources of information in a principled manner
is conducive to learning higher quality network representation.
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