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Salient Instance Segmentation with Region and
Box-level Annotations

Jialun Pei, He Tang, Tianyang Cheng and Chuanbo Chen

Abstract—Salient instance segmentation is a new challenging
task that received widespread attention in the saliency detection
area. The new generation of saliency detection provides a strong
theoretical and technical basis for video surveillance. Due to
the limited scale of the existing dataset and the high mask
annotations cost, plenty of supervision source is urgently needed
to train a well-performing salient instance model. In this paper,
we aim to train a novel salient instance segmentation framework
by an inexact supervision without resorting to laborious labeling.
To this end, we present a cyclic global context salient instance
segmentation network (CGCNet), which is supervised by the
combination of salient regions and bounding boxes from the
ready-made salient object detection datasets. To locate salient
instance more accurately, a global feature refining layer is
proposed that dilates the features of the region of interest (ROI)
to the global context in a scene. Meanwhile, a labeling updating
scheme is embedded in the proposed framework to update
the coarse-grained labels for next iteration. Experiment results
demonstrate that the proposed end-to-end framework trained by
inexact supervised annotations can be competitive to the existing
fully supervised salient instance segmentation methods. Without
bells and whistles, our proposed method achieves a mask AP
of 58.3% in the test set of Dataset1K that outperforms the
mainstream state-of-the-art methods.

Index Terms—Weakly supervision, saliency detection, instance
segmentation, deep learning.

I. INTRODUCTION

SALIENT object detection (SOD) is known as a classic re-
search field for highlighting the most sensitive and infor-

mative regions in a scene [1]–[3]. Originating from cognitive
and psychology research communities, salient object detection
is applied to various areas, such as video surveillance [4],
video summarization [5] and content-aware image editing
[6]. With the rapid development of current image acquisition
equipment and 5G communication technology, the traditional
binary mask of salient object detection is inadequate to
meet the needs of high-resolution image segmentation. Albeit
salient object detection task provides the salient region labels
compared to the background, they do not explore instance-
level cue for salient information. The next generation of
salient object detection methods need to showcase more
detailed parsing and identify individual instances in salient
regions [7]. In addition, instance-level salient information
is more consistent with human perception and offers better
image understanding [8]. In this paper, we concentrate on the
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new challenging task salient instance segmentation (SIS) for
improving the intelligence level of monitoring systems.

Visual saliency has gained significant progress owing to
the rapid development of deep convolutional neural networks
(CNNs) [9]–[11]. Driven by the strong capability of multi-
level feature extraction, CNN models are widely used in the
computer vision area [12], [13], especially focusing on esti-
mating the bounding boxes of salient instances [14]. Different
from salient object detection, salient instance segmentation
fosters a more detailed information by labeling each instance
with a precise pixel-wise mask and promotes the saliency
maps from region-level to instance-level for more detailed
analysis. In contrast to instance segmentation, salient instance
segmentation only predicts salient instances based on the
salient regions. Moreover, segmenting salient instances is
class-agnostic compared to the class-specific instance segmen-
tation task.

However, the saliency models of CNNs are usually required
to the pixel-level fully-supervised train data [15], [16]. Up to
now, the existing SIS dataset is seriously inadequate and the
amount of pixel-wise ground-truths is insufficient in a single
dataset. The quality and quantity of pixel-level annotations
is the bottleneck because the labeling task is strenuous and
time-consuming. To alleviate the effectiveness of lacking
fully-supervised data, weakly supervised learning is viewed
as the alternative training method attracting more attention.
This strategy not only avoids user-intensive labeling, but also
encourages the models to receive enough training samples.

Inspired by this consideration, in this paper, we aim to
integrate the bounding boxes and binary salient regions for
training the SIS frameworks. The bounding box annota-
tion contains location information for each salient instance.
Meanwhile, salient regions provide salient region information
which is a ready-made source generated from the existing
SOD datasets. Both box-level and region-level annotations are
inexact for salient instance segmentation [17]. As shown in
Fig. 1, the bounding boxes determine the location and number
of salient instances which have labeled in the DUT-OMRON
dataset [18]. We use the bounding box and salient region to
assign salient regions to each bounding box of salient instance.
It is essential to combine these two supervision sources
because the bounding box annotation lacks the pixel-level
labels and salient region cannot distinguish different salient
instances in the coarse-grained labels. To ensure one instance
corresponds to one bounding box and hold the consistency of
salient instances and regions, we also exploit some priors to
prevent the different object regions trapped into the same box.
In this case, the network can utilize more training samples
with the lowest labeling cost. We will elaborate the generation
steps of the coarse-grained annotations in Section III.C.
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Fig. 1: The coarse-grained annotation is generated to achieve salient instance results by the proposed framework. (b) shows
the combination of bounding box and salient region annotations. (c) exhibits the coarse-grained labels for inexact supervised
learning. The final result predicted by CGCNet is showed in (d).

For segmenting salient instances, we design a cyclic global
context SIS network (CGCNet) supervised by the above
coarse-grained labels. Fig. 2 shows the overview of our
CGCNet. The proposed model is an end-to-end two-stage
SIS framework, which first detects salient proposals and then
predict the pixel-level salient instance masks. When extract-
ing features for salient mask prediction, the performance of
convolutional layer depends heavily on global context. Con-
sidering obtaining stronger feature representation, we extend
the scope of feature extraction from the local proposal to
the global features. Inspired by enter-surround contrast de-
rived from saliency detection mechanism [19]–[21], a global
feature refining module (GFR) is designed to make full use
of background features and suppress disturbance from other
salient instance features [22]. Different from the ROIAlign
layer that limits the receptive field in Mask R-CNN [23], the
proposed GFR module is sensitive to global contrast in order
to capture more detailed edge information. Moreover, the
CGCNet is designed to iteratively update the coarse-grained
annotations by using the forward prediction masks combining
with a conditional random field (CRF) [24]. It is beneficial to
refine the coarse-grained annotations sequentially. The input
training samples and the corresponding results are shown in
Fig. 1. We evaluate the results on the test set of Dataset1K [7]
and show that our method compares favourably against even
some fully supervised methods.

In summary, the main contributions of this paper are as
follows:

• We propose a novel inexact supervision salient instance
segmentation framework called cyclic global context net-
work (CGCNet), which is supervised by the combination
of the region-level bounding boxes and salient regions.

• We design a global feature refining (GFR) layer that
extends the receptive field of each instance to the global
context and suppress the features of other salient in-
stances simultaneously.

• We embed an update scheme in CGCNet that can opti-
mize the coarse-grained labels continuously to improve
the accuracy.

The remainder of this paper is organized as follows. Section
II presents the related works. Section III describes the archi-
tecture and the details of the proposed framework. Section
IV discusses the experimental settings and comparions with
the state-of-the-art methods. Finally, Section V concludes the
paper.

II. RELATED WORK

A. Salient Object Detection

Thanks to the fast development of deep learning techniques,
salient object detection has gone through a transformation
from traditional machine learning to deep CNNs [25]. Driven
by the multi-level features extracted from convolution net-
work, the performance of SOD models boost significantly.
Fortunately, rich pixel-level salient datasets can be poured into
various CNN models to detect salient regions [25], [26]. Li
et al. [27] proposed a multi-scale deep contrast network to
overcome the limitations of overlap and redundancy. Hou et
al. [28] designed short connections to the skip-layer structures
based on the VGGNet for better supervision. Qin et al. [29]
produced a predict-refine SOD network which is composed of
a densely supervised encoder-decoder network and a residual
refinement module. Although these SOD methods achieved
outstanding performance, the saliency map is viewed as the
region-level binary mask which may not accomplish instance-
level salient object segmentation.

B. Salient Instance Segmentation

Proceed from SOD, salient instance segmentation propels
the problem into an instance-level phase. Unlike instance seg-
mentation [30]–[32], salient instance is category-independent
and it is concentrate on salient regions. Therefore, the frame-
works and datasets of instance segmentation are incompatible
with segmenting salient instances. Zhang et al. [14] generated
salient region-level proposals by CNNs and optimized the
bounding boxes based on the Maximum a Posteriori principle.
The method is the first to raise saliency detection from the
region level to the instance level. Subsequently, Li et al. [7]
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Fig. 2: An overview of the proposed framework. The detail of the GFR module is shown in the upper right corner. The
coarse-grained annotations updating criteria is illustrated in Section III.D. At the training time, the salient instance result
return to update the coarse-grained annotation in next iteration.

formally proposed the instance-level salient object detection
task. They drove the prediction results from proposals to pixel-
level, and produced the first SIS dataset containing 1,000
samples. Pei et al. [33] proposed a multi-task model to predict
salient regions and subitizing, and then applied a spectral
clustering algorithm to segment salient instances. Recently,
Fan et al. [34] proposed an end-to-end single-shot salient
instance segmentation framework to segment salient instances.
The proposed ROIMasking layer allows more detailed in-
formation to be detected accurately, and meanwhile remains
the context information around the regions of interest. As a
new challenging task, however, the lacking of fully-supervised
label is the main problem to limit the performance of deep
learning models. To avoid making the high cost of pixel-level
annotations, we take advantage of the inexact supervision to
train our model.

C. Weakly Supervised Learning

Most neural networks require full supervision in the form of
handcrafted pixel-level masks, which limits their application
on large-scale datasets with weaker forms of labeling [35]. To
reduce the cost of hand-labelling, weakly supervised learning
has attracted a great deal of attention in recent years [36]–
[38]. Many weakly supervised principles have been introduced
in machine vision area, including object detection, instance
segmentation and saliency detection [39], [40]. Weakly su-
pervised learning reveals that the network purposed for one
supervision source can resort to another source or incomplete
labels. Li et al. [41] utilized a coarse activation map from the
classification network and saliency maps generated from un-
supervised methods as pixel-level annotation to detect salient
objects. Zheng et al. [42] take advantage of salient subitizing
as the weak supervision to generate the initial saliency maps,

and then propose a saliency updating module (SUM) to refine
the saliency maps iteratively. Moreover, Zeng et al. [43]
incorporated with diverse supervision sources to train saliency
detection models. They designed three networks that learn
from category labels, captions and noisy labels, respectively.
Inspired by the above contributions, we build an inexact
label which embraces the existing binary salient regions and
bounding boxes for better training the SIS network.

III. THE CGCNET ARCHITECTURE

A. Motivation

The motivation of the proposed method is handled with seg-
menting class-agnostic salient instances under lacking fully-
supervised annotations. We tend to utilize sufficient training
samples with the lowest labeling cost. Therefore, in this paper,
the coarse-grained label is proposed that is composed of
bounding boxes and binary salient regions. On one hand,
the salient proposals provide positional information of salient
instance. On the other hand, binary salient regions can provide
approximate salient area information for salient instances.
Additionally, they can be easily achieved from existing SOD
datasets. For training by the coarse-grained labels, we design
a cyclic global context neural network (CGCNet) to predict
salient instances and update the coarse-grained labels recur-
rently.

B. Overall Framework

As shown in Fig. 2, the framework of our proposed
CGCNet consists of three main components. Firstly, The RPN
head is viewed as a salient proposal detector that detects the
bounding boxes of salient instance to capture the location and
number of salient instances. Then, the GFR module provides
the global feature representation to predict salient masks.
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Moreover, the resulting salient instances update the coarse-
grained ground-truth added with the fully connected CRF
operation for the next iteration.

We combine pre-trained ResNet-101 [44] with FPN [45]
as the backbone. According to the order of downsampling in
ResNet-101, we extract the 4-th stage feature map followed
by a 1×1 convolutional layer with the lateral connections in
multi-level FPN prediction [23]. Followed by FPN, we utilize
five levels of feature maps to detect different sizes of objects
on different levels to maximize the gains in accuracy. The
feature maps produced by the backbone are extracted from the
entire input image. Both salient proposal detector and salient
instance segmentation branch are feed with the 256 channel
feature maps.

Similar to Faster R-CNN [46], the RPN head is merged
into CGCNet for predicting the bounding boxes of each
instance in one image. Considering the category-independent
characteristic, each ROI feature is assigned to two classes,
denoted as Bc(c ∈ {0, 1}). The two classifications correspond
to the background and the salient object in foreground. RPN
works on the input features and predicts a pile of salient
proposals. Followed by ROIAlign [23] and two 1024-D Fully
Connected layer (FC), the resulting coordinates of salient
proposals are generated attached with a confidence score
of saliency degree. Then, non-maximum suppression (NMS)
[47] is embedded to suppress the negative proposals that
the saliency score behind the threshold 0.7 for refining the
bounding box of each instance.

The output salient proposals relabel on the feature maps
produced by the backbone as input to our GFR module. In
this phase, the GFR module extends the ROI feature to the
global feature. In addition, this layer retains the feature of
the current instance while suppressing the feature of other
ROI features. The features processed by the GFR module are
injected into a pixel-to-pixel fully convolutional block. The
Fully convolutional fashion preserves the spatial consistency
of each pixel involved in corresponding salient instances.
Moreover, taking the resulting salient instances predicted by
the SIS branch, the updating scheme is produced to update
the coarse-grained ground-truth recurrently in training phase.
In the following subsection, we will describe the SIS branch
and the GFR module in detail.

C. Inexact Supervision Sources

We implement the coarse-grained annotations to handle the
problem of lacking sufficient labels for the SIS task. Con-
sidering the characteristics of salient instances, it is essential
to embrace both the salient region and the number of salient
instances. Inspired by salient object detection and instance
segmentation tasks, the coarse-grained labels are composed of
salient regions and the bounding boxes of salient instances.

To train the proposed CGCNet model, we utilize the largest
number of SOD dataset called DUT-OMRON [18], which
contains about 5,000 salient object labels and the bounding
boxes. We select 4,500 images from the training set of
the DUT-OMRON SOD dataset. Despite combining salient
regions and bounding boxes, the coarse-grained labels still
have some general issues. First, salient regions from different
bounding boxes have shared patches. Second, some small
instances are enclosed into the bounding boxes of larger

instances. To reduce the negative influence of these obstacles,
we provide two priors to deal with ambiguous samples. On
one hand, we restrict that each bounding box can contain only
one enclosed salient region. On the other hand, if there are
multiple closed areas in one bounding box, we only keep
the maximal area as its regression target. Given a binary
salient map S, the bounding box corresponding to each salient
instance is denoted as Wi(i = 1, 2, . . . , n). In addition, we set
the patches discarded by priors in each window as ϕi. The
final coarse-grained label I is defined by:

I =

n∑
i=1

[S(x, y) ∩Wi − ϕi(x̂, ŷ)], i = 1, 2, ..., n, (1)

where (x, y) presents salient region pixels in the image S and
(x̂, ŷ) denotes the set of pixels excluded by our priors in each
window. n is the number of salient instances in an image. The
final example can refer to Fig. 1.

D. The Salient Instance Segmentation Branch

The salient instance segmentation branch aims to segment
each salient instance in virtue of the global cues. By achieving
the ROI features from the RPN head, we can determine the
location and number of salient instances. However, features
of each region just contain local spatial information, which is
insufficient to segment explicit pixel-level labels. This barrier
drives us to explore the broader feature for segmentation.
Inspired by center-surround contrast based on the SOD task,
we seek to extend the ROI feature to the global feature
map. Resorting to increasing receptive field and ensuring the
resolution of instances, we utilize global features extracted
from the backbone instead of the ROI feature. Meanwhile,
each feature map produced from the GFR module only
contains the feature of current salient instance proposal and
background while suppressing the features of other salient
instance proposals.

The GFR module. The goal of the proposed global feature
refining module (GFR) is to obtain global context information
and limit the disturbance of other instance features.For the
ROIAlign module, it only pay attention to the ROI feature
and resize the original resolution of ROI [23]. In S4Net [34],
the ROIMasking extend the receptive field and use of the
information around the ROI contrasting ROI features. Differ
from the ROIMasking, our GFR module expand each ROI
directly to the global feature map and maximize the center-
surround contrast for segmenting salient instance.

The internal process in the GFR module is shown in the
top right corner of Fig. 2. Given the feature maps produced
from FPN, the GFR module transfers the coordinates of all
proposals from different scales of features to the aspect ratio
of original feature map. Tasking F (H×W×C) as the input
feature map, we assume that the number of proposals is
n. To explain the module more facilitatively, the number
of proposals is set to 3. Let R(H×W×C)

i (i = 1, 2, . . . , n)
as the feature map includes i-th features of proposals. To
maintain the consistency of resolution between F and Ri,
global average pooling is used to fill in the background area.
The output of GFR module Gi(i = 1, 2, . . . , n) is defined by:

Gi = F −
n∑
i=1

Ri +Ri, i = 1, 2, ..., n (2)
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Fig. 3: Visualization of the GFR module in segmentation branch and comparison of our local feature refining module (LFR
module) and Mask R-CNN [23].

Each feature map Gi contains the corresponding feature of
proposals and the feature of background. To constrain other
features of proposals, the operation of our GFR module first
digs out all regions of salient proposals in input feature
map and then sticks the corresponding ROI feature on F
according to the coordinates of proposal. This operation also
avoids missing the shared pixels from different proposals and
reserves the occlusion parts.

Fig. 3 visualizes the process of GFR module and compares
with other similar modules. We also introduce the local feature
refining module (LFR). Compared to the GFR module, the
LFR module extends the receptive field based on the ROI
feature while limiting other salient proposal features rather
than covering global features. Assume that the size of salient
proposal is (Hr, Wr), the size of extended bounding box
is set to (Hr + h, Wr + w), where h and w is Hr/5 and
Wr/5, respectively. The other setting of LFR module is same
as GFR module. Additionally, the corresponding process in
Mask R-CNN [23] is exhibited in the top branch in Fig. 3.
The experiment results demonstrate that the GFR module
outperforms the other two modules for SIS task, which is
discussed in detail in Section IV.C.

After adding with our GFR module, each target instance
not only contains the features inside the proposal but also
takes advantage of the global context information to highlight
the instance region. The mask head is efficient to use the
contrast of foreground and background features to segment
salient instances. For each output feature map from GFR
layer, SIS branch stack four consecutive convolutional layers
followed on dilated convolutional layer with stride 2 and
RELU function [48]. All the convolutional layers have a
kernel size 3×3 and stride 1.

Coarse-grained Annotations Updating Scheme. Consid-
ering the initial training samples are coarse-grained annota-
tions, we produce an updating scheme to optimize coarse-
grained annotations continuously. The fundamental flaw of
the coarse-grained labels is that boundary information of each
instance is not detailed enough, and different instances in one

image have overlap and occlusion. If only training on the
original samples, the predicted salient instances would contain
some small redundant patches that belong to background
or other instances. To further improve the performance of
CGCNet, we insert the fully connected conditional random
field (CRF) [24] after the salient instance maps in the SIS
branch because the CRF operation has significant progress on
refining the edge of objects. The fully connected CRF model
employs the following energy function:

E(M) = −
∑
i

logP (mi) +
∑
i,j

ϕp(mi,mj), (3)

where M presents a binary mask assignment for all pixels, and
P (mi) is the label assignment probability at pixel i belonging
to the salient instance. For each binary salient instance mask,
the pairwise potential ϕp(mi,mj) for two labels mi and mj

is defined by:

ϕp (mi,mj) = ω1 exp

(
−|pi − pj |

2

2θ2α
− |Ii − Ij |

2

2θ2β

)
+

w2 exp

(
−|pi − pj |

2θ2γ

)2

,

(4)

where the first kernel depends on pixel positions p and pixel
intensities I . The kernel encourages nearby pixels with similar
features to take consistent salient instance labels [27]. The
second kernel quantifies the smoothness kernel which only
depends on pixel positions for removing small isolated regions
[49]. ω1 and ω2 indicate the weighted values to balance the
two parts. The hyper parameters θα, θβ and θγ control the
degree of the Gaussian kernels. In this paper, we adopt the
publicly available implementation of [24] to optimize these
parameters. Specifically, we cross-validate the hyperparam-
eters ω1, ω2, θα, θβ and θγ for the best performance of
CRF. The coarse-to-fine scheme is applied on the subset of
validation set (about 100 images) in DUT-ORMON dataset.
The default value of ω2 and θγ are set to 3 and 1, and
the initial search range of the parameters are ω1 ∈ [1:1:10],
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θα ∈ [50:5:100] and θβ ∈ [5:1:15]. These parameters are fixed
through 10 iterations of the average field to achieve the best
value. In our experiments, the values of ω1, ω2, θα, θβ and
θγ are set to 4, 3, 70, 13, 1, respectively.

We denote the salient instance map as R and the map
processed by CRF as Rf . The coarse-grained annotation is
labeled as C. According to Algorithm 1, we propose a strategy
based on the KL-Divergence [50] to update the C for the next
iteration. KL-Divergence is defined as a dissimilarity metric
and a lower value indicates a better approximation between
the predicting salient instance maps and the ground-truth. Due
to ground-truth of CGCNet is noisy, the updating prediction
map should have more dissimilar patches with coarse-grained
annotation as well as the larger value of KL-Divergence
between them. Our strategy compares the prediction map R
and Rf to the coarse-grained annotation C, which is designed
as:

K1(R,C) =
1

H ×W

H×W∑
i=1

Cilog(
Ci

Ri + σ
+ σ) (5)

K2(Rf , C) =
1

H ×W

H×W∑
i=1

Cilog(
Ci

Rf i + σ
+ σ), (6)

where K1 and K2 denote the mean KL-Divergence value of
R and Rf to C, respectively. The index of i is set as the i-th
pixel and σ is a regularization constant. In Algorithm 1, Cn
represents the ground-truth to be used for the next iteration. It
is observed that we set ϕ as the threshold to determine whether
to update with the existing coarse-grained annotation C. The
value of ϕ is set to 0.05. The strategy can eliminate redundant
replacements and alleviate the impact of excessive erosion of
the CRF on the prediction map. Using the updating scheme
to the inexact supervised learning, the network achieved more
accurate results at the training phase.

Algorithm 1 Coarse-grained annotations updating

Input: Coarse-grained annotation C, salient instance map R
and salient instance map with CRF Rf .

Ensure: The updated coarse-grained annotation Cn
1: if K2(Rf , C)−K1(R,C) ≥ ϕ
2: then Cn = C
3: else Cn = Rf
4: end if

Loss Function. The proposed CGCNet need to trained
salient proposal branch and SIS branch simultaneously. There-
fore, we use ground-truth proposals to supervise the RPN
head and the pixel-level coarse-grained labels to train SIS
branch. The loss function of CGCNet is defined as a two-
stage fashion:

L = Lbb + Lseg + Lupd (7)

Where the Lbb function includes a classification loss which
is log loss over two classes including saliency or background
and a bounding box loss which is similar with Lloc in Fast
R-CNN [51]. The SIS branch loss Lseg is defined by the
cross-entropy loss, which is followed by:

Lseg = −
1

N

N∑
i=1

(gilogpi + (1− gi)log(1− pi)) (8)

where pi denotes the probability of pixel i belonging to class
c = 0, 1, and gi indicates the ground truth label for pixel i.
Inspired by the updating criterion from Eq. (5) and (Eq. (6),
the loss function Lupd for updating SIS branch for pixel-level
salient instance prediction is:

Lupd = K2(Rf , C)−K1(R,C) (9)

In the training phase, the weights of the backbone are frozen.
The entire procedure is repeated iteratively for training.

IV. EXPERIMENTAL RESULTS

In this section, we elaborate on the results of the proposed
CGCNet framework for the SIS task in detail. We perform
ablation experiments on various components of our approach.
Besides, we use different metrics to compare with the ex-
perimental results of other state-of-the-art methods. Since
the proposed method accomplishes the SIS task by inexact
supervised learning, we will maintain maximum fairness in
comparison.

A. Implementation Details

As described in the section above, the end-to-end CGCNet
is trained by our inexact labels which select 4,500 images
from DUT-OMRON dataset [18] without ambiguous sam-
ples. During training, the salient bounding box ground-truths
are used to supervise the salient proposal detector while
combining with SOD annotations to train the mask branch.
Meanwhile, we utilize 500 images as the same as training data
for validation. For training salient proposals, the bounding
boxes are considered as a positive sample if the IOU is
more than 0.7 or a negative sample below 0.3. In addition,
the NMS threshold used on the proposal detector is set to
0.7. At inference time, we only use 300 images from the
testing set in the dataset proposed in [7] due to shortage of
datasets. We input the number of top 80 scoring proposals
from the proposal prediction branch after applying NMS to
the GFR module. Additionally, the SIS branch directly outputs
the resulting images without the updating scheme.

Our proposed framework is implemented in PyTorch frame-
work on 2 NVIDIA GeForce GTX 1080Ti GPUs with 22 GB
of memory. To speed up training convergence, we initialize the
CGCNet with a pre-trained model over the ImageNet dataset
[52] from Mask R-CNN [23]. The CGCNet is fine-tuned by
flipping the training sets horizontally at a probability of 0.5.
In our experiments, we train our network with a learning rate
of 0.0025 which is decreased by 10 at the 8K iteration. The
training process totally iterates 16K times by using the batch
size of 4. The weight decay is empirically set to 0.0001 and
the momentum is 0.9.

B. Evaluation Metrics

For a brand new task, salient instance segmentation has few
evaluation metrics to measure its performance quantitatively.
Different from SOD and instance segmentation, The SIS task
distinguishes pixel-level instances based on salient regions
without classification. Therefore, we adopt the AP metric
to calculate the average of maximum precision value at IoU
scores of 0.5 and 0.7 instead of MAP metric [56]. The
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TABLE I: Comparison of different backbones used in the
CGCNet on DUT-ORMON validation set. In this experiment,
we keep the rest part of the framework in line.

Backbone AP APr0.5 APr0.7

VGG16 [53] 50.79 79.28 60.38

ResNet-50 [41] 57.13 85.6 71.02

ResNet-101 [54] 57.69 86.04 71.72

ResNeXt-101 [55] 58.28 86.91 72.69

TABLE II: Ablation study for different modules in SIS branch.
The experiment is evaluated on DUT-ORMON validation set.

Modules LFR module GFR module ROIAlign [23] ROIMasking [34]

APr0.5 85.45 86.04 85.25 85.73

APr0.7 70.2 71.72 70.28 70.46

precision value of one image is computed by the predicted
number of salient instances (IoU >0.5 or 0.7) divided by the
real number of salient instances in the image. So, the AP r

metric is defined by the summation of precision value divided
by the number of all images in testing set, which is formulated
as:

AP rα =
1

N

∑
j

1

n

∑
i

precision, IoU(i) ≥ α (10)

precision =

{
1, if IoU(i) ≥ α
0, if IoU(i) < α

, (11)

where α is the threshold of IoU. N is the number of instances
in one image and n is the total instances in the dataset.
Moreover, the AP metric is used to measure the effectiveness
of salient instance segmentation according to the AP r metric.
The metric average the AP r metric with the threshold of IoU
from 0.5 to 0.95 by step 0.05, which is calculated by :

AP =
1

10

∑
α

AP r|α, α = 0.5, 0.55, ..., 0.95 (12)

Compared with the AP r metric, the AP value is adopted
to measure the overall performance of SIS methods. In this
section, the experimental results are evaluated mainly based
on the above-mentioned two metrics.

C. Ablation Studies

We analyze the effectiveness of the proposed CGCNet
on DUT-OMRON validation set [18]. The ablation studies
contain four parts: performance of four different backbones,
performance of GFR module versus three related structures,
hyper-parameter of the updating scheme and contributions of
each component of our framework.

Backbone: To ensure fairness and the effects of the differ-
ent backbones on the experimental results, we verify various
backbones working on CGCNet which stay in the same
settings. Table. I shows the effectiveness of these base models
working on the framework. It demonstrates that the backbone
of combining ResNeXt-101 achieves the best performance
whether AP or AP r metric [55]. The widely used ResNet-101
has also achieved good results slightly behind ResNeXt-101.

TABLE III: The threshold ϕ of updating scheme performance
of CGCNet. The highest scores in each row are labeled in
bold.

ϕ 0.01 0.05 0.1 0.15 0.2

APr0.5 85.89 86.04 84.85 84.66 84.13

APr0.7 71.34 71.72 71.16 70.68 70.19

Due to insufficient depth of the network, VGGNet obtained
relatively low accuracy, but is slightly faster than ResNet [53].

The GFR Module: The proposed GFR module is viewed as
the core layer in SIS branch to refine features. In this section,
we try to evaluate the feature refining layer containing local
and global cues, respectively. Table. II lists the performance of
the LFR module and GFR module. Meanwhile, we also com-
pare similar methods embedded in the segmentation branch
based on CGCNet, including ROIAlign in Mask R-CNN [23]
and ROIMasking in S4Net [34]. As shown in Table. II, the
experimental results based on GFR module outperforms other
modules. ROIAlign only concentrates on the ROI features.
Albeit the LFR module extended the scale of features around
ROI, it still slightly behind the ROIMasking by reason of its
ternary masking. It indicates that treatment of refining features
play an important role in segmenting salient instances. Finally,
we adopt the GFR module embedded in our framework.

Hyper-parameter in updating scheme: The threshold ϕ
of updating scheme is essential for the quality of inexact
supervised annotations to train our framework. In our ex-
periment, we find the appropriate threshold to ensure the
efficiency at the training time. According to the formulation
of KL-Divergence [24], we empirically provide several default
values for determining its influence in this experiment, which
is shown in Table. III. The performance of different values of
ϕ is relatively average. The best result is obtained when the
value of ϕ was set to 0.05, it can balance the optimal quantity
and quality of replacement.

The component in CGCNet: We conducted extensive ex-
periments to discover contributions of each innovative module
under the same settings. These parts of CGCNet include
the prior criteria (Standardized coarse-grained labels), the
updating scheme and the GFR module. As shown in Table. IV,
the various parts of our framework have various degrees of
contribution for segmenting salient instances. Particularly, the
updating scheme has more contributions that improved the
AP metric about 2 percent compared to without it. It can
be attributed to the insertion of CRF and the revision of the
coarse-grained annotations at the training time. With the help
of the prior criteria, the performance significantly improved in
terms of AP r0.5 and AP r0.7 metrics. Overall, each module
has an indispensable contribution to the entire framework.

D. Comparison with the state-of-the-art Methods

There are three existing methods related to the salient
instance segmentation task: MSRNet [7], S4Net [34] and
SCNet [33]. In contrast to these previous works, we are the
first to make use of inexact supervised learning for the new
challenging task. All methods are evaluated on the test set
of Dataset1K [7] and SOC dataset [57], respectively. For
fair comparison, we compare the existing salient instance
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Fig. 4: Qualitative analysis of experimental results by the proposed method and S4Net [34].

segmentation methods qualitatively and quantitatively on the
only two datasets.

Evaluation on the Dataset1K: The Dataset1K [7] is the
first salient instance dataset, which contains 500 images for
training, 200 images for validation and 300 images for testing.
Considering that all existing methods are fully supervised
and our method is supervised by inexact labels, we train all
methods on the training set of Dataset1K and our coarse-
grained annotations of DUT-OMRON dataset, respectively.

Then, we evaluate these models on the test set of Dataset1K
[7]. Since our inexact labels are not applicable to MSRNet
and SCNet, we only compare with S4Net by using inexact
labels for training. The proposed CGCNet use ResNet-50 as
backbone to stay the same with S4Net. Other settings also
maintain relative consistency and fairness in this experiment.
Table. V lists the value of AP , AP r0.5 and AP r0.7 metric
achieved by different training set. Due to the related code
of [7] is not available, we cannot obtain its whole results.



IEEE TRANSACTION ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX XXXX 9

Fig. 5: The attributes-based performance of the CGCNet on the instance-level SOC test set. The left of histogram shows the
accuracy of AP metric. The histograms in the middle and right show the accuracy of AP r0.5 and AP r0.7 metric under nine
attributes.

TABLE IV: Ablation analysis of effects of various compo-
nents from our model on SIS task. PC, GFR and US means
the prior criteria, the GFR module and the updating scheme,
respectively. The experiment is evaluated on DUT-ORMON
validation set.

Models AP APr0.5 APr0.7

The basic model 53.93 83.44 66.86
The basic model + PC 54.67 85.81 68.43
The basic model + PC + GFR 55.84 85.15 70.54
The basic model + PC + GFR + US 57.69 86.04 71.72

TABLE V: Quantitative comparisons with existing methods
on the training set of our inexact labels and Dataset1K [7],
respectively. The results are evaluated on the test set of
Dataset1K [7]. For a fair comparison, both our method and
S4Net [34] use ResNet-50 as backbone. We keep the rest part
of the framework in line. ’-’ indicates unacquirable value.

Method Training Set AP APr0.5 APr0.7

S4Net [34] DUT-ORMON

(Inexact labels)

50.9 84.9 60.8

CGCNet (Ours) 58.3 88.4 71.0

MSRNet [7]

Dataset1K [7]

- 65.3 52.3

SCNet [33] 56.8 84.6 67.4

S4Net [34] 52.3 86.7 63.6

CGCNet (Ours) 57.1 85.8 69.0

In the case of training on the inexact labels, our method
achieves the best result compared to all other methods. As an
inexact supervised method, the CGCNet improves the value
of AP metric to the highest 58.3%. Additionally, we also
exhibit the results of our framework and other fully-supervised
methods on the training set of Dataset1K [7]. As shown in
the bottom of Table. V, the value of AP achieved by our
CGCNet also outperforms SCNet and S4Net. While the value
of AP r0.5 metric is slightly lower than S4Net, our framework
has demonstrated its robustness whether trained on inexact
labels or not.

We also qualitatively analyzed the experimental results
produced by CGCNet and S4Net. Fig. 4 displays some results
from the testing set in Dataset1K [7]. It shows that our
method produces high quality results which is very close
to the ground-truth. The first two input images contain two
instances, which have similar internal features and relatively

simple backgrounds. Our method can easily segment salient
instances from the background. The middle images in Fig. 4
have multiple instances and each instance is close together.
Our model can still predict the number of instances accurately
and segments them effectively. The last two samples have
chaotic backgrounds, and the internal features of salient
instances are also very messy. In this complex case, the
CGCNet also distinguish obstructed instances satisfactorily.
In comparison, the S4Net determine the number of salient
instances inaccurately in some cases. The antepenult sample
demonstrated that the S4Net is insensitive to smaller salient
instances. In addition, our method is better than S4Net in
smoothing the edge of salient instances. It indicates that the
lack of fully supervised data limits the performance of S4Net.
By and large, the proposed framework has high accuracy and
robustness for salient instance segmentation.

Evaluation on the SOC: Recently, Fan et al. [57] intro-
duced a Salient Object in Clutter dataset called SOC, which
contains both binary mask and instance-level salient ground-
truth. Considering that the dataset labels salient instances
in clutter, the difficulty of input images is relatively high.
Therefore, the experiment results will be lower than other
datasets. In this experiment, we analyze the proposed CGCNet
in terms of image attributes on the test set of SOC dataset. The
instance-level test set is divided into nine attributes: Appear-
ance Change (AC), Big Object (BO), Clutter (CL), Heteroge-
neous Object (HO), Motion Blur (MB), Occlusion (OC), Out-
of-View (OV), Shape Complexity (SC) and Small Object (SO)
[57]. We compare the experimental results of S4Net according
to the attributes. For fair comparison, both methods are trained
on Dataset1K training set [7], and then directly tested on the
SOC test set. The histograms in Fig. 5 show the performance
of the CGCNet and S4Net on different attribute test subsets.
Although these two methods achieve approximate scores in
terms of AP r0.5 metric, CGCNet performs significantly in
AP values. It can be attributed to the better suppression of
complex background by the GFR module. The right histogram
demonstrates that the proposed method is more generalized
for images with different attributes. Moreover, our framework
excels at dealing with the image containing heterogeneous
object (HO) compared to other attributes. Thanks to the global
features of the GFR module, CGCNet process the image
with AC attribute effectively. The AP value of OC attribute
is lowest because the occluded part of object is difficult to
detect. Overall, our method is robust for processing images
with different attributes.



IEEE TRANSACTION ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, XXX XXXX 10

Fig. 6: Representative experimental results for each attribute produced by S4Net and the proposed method. Both frameworks
are fine-tuned on the Dataset1k training set [7] and tested on the SOC test set [57]. We select a most representative sample
in each attribute-based test subset. Each row displays one attribute. We keep the setting of two framework in line.
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Fig. 7: Example of failure modes generated by our method.
Samples are selected from the Dataset1k test set [7]

Fig. 6 exhibits some typical results generated by S4Net and
our framework according to different attributes. Compared to
the Dataset1K, the test set in SOC contains more different
kinds of images and the complexity of background is higher.
Our method also shows great performance on the SOC dataset
against the S4Net. For example, the sample in the first row
has the obvious illumination change in salient instance area
combining with messy background, the proposed method can
easily dig out salient instances from background. The Clutter-
based (CL) image has several small salient instances, and
the foreground and background regions around instances have
similar color. The proposed CGCNet can still accurately locate
each instance and segment them out. Refer to the last two
rows of Fig. 6, salient instances in images with SC and SO
attributes have complex boundaries and are relatively small.
Although it is not easy to split the slender legs of the giraffe,
the overall result is satisfying.

Limitations: Fig. 7 displays some typical failure cases.
According to the first row, our method is insensitive to the
tenuous local features. Due to the two-stage framework, it is
inefficient to suppress the number of proposals in the second
row. This strategy tends to result in a greater number of
predicted salient instances than the ground-truth. The third
row shows that the detail of the boundary is terrible when two
salient instances overlap. It is due to the inexact annotations
consisting of bounding boxes and salient regions that cause
the edge of the salient instance to become the edge of boxes.
The bottom two cases demonstrate that our approach fails
to predict the salient regions. The problem is very common

in saliency detection tasks. Generally, it is beneficial to use
coarse-grained labels based on the proposed CGCNet.

V. CONCLUSION

In this paper, we propose an end-to-end cyclic global
context neural network (CGCNet) for salient instance segmen-
tation. Due to lack of dataset for the new challenging task,
we used inexact supervised learning to train our framework.
More importantly, adding with the GFR module and the
updating scheme in CGCNet, our framework shows excellent
performance for salient instance segmentation, which com-
pares favorably against even some fully supervised methods.
Due to dependence on the post processing of NMS, the
framework sometimes predicts the number of salient instances
inaccurately. In the future work, we will attempt to exploit
one-stage single network and further improve the effectiveness
of the framework for applying to video surveillance.
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[24] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected
crfs with gaussian edge potentials,” in Advances in neural information
processing systems, 2011, pp. 109–117.

[25] M. Feng, H. Lu, and E. Ding, “Attentive feedback network for
boundary-aware salient object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
1623–1632.

[26] Y. Bai, Y. Zhang, M. Ding, and B. Ghanem, “Sod-mtgan: Small object
detection via multi-task generative adversarial network,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
206–221.

[27] G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 478–487.

[28] Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. H. Torr,
“Deeply supervised salient object detection with short connections,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3203–3212.

[29] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand,
“Basnet: Boundary-aware salient object detection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 7479–7489.

[30] Y. Lee and J. Park, “Centermask: Real-time anchor-free instance seg-
mentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 13 906–13 915.

[31] E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, and
P. Luo, “Polarmask: Single shot instance segmentation with polar rep-
resentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 12 193–12 202.

[32] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, “Blendmask:
Top-down meets bottom-up for instance segmentation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2020, pp. 8573–8581.

[33] J. Pei, H. Tang, C. Liu, and C. Chen, “Salient instance segmentation
via subitizing and clustering,” Neurocomputing, vol. 402, pp. 423–436,
2020.

[34] R. Fan, M.-M. Cheng, Q. Hou, T.-J. Mu, J. Wang, and S.-M. Hu, “S4net:
Single stage salient-instance segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
6103–6112.

[35] Y. Zhu, Y. Zhou, H. Xu, Q. Ye, D. Doermann, and J. Jiao, “Learning
instance activation maps for weakly supervised instance segmentation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 3116–3125.

[36] H. Bilen and A. Vedaldi, “Weakly supervised deep detection networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2846–2854.

[37] R. G. Cinbis, J. Verbeek, and C. Schmid, “Weakly supervised object
localization with multi-fold multiple instance learning,” IEEE transac-

tions on pattern analysis and machine intelligence, vol. 39, no. 1, pp.
189–203, 2016.

[38] A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. Van Gool,
“Weakly supervised cascaded convolutional networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 914–922.

[39] P. Tang, X. Wang, A. Wang, Y. Yan, W. Liu, J. Huang, and A. Yuille,
“Weakly supervised region proposal network and object detection,” in
Proceedings of the European conference on computer vision (ECCV),
2018, pp. 352–368.

[40] S. J. Oh, R. Benenson, A. Khoreva, Z. Akata, M. Fritz, and B. Schiele,
“Exploiting saliency for object segmentation from image level labels,”
in 2017 IEEE conference on computer vision and pattern recognition
(CVPR). IEEE, 2017, pp. 5038–5047.

[41] G. Li, Y. Xie, and L. Lin, “Weakly supervised salient object detection
using image labels,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[42] X. Zheng, X. Tan, J. Zhou, L. Ma, and R. W. Lau, “Weakly-supervised
saliency detection via salient object subitizing,” IEEE Transactions on
Circuits and Systems for Video Technology, pp. 1–1, 2021.

[43] Y. Zeng, Y. Zhuge, H. Lu, L. Zhang, M. Qian, and Y. Yu, “Multi-
source weak supervision for saliency detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 6074–6083.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[45] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[46] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[47] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,”
in 18th International Conference on Pattern Recognition (ICPR’06),
vol. 3. IEEE, 2006, pp. 850–855.

[48] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international confer-
ence on machine learning (ICML-10), 2010, pp. 807–814.

[49] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for
image understanding: Multi-class object recognition and segmentation
by jointly modeling texture, layout, and context,” International Journal
of Computer Vision, vol. 81, no. 1, pp. 2–23, 2009.

[50] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “Predicting human
eye fixations via an lstm-based saliency attentive model,” IEEE Trans-
actions on Image Processing, vol. 27, no. 10, pp. 5142–5154, 2018.

[51] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[52] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[53] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[54] L. Wang, H. Lu, Y. Wang, M. Feng, D. Wang, B. Yin, and X. Ruan,
“Learning to detect salient objects with image-level supervision,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 136–145.

[55] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.
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