
Evolutionary bagging for ensemble learning

Giang Ngoa, Rodney Beardb, Rohitash Chandraa,c,d

aTransitional Artificial Intelligence Research Group, School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
bTransitional Artificial Intelligence Research Group, Sydney, Australia

cUNSW Data Science Hub, University of New South Wales, Sydney, Australia
dData Analytics for Resources and Environments, Australian Research Council - Industrial Transformation Training Centre (ARC-ITTC), Australia

Abstract

Ensemble learning has gained success in machine learning with major advantages over other learning methods. Bagging is a
prominent ensemble learning method that creates subgroups of data, known as bags, that are trained by individual machine learning
methods such as decision trees. Random forest is a prominent example of bagging with additional features in the learning process.
Evolutionary algorithms have been prominent for optimisation problems and also been used for machine learning. Evolutionary
algorithms are gradient-free methods that work with a population of candidate solutions that maintain diversity for creating new
solutions. In conventional bagged ensemble learning, the bags are created once and the content, in terms of the training examples,
are fixed over the learning process. In our paper, we propose evolutionary bagged ensemble learning, where we utilise evolutionary
algorithms to evolve the content of the bags in order to iteratively enhance the ensemble by providing diversity in the bags. The
results show that our evolutionary ensemble bagging method outperforms conventional ensemble methods (bagging and random
forests) for several benchmark datasets under certain constraints. We find that evolutionary bagging can inherently sustain a diverse
set of bags without reduction in performance accuracy.

Keywords: Ensemble learning, Bagging, Random forest, Evolutionary algorithms

1. Introduction

Motivated by the ”no free lunch” theorem [1], ensemble
learning methods use different methods to aggregate the predic-
tions of multiple machine learning models. This often leads to
a significantly improved performance when compared to indi-
vidual models [2]. Bagging and boosting are currently the most
popular ensemble methods, with random forest and AdaBoost
being the most prominent implementations, respectively. These
methods cover a wide range of applications including face
recognition [3, 4], anomaly detection [5] and medicine [6, 7].
Bagging [8] is a prominent ensemble method for training in-
dividual learners on arbitrary sampled subsets of the original
training dataset. The aggregation of multiple learners leads to
a lower variance of the model while its bias may remain the
same given the bias-variance decomposition of error for ma-
chine learning models. Given multiple models of the same ma-
chine learning algorithm trained on different training data, the
bias of the machine learning algorithm is the similarity between
the models’ average prediction and the ground truth, and its
variance is the difference between the predictions [9]. Random
forest [10] is a prominent implementation of bagging that uses
decision trees and introduces additional features to the sampling
process. During each split, a random forest will consider only
a random subset of the features as opposed to bagging, where
all features are considered. Extra-tree [11] is an extension with
random splits for decision trees to further reduce the computa-
tional cost of determining how to split the data. Random forest
and extra-trees allow for fewer correlated decision trees than

those learnt by bagging, a desirable property that allows dif-
ferent features to be represented instead of being dominated by
strong predictors [12].

A problem with bagging is that the bias of an individual ma-
chine learner is mostly the same as the bias of the combined
model as better performance is the sole result of reduced vari-
ance [13]. For example, if decision trees are not suitable for a
particular data, it will likely underfit the data and produce high
bias error. In that case, an ensemble of decision trees will have
the same bias error as one single decision tree. As a result, if
the individual learners achieve high bias (model under-fitting),
those errors are carried over to the aggregated predictions. It
is clear that one can employ more sophisticated machine learn-
ing models such as artificial neural networks, but these do not
improve over decision trees for problems where both computa-
tional power and data are limited. A natural direction to solve
this problem is to optimize for bags that are more representative
than the bootstrapped bags. Some researchers have attempted
to select an optimal size for each bag using bootstrapping and
claimed that using bags with the same size as the whole training
data is inefficient [14, 13, 15]. However, these work with op-
timal size of bags without actually considering the data within
each bag. On the other hand, it has also been argued that we
need to optimize the data within each bag and focus on the spe-
cific problem of imbalanced data with either over or under sam-
pling for the data labels [16, 17, 18].

Evolutionary algorithms (EAs) are a family of optimisation
algorithms motivated by the theory of evolution [19]. EAs fea-

Preprint submitted to Neurocomputing September 7, 2022

ar
X

iv
:2

20
8.

02
40

0v
3 

 [
cs

.N
E

] 
 6

 S
ep

 2
02

2



ture a population of individuals (candidate solutions) that coop-
erate and compete using a measure of error (fitness). Over time
(evolution), the algorithm selects individuals from the popula-
tion to create the next generation of individuals with selection,
crossover and mutation operators [20, 21]. Due to its flexibil-
ity, EAs are adopted widely for machine learning models for
various tasks, such as multi-task learning [22, 23], decision tree
induction [24], image segmentation [25], Bayesian optimisa-
tion [26], and training deep learning models such as recurrent
neural networks (neuroevolution) [27]. Since an ensemble of
individual learners also resemble a population of candidate so-
lutions, several attempts have been made to apply EAs to en-
hance ensemble learning methods such as 1.) evolving bagged
training samples in an class imbalanced scenario [18, 28, 29],
2.) assigning weights for individual learners [30, 31, 32], 3.)
maintaining diversity between learners [33, 34], and 4.) feature
selection [35].

In the past, attempts have been made to improve bagging,
where the content of the bags in the ensemble has been a
major focus of investigation [18, 28, 29]. We note that the
methods that did not alter the training samples in each bag
had the advantage of optimizing over a smaller search space
[30, 31, 33, 34, 35]; e.g. the set of weights for individual learn-
ers or the subsets of features [30, 31, 32]. However, these meth-
ods lacked the ability to optimize the set of training samples
in each bag as these remained the same throughout the evolu-
tion process. This could be a major disadvantage if an infor-
mative representation of the data were required, such as when
over-sampling of the majority class or under-sampling of the
minority class were needed in an imbalanced scenario. Fur-
thermore, during model learning from these bags (individual
learners), it is important to alter the content of the bags so they
are not similar to each other, which otherwise would lead to
highly correlated learners. Garcı́a and Herrera [28] proposed a
set of algorithms for under-sampling for classification with im-
balanced datasets using evolutionary algorithms, by maximiz-
ing accuracy and minimizing the amount of data used. Sun et al.
[18] applied a similar framework, with a more complicated fit-
ness function to maintain a balanced ratio between classes and
a set of diverse bags. Roshan and Asadi [29] enforced these
properties along with good classification performance using a
multi-objective optimization process. Although promising re-
sults were achieved, the ensemble featured considerable ran-
domness, due to the crossover operator which executes on a ran-
dom predefined probability distribution instead of a directed op-
timization that prioritises individual learners with higher clas-
sification performance. The lack of directed optimization strat-
egy cannot guarantee a stable learning process especially with
massive datasets. In addition, these studies [28, 18, 29] are lim-
ited to under-sampling in imbalanced classification problems,
which is prone to biased selection of the majority class and also
a potential loss of important data if care is not taken.

In our paper, we propose an evolutionary bagged ensemble
learning framework where we utilise evolutionary algorithms
to shuffle and update the data amongst the bags in order to iter-
atively enhance the diversity of the ensemble. Our method op-
timizes a simple objective where crossover operator is designed

so that we are able to modify the set of training samples in a bag
given the performance of its corresponding learner. The other
components of our method inherently maintains diversity be-
tween bags and attempts to decrease the errors associated with
bias in each bag. We provide extensive evaluation on both bal-
anced and imbalanced datasets for classification problems. Fi-
nally, we compare the performance of our method with other
ensemble methods, such as the canonical bagging and random
forests.

The remainder of the paper is organized as follows: Section 2
reviews bagging and evolutionary algorithms. Section 3 intro-
duces our framework with a detailed explanation of its compo-
nents. Section 4 presents results with benchmark datasets and
Section 5 provides a discussion. Finally, Section 6 provides the
conclusions.

2. Background

Genetic algorithms [36] are prominent evolutionary algo-
rithms that evolve a population of candidate solutions using
evolutionary operators. Initially, genetic algorithms used bi-
nary encoding [36] and later real-coded genetic algorithms were
developed [37]. Binary encoding suffers from computational
challenges, accuracy, and search space discontinuities [38].
Real-coded encoding [39, 40, 41] have shown better perfor-
mance when compared to binary encoding for selected prob-
lems [42]. The overall framework of genetic algorithm is simi-
lar to other evolutionary algorithms such as evolution strategies
[43], differential evolution [44], and particle swarm optimisa-
tion [45]. The major differences is in the way a new population
is created using different genetic operators. The fitness score
(error) measures the quality of the solutions and is the key mea-
sure by which the evolutionary operators select individuals to
create new solutions [19]. A candidate solution includes a set
of parameters that needs to be estimated for a problem (model).
The goal of the optimization process is to search for a candidate
solution with the highest fitness score.

The ability to search for the global optimal solution using
genetic algorithm has led to their wide application in numer-
ous areas. Some of its popular applications include evolution-
ary game theory [46], scheduling applications [47], image pro-
cessing [48], traveling salesmen problem [49], vehicle rout-
ing problem [50], and many multi-modal optimization tasks
[51, 52, 53]. In machine learning, the most common use of ge-
netic algorithms is for hyperparameter tuning; where the search
space is small, and its applications range from Bayesian optimi-
sation [26], convolutional neural networks (CNNs) [54], long
short-term memory (LSTM) networks [55], and fuzzy logic
classification [56].

3. Methodology

Our evolutionary bagged ensemble learning method (referred
to as EvoBagging, hereforth) employs an evolutionary algo-
rithm to improve bag samples generated from bagging. In bag-
ging, bootstrapping iteratively samples a dataset with replace-
ment until a desirable size is reached and is commonly used

2



to control the stability of the results in statistical learning [57].
The content of all bags are initialised at the beginning and re-
main unchanged. EvoBagging evolves the content of all bags
by applying the crossover and mutation operators prioritising
bags (and their corresponding trained individual learners) with
a higher classification performance. We also introduce a gen-
eration gap with selection to help maintain diversity between
individual learners and to remove bags with poor performance.

3.1. EvoBagging Algorithm
The canonical bagged ensemble learning method (bagging)

involves generating random subsets of training samples us-
ing bootstrapping and aggregating the results from individual
models trained on those subsets. Bagging requires two hyper-
parameters, i.e. the sample size S and the number of bags N.
Initially, bootstrapping is used to generate N bags where each
bag contains S training samples. Each bag can be sampled uni-
formly from the original training set with replacement. A ma-
chine learning model can be subsequently trained with the bag’s
data and such an operation can also be implemented in parallel
since the bagged models are independent. The final prediction
from bagging is an aggregate of the predictions of all individual
models, which is based on voting for classification and averag-
ing for regression. In EvoBagging, we employ decision trees as
the designated machine learning model for the bags, due to its
training ability that takes low computational requirements when
compared to other methods, such as artificial neural networks.
Therefore, the individuals in the population of EvoBagging are
bags that contain data instances. At every generation, the algo-
rithm creates new population of individuals using genetic op-
erators such as crossover and mutation; hence, the data in the
bags are changed over time.

The major goal of evolutionary algorithms is to find the best
solution for an optimization problem. In the case of EvoBag-
ging (as shown in Figure 1 and Algorithm 1), the general goal
remains the same, but its purpose is slightly different since the
application is machine learning rather than optimisation. We
are more interested in the overall performance of the popula-
tion that is represented by the fitness given by the bags (indi-
vidual learners), and the population diversity over time (evo-
lution). During evolution of the population, it is expected that
the solutions within the population will also improve, and their
errors will be reduced. Therefore, the fitness function used for
optimization in the case of EvoBagging is still used, but the
implicit goal is to improve the performance of the whole en-
semble and take advantage of diversity of the individuals. In
other words, the goal of EvoBagging is to gradually improve
the performance of all the individuals in the population which
will eventually lead to a better performance of the ensemble.
. We note that the individuals in the population represent the
indices of the data in the bag and over time, the indices are
evolved; hence, this is discrete parameter optimisation for indi-
vidual learning models that learn from the data in the bags.

The algorithm begins by generating N bags as the initial pop-
ulation P, i.e the number of individuals in P will be same as
number of bags. We focus on improving the data samples by
creating diversity in each bag, and the number of bags (N)

Algorithm 1 EvoBagging
Input
term goal: termination goal of the evolution process
N: number of bags
S : maximum bag size
G: number of generation gap
M: number of bags for mutation
MS : mutation size
Output
Optimized solution for the problem

1: C = N −G
2: Generate initial population P of N bags of random size s ∈

U(S/2, S )
3: Fit each bag and evaluate fitness
4: while term goal not reached do
5: Start new blank population P′

6: Add G new random bags to P′ as generation gap
7: for i in 1 : C/2 do
8: Choose 2 parent bags from the population
9: Perform crossover on these two bags

10: Add 2 new children to P′

11: Mutate M random bags in P′ with mutation size MS
12: Update P← P′

13: Fit each bag again and evaluate fitness

will not change with evolution. However, the number of data
samples (items) in the respective bags are determined heuris-
tically. Note that we use a binary encoded evolutionary algo-
rithm where each gene in the chromosome (individual) repre-
sents whether the data instance is in the bag as shown in Fig
1. Note that the number of genes in the individual is set to
the maximum size of the bags which is dependent on the size
of training data. The evolutionary algorithm at every genera-
tion generates the bags using bootstrap with replacement and
then uses evolutionary operators to enhance the quality of the
bags. In the first generation, the bag size is determined arbitrar-
ily s ∈ U(S/2, S ), where S determines the maximum size of
a bag. The samples in each bag are selected using simple ran-
dom sampling with replacement from the training set. We then
train the decision tree model using the data from each bag and
assign the resulting fitness to the bag. Each new generation be-
gins with G new bags generated randomly using bootstrapping
to create a generation gap in the population P′. The algorithm
then proceeds to produce offspring by performing crossover on
N − G bags selected from the last generation (so that the new
bags from generation gap are not involved in this selection).
These new individuals (P′) then become the current population
P = P′. We implement the mutation operator on M arbitrary
selected bags from the updated population P′. The generation
completes by fitting each bag using the individual learner (deci-
sion tree) and then assigns the fitness score to all the individuals
in P′. The algorithm stops if a termination condition is reached
such as a user-defined fitness threshold, number of iterations, or
classification performance of the ensemble.

3



Figure 1: The EvoBagging framework where the bags are initialised with bootstrapping and iteratively optimised with EvoBagging. Note that the population size is
determined by the number of bags in the ensemble and the population representation (binary encoding) in the ensemble is explicitly shown.

4



3.2. Fitness function

After fitting a bag with a pre-determined machine learning
model, the fitness of the bag will depend on the bag size (φ) as
given below:

f itness(bag) = α ×
K + φb

K
(1)

where, α is the classification performance of the model asso-
ciated with the bag (b) in the ensemble, and K is a user-defined
hyper-parameter for encouraging larger bags. The prediction
of each training sample is used later, i.e. during the crossover
operation. Apart from the classification performance, we add
a simple term to create a bias for the bags with more samples.
This is because optimizing only the classification accuracy met-
ric will likely lead to small over-fitted bags. The additional bags
in the ensemble can be seen as a remedy for this issue, but it
would also require complicated procedures to control the diver-
sity of the bags.

3.3. Generation gap

We introduce new bags in the ensemble at every generation,
where each bag is generated similar to the initial bags with a
random size s ∈ Uni f orm(S/2, S ). The purpose of the gen-
eration gap is to replace bags with weaker performance and to
enforce a diverse population. While the latter is an immediate
consequence of the generation gap, the former can be seen as a
result of both generation the gap and crossover. The reason is
that crossover will probabilistically select the parent bags based
on their fitness, which means bags with higher fitness are more
likely to be selected. The remaining bags of the next generation
are produced by the generation gap which replaces bags with
lower fitness with new ones.

3.4. Crossover and mutation

The goal of the crossover operator is to “diversify” the con-
tent of the bag so that the model fitted on its data has better
performance. We simplify the step of selecting C crossover par-
ents by using a rank selection scheme where the offspring with
the highest fitness are selected for crossover (after the genera-
tion gap scheme). The number of offspring (new solutions) is
equal to the number of parents used for crossover. Given C se-
lected crossover parents, each pair of new offspring is created
by recombining two random parents. In particular, the parents
will be randomly allocated to C/2 pairs where each pair will ex-
change their training samples. If the prediction for each training
sample in a bag in the evaluation step is accurate, it will remain
in that bag. Otherwise, it is transferred to the other parent bag.

As for mutation, M bags will be selected randomly from the
current population P′. Let B be one of the selected bag, and Bc

be the set of all training samples that are not in B. Bag B will
be mutated by replacing selected random samples given by the
mutation size (MS ) from B with the same amount of random
samples from Bc. This operator aims to maintain the diversity
of bags in the population without complicated computation.

4. Results

This section evaluates the EvoBagging algorithm on several
benchmark machine learning datasets. The evaluation focuses
on classification problems for both class balanced and imbal-
anced datasets.

4.1. Datasets

4.1.1. N-bit parity and two-spiral problem
The n-bit parity problem has been used as a standard prob-

lem for machine learning algorithm as demonstrated in earlier
works [58, 59]. The objective of the n-bit parity problem is sim-
ply to learn a mapping function which determines whether the
sum of a binary vector is odd or even. We present the 3-bit par-
ity problem in Table 1, where we show the input binary string
(A, B, and C) and corresponding odd parity bit.

Table 1: 3-bit parity dataset

A B C Odd parity bit
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Similarly, we conduct an experiments using the 6-bit and 8-
bit parity problems, which have 64 and 256 samples (binary
strings) respectively. Note that in these problems, we report
only the training accuracy, since there is no test dataset avail-
able. The two-spiral problem is considered to be a relatively
challenging problem for binary classification. We generate 194
samples (with two features, x1 and x2) for this problem and
provide a visualization of the data in Figure 2.

Figure 2: Visualization of two-spiral data with tangled partitions. Note that blue
and red dots represent the two classes for data instances given by 2 features (x1
and x2).

5



4.1.2. Benchmark datasets
We utilize eight commonly used classification datasets from

the University of California - Irvine (UCI) machine learning
repository [60]. In addition, we evaluate the performance of
EvoBagging on three real-world datasets provided by Penn Ma-
chine Learning Benchmarks [61]. In general, the each of the
eleven datasets vary in size, number of features, and number of
classes and details are shown in Table 2.

Table 2: Dataset information with class distribution (showing the proportion of
the minority and the majority classes).

Dataset #Rows #Features #Classes
Red wine [62] 1599 11 2 (13.57%, 86.43%)
Abalone [60] 4177 8 4 (6.25%, 45.17%)

Breast cancer [60] 569 30 2 (37.26%, 62.74%)
Pima [60] 768 8 2 (36.2%, 63.8%)
Mnist [60] 1797 64 10 with 10% each
Car [60] 1728 6 4 (3.76%, 70.02%)

Tic-tac-toe [60] 958 9 2 (34.66%, 65.34%)
Ionosphere [60] 351 34 2 (35.9%, 64.1%)

Churn [61] 5000 20 2 (14.14%, 85.86%)
Ring [61] 7400 20 2 (49.51%, 50.49%)
Flare [61] 1066 10 2 (17.02%, 82.98%)

4.2. Experiment setting
As noted earlier, we use decision trees for individual learners

in the EvoBagging ensemble and provide further comparisons
with mainly tree-based ensemble methods. We consider bag-
ging, random forests, and extra-trees are the baseline models
for comparison. The gradient boosting model is also included
for a comparison of test classification performance on bench-
mark datasets.

In EvoBagging, the maximum training sample size for a new
bag S is the same as the size of the training data. To facilitate
fair comparisons with other ensemble models, the number of
bags in EvoBagging and all baselines is equal to the optimal
number of bags for bagging. To find the optimal number of
bags for bagging, we run a search with an interval of 10 and
select the one with the highest test classification metric. As for
stopping criteria, we terminate the EvoBagging training after a
certain number of iterations which have been determined from
trial experiments. We determine other hyper-parameters (G, M,
MS , and K) by evaluating accuracy (5-fold cross-validation) on
the training set as follows:

• G ∈ {10%, 15%, 20%, 25%, 30%} of N

• M ∈ {5%, 6%, 7%, 8%, 9%, 10%} of N

• MS ∈ {5%, 10%} of S

• K ∈ {1000, 2000, 3000, ..., 20000}

MS is fixed at 5% due to a better performance on all datasets.
Further details on the influence of hyper-parameters are given in
the ablation study (Section 4.4). The test set accounts for 20%
of the total original data and is randomised using stratified split

Table 3: Experimental configurations

Dataset N G M K iter
Red wine 50 20% 10% 5000 25
Abalone 50 20% 10% 10000 35

Breast cancer 20 20% 10% 2000 20
Pima 60 15% 8% 2000 15
Mnist 60 10% 5% 5000 20
Car 60 15% 8% 5000 30

Tic-tac-toe 70 20% 10% 4000 20
Ionosphere 40 25% 10% 1000 20

Churn 70 25% 6% 15000 35
Flare 80 15% 6% 3000 40
Ring 50 15% 10% 18000 15

Two-spiral 40 25% 10% 1000 40

in order to keep the same class distribution between the train set
and the test set. We apply majority voting for EvoBagging and
all baselines to aggregate the predictions of individual learn-
ers. We run 30 independent experiments with different random
initialisation (content of bags) and report the mean and stan-
dard deviation of the respective metrics. Table 3 presents the
details about the configuration for the benchmark datasets and
two-spiral problem.

The n-bit parity problem is trained multiple times with a
range of number of bags (from 10 to 100 bags for both prob-
lems). For simplicity, G is fixed at 20% of N, and mutation is
performed on 10% of N with mutation size 1. We define hyper-
parameter for controlling bag size K = 100 for two-spiral, and
K = 500 for 6-bit and 8-bit parity problems, respectively.

4.3. Preliminary results
Figures 3a and 3b presents the training accuracy over num-

ber of bags for EvoBagging and the bagging-based baselines
(i.e. bagging, random forests, and extra-trees). EvoBagging,
initially shows better performance when compared to bagging
and random forest for both 6-bit and 8-bit parity problems. The
difference in training accuracy is more substantial with smaller
number of bags. Moreover, all the methods eventually reach
100% of training accuracy when more bags are added. This
indicates that when the number of learners are constrained,
EvoBagging can provide a considerably better result than other
bagging-based ensemble methods.

Table 4 shows classification accuracy of EvoBagging and all
baselines for all benchmark datasets. We observe that EvoBag-
ging successfully outperforms the baselines in most cases. In
Figure 4 and 5, we present the receiver operator characteristic
(ROC) curves of bagging and EvoBagging, which shows com-
parable classification accuracy for both methods. This result
demonstrates its ability to improve the performance of methods
related to bagging by building more representative sets of train-
ing samples. The two-spiral problem is challenging with non-
linearly separable data, where EvoBagging outperforms both
bagging and random forests by 11.6% and 18.3% for accuracy,
respectively.

Since the major feature of EvoBagging is to simultaneously
improve the fitness scores of all bags, we record the average

6



Table 4: Results for benchmark datasets and the two-spiral problem

Dataset Model Train Test

Red wine

Bagging 99.95 (0.001) 91.56 (0.005)
Random forest 99.97 (0.001) 92.0 (0.004)

ExtraTrees 99.99 (0.001) 92.5 (0.003)
Gradient Boosting 94.37 (0.003) 89.38 (0.005)

EvoBagging 99.91 (0.001 92.76 (0.013)

Abalone

Bagging 99.96 (0.001) 61.44 (0.004)
Random forest 99.98 (0.002) 62.34 (0.008)

ExtraTrees 99.99 (0.001) 60.65 (0.004)
Gradient Boosting 71.45 (0.002) 62.56 (0.007)

EvoBagging 91.09 (0.002) 63.97 (0.007)

Breast
Bagging 99.89 (0.001) 96.06 (0.008)

Random forest 99.97 (0.001) 95.72 (0.009)

cancer
ExtraTrees 99.99 (0.001) 97.26 (0.008)

Gradient Boosting 99.56 (0.002) 97.31 (0.010)
EvoBagging 99.87 (0.002) 97.75 (0.011)

Pima

Bagging 99.96 (0.002) 75.22 (0.019)
Random forest 99.99 (0.001) 74.34 (0.013)

ExtraTrees 99.99 (0.001) 73.38 (0.013)
Gradient Boosting 88.76 (0.002) 74.03 (0.012)

EvoBagging 99.92 (0.001) 77.52 (0.010)

Mnist

Bagging 99.99 (0.001) 95.13 (0.005)
Random forest 99.99 (0.001) 97.08 (0.004)

ExtraTrees 99.99 (0.001) 97.78 (0.006)
Gradient Boosting 99.99 (0.001) 95.28 (0.008)

EvoBagging 99.99 (0.001) 96.36 (0.007)

Car

Bagging 99.99 (0.001) 97.87 (0.003)
Random forest 99.99 (0.001) 96.87 (0.009)

ExtraTrees 99.99 (0.001) 96.82 (0.010)
Gradient Boosting 97.90 (0.003) 97.40 (0.008)

EvoBagging 99.99 (0.001) 98.51 (0.006)

Tic-tac-toe

Bagging 99.99 (0.001) 99.5 (0.006)
Random forest 99.99 (0.001) 96.87 (0.009)

ExtraTrees 99.99 (0.001) 98.96 (0.003)
Gradient Boosting 97.78 (0.004) 97.92 (0.008)

EvoBagging 99.98 (0.001) 99.99 (0.001)

Ionosphere

Bagging 99.98 (0.001) 94.17 (0.013)
Random forest 99.99 (0.001) 93.54 (0.007)

ExtraTrees 99.99 (0.001) 94.37 (0.015)
Gradient Boosting 99.64 (0.002) 95.77 (0.010)

EvoBagging 99.93 (0.002) 95.77 (0.017)

Churn

Bagging 99.98 (0.002) 95.3 (0.006)
Random forest 99.99 (0.001) 95.50 (0.012)

ExtraTrees 99.99 (0.001) 93.20 (0.010)
Gradient Boosting 96.65 (0.006) 95.00 (0.011)

EvoBagging 99.99 (0.001) 96.32 (0.015)

Flare

Bagging 88.73 (0.007) 80.37 (0.021)
Random forest 88.73 (0.008) 81.31 (0.019)

ExtraTrees 88.73 (0.007) 78.97 (0.023)
Gradient Boosting 86.62 (0.005) 82.24 (0.016)

EvoBagging 88.58 (0.008) 81.69 (0.025)

Ring

Bagging 99.99 (0.001) 96.28 (0.003)
Random forest 99.97 (0.003) 94.05 (0.009)

ExtraTrees 99.99 (0.001) 96.89 (0.010)
Gradient Boosting 95.00 (0.003) 94.73 (0.010)

EvoBagging 99.99 (0.001) 98.20 (0.024)

Two-spiral

Bagging 99.92 (0.002) 63.41 (0.035)
Random forest 99.97 (0.001) 59.82 (0.042)

ExtraTrees 99.99 (0.001) 64.10 (0.023)
Gradient Boosting 92.26 (0.007) 64.10 (0.021)

EvoBagging 99.94 (0.002) 71.79 (0.043)

(a) 6-bit

(b) 8-bit

Figure 3: Classification accuracy on the n-bit parity problems with varying
number of bags

(a) Class 0 (b) Class 1

Figure 4: ROC curves for the Ionosphere dataset using Bagging and EvoBag-
ging.

fitness score in Figure 6, for some datasets instead of recording
the maximum fitness score for each generation in traditional
evolutionary algorithms. The bags gradually improve over the
evolution process, and convergence is guaranteed after a few
iterations (depending on the dataset).

4.4. Influence of hyperparameters

In this section, we experiment the sensitivity of EvoBagging
on changes in the hyperparameters including maximum bag
size S , generation gap G, number of mutated bags M, mutation
size MS , and the bag size control K. We run these experiments

7



(a) Class 1 (b) Class 2

(c) Class 3 (d) Class 4

Figure 5: ROC curves for the Abalone dataset using Bagging and EvoBagging

Figure 6: Average fitness score of all bags for each iteration on three datasets.
Note that the Tic-tax-toe and Ionesphere datasets have lower number of maxi-
mum iterations (20) when compared to the Two-spiral problem.

are run on the Pima dataset with its best configuration specified
in Section 4.1. Note that in the evaluation of a selected hyperpa-
rameter, all the other hyperparameters remain fixed during the
experimental run.

4.4.1. Maximum bag size S
Table 5 presents the accuracy of EvoBagging, the average

size of each bag, and the average depth of each decision tree
(i.e. each individual learner) in the last iteration for four differ-
ent ratios of the maximum bag size S (i.e. 25%, 50%, 75%.,
and 100% of the number of samples in the training data).

As S affects the initialisation of new bags in EvoBagging, a
larger value of S generally leads to a larger average bag size. It
is observed that S is proportional to the final average bag size
in the last iteration. The size of each bag, in turn, affects the
depth of the individual learner corresponding to that bag, so a
larger S also leads to a deeper decision tree. A ratio of 100%
generally produces the best classification result, but the gap is
minimal compared to a ratio of 75%.

Table 5: Comparing the ensemble’s classification accuracy, average size of all
bags in the final iteration, and average depth of individual decision trees be-
tween different values of S for EvoBagging on Pima dataset

Ratio Accuracy Average bag size Average tree depth
25% 73.38 139.4 8.5
50% 75.97 284.7 11.1
75% 77.48 407.8 12.0

100% 77.52 547.1 12.4

4.4.2. Generation gap G
Figure 7 shows the average fitness of all bags for each it-

eration with different ratios of generation gap. The optimal
value for G produced by grid-search in this case is 16.67% (for
N=60). It can be seen that only minor changes happen when
G is 13.33% or 20% (i.e. close to the optimal value). When
G is 50%, the average fitness fluctuates unpredictably due to
replacing half of the population in each iteration. When G is
3.33%, the average fitness not only is lower but also improves
quite slowly as a result of insufficient randomness added to the
optimisation process, which is a main effect of the generation
gap scheme.

Figure 7: The average fitness of all bags for each iteration of EvoBagging on
Pima dataset with different G’s

4.4.3. Number of mutated bags M
Figure 8 shows the average fitness of all bags for each iter-

ation with different ratios for M. When the ratio is less than
10%, the average fitness is mostly the same. However, a high
ratio for M like 20% (i.e. one fifth of the bags are mutated in
each iteration) leads to a lower average fitness as too much ran-
domness is added to the population. Generally, the experiments
have shown that the ratio for M should be less than 10% on all
datasets.

4.4.4. Mutation size
Figure 9 shows the average fitness of all bags for each iter-

ation with different ratio for mutation size given by MS . Gen-
erally, the average fitness evolves steadily when MS is at 5%.

8



Figure 8: The average fitness of all bags for each iteration of EvoBagging on
Pima dataset with different M’s

A larger ratio leads to lower fitness when a large proportion of
the bag selected for mutation is altered. Note that when MS
is only 1%, the average fitness is exceptionally higher when
compared with other ratios. In that case, the bags selected for
mutation remain mostly the same. However, such a small ratio
is not favored as it limits the ability to induce diversity through
randomly created content in the population.

Figure 9: The average fitness of all bags for each iteration of EvoBagging on
Pima dataset with different MS ’s

4.4.5. Bag size
The purpose of the bag size given by K is to give more score

to larger bags so that the population does not collapse to multi-
ple small bags that are easy to predict. Table 6 shows the clas-
sification accuracy and average bag sizes for different values of
K. We observe that a smaller value of K leads to larger bags, but
larger bags do not necessarily correlate to better classification
performance as over-represented training data instances may re-
sult in overfitted individual learners. The choice of K should

generally be proportionate to the size of the training data.

Table 6: Classification performance and bag sizes vary with different values of
K

k Accuracy Average bag size
1000 74.03 550.7
2000 77.52 536.2

10000 75.97 531.9
20000 75.32 531

4.5. Ablation study

4.5.1. Evolution
A crucial objective of using an evolutionary algorithm in

EvoBagging is to reduce biases of the individual learners while
maintaining a comparable level of variance. We measure the
bias in a machine learning model by the difference between pre-
diction and the actual labels of the data. The bias can emerge
from inappropriate learning algorithm and models, while the
variance can emerge from sensitivity to noisy data by the ma-
chine learning model [9]. The bias-variance trade-off reflects
on how well the model can generalise when given unseen (test)
dataset. We consider the decomposition of mean square error
(MSE) into bias squared and variance.

In this experiment, we measure bias for the task of binary
classification given by:

Bias =

0, if ŷ = y
1, other wise.

(2)

In each bag of the ensemble, we obtain the average bias of the
respective individual learner for all the data samples in the test
set. Figure 10 shows the average of this measure for all individ-
ual learners in four different datasets. Overall, we observe that
the bias gradually decreases over 10 generations of evolution.
This provides important empirical evidence that EvoBagging is
capable of reducing the bias error of individual learners (bags)
with evolution.

Figure 10: The average bias of the individual learner (bag) in a population
constantly reduces after each iteration on four different datasets.

9



Table 7 shows the relative reduction of the average bias
between the first and the last iterations on 12 benchmark
datasets. Abalone, Pima, Flare and the two-spiral problem are
the datasets with the lowest relative reduction. These are also
the most difficult learning problem among these datasets con-
sidering the classification performances of all models shown in
table 4.

Table 7: The average biases of the first and last iterations of 12 benchmark
datasets

Dataset Average bias % reduced
First Last

Red wine 0.072 0.056 22.0%
Abalone 0.326 0.318 2.5%

Breast cancer 0.039 0.031 22.2%
Pima 0.163 0.148 9.2%
Mnist 0.091 0.061 32.2%
Car 0.030 0.020 31.2%

Tic-tac-toe 0.051 0.035 31.7%
Ionosphere 0.061 0.041 32.0%

Churn 0.042 0.033 20.7%
Flare 0.152 0.147 3.3%
Ring 0.073 0.063 13.8%

Two-spiral 0.456 0.446 2.2%

4.5.2. The bias-variance trade-off
It is of significant importance for EvoBagging to reduce the

bias of individual learners (bags). However, it must not be
achieved by sacrificing variance in order to eventually obtain
a stable aggregated performance. In this experiment, we evalu-
ate if EvoBagging can maintain a level of variance comparable
to bagging by training on different training data. The purpose
of the experiment is to compare the sensitivity of EvoBagging
and bagging given changes in the training data. To be specific,
we run each method 30 times, each time with different training
data (content of bags) while keeping the same test data. The
whole original dataset D is split into a training set Dtrain and a
test set Dtest with a ratio, 80:20. The test set Dtest remains the
same for all runs. In each run, a training set Di

train is formed
by bootstrapping Dtrain and has the same size as Dtrain. Table 8
illustrates the setup of the data for this experiment.

To measure the sensitivity of EvoBagging and bagging to
different training data, we employ six diversity measures im-
plemented by Albukhanajer et al. [63]. It should be noted that
these were originally used as measures for diversity between
individual learners within an ensemble, which should be as di-

Table 8: Illustration of data setup for measuring variance of the model

Instances in the original dataset D 1,2,3,4,5,6,7,8,9,10
Instances in the test set Dtest 9,10

Instances in D1
train 1,2,3,3,4,4,5,6

Instances in D2
train 2,2,3,4,5,6,7,8

... ...
Instances in D30

train 1,2,2,3,3,5,7,7

verse as possible. This means the predictions of the individual
learners within an ensemble are expected to be different from
each other. However, in this experiment, there are two differ-
ences. Firstly, the targets of the diversity measures are the en-
sembles trained by EvoBagging or bagging on different training
data, not the individual learners within one single ensemble.
Secondly, instead of a more diverse group as expected in the
original implementation, our goal in this experiment is a less
diverse group. Such a group of ensembles trained on different
training data will make similar predictions which is equivalent
to having a lower variance (i.e. a lower sensitivity to changes
in the training data). In short, a more favourable result in this
experiment is a less diverse model.

Table 9 presents the six diversity measures between 30 en-
sembles, each trained on a different training data Di

train’s, for
both EvoBagging and bagging. These measures are calculated
on the predictions of each ensemble for the same Dtest. We find
that EvoBagging exhibits a similar level of variance (diversity)
in comparison to bagging (and even less varied on Red wine
dataset). This investigation, along with the one about the ability
to reduce bias shown in Section 4.5.1, explains why EvoBag-
ging manages to reach a better performance than the counter-
parts. It is due to reducing biases for individual learners and
maintaining low variance for the whole ensemble. While main-
taining low variance is an obvious result inherited from the ag-
gregation step of bagging, reducing biases for individual learn-
ers is only achieved by optimizing a fitness function dedicated
to this purpose.

Table 9: Compare diversity measure among ensembles trained on different
training data for both bagging and EvoBagging. In this experiment, being less
diverse is desirable.

Dataset Measure Bagging EvoBagging
Q statistics ↓ 0.798 0.838

Red

Disagreement ↑ 0.195 0.181
Double fault ↓ 0.112 0.115

wine
Kohavi-Wolpert variance ↑ 0.088 0.081

Entropy ↑ 0.219 0.202
Generalized diversity ↑ 0.464 0.440

Ring

Q statistics ↓ 0.529 537
Disagreement ↑ 0.501 0.501
Double fault ↓ 0.207 0.207

Kohavi-Wolpert variance ↑ 0.226 0.226
Entropy ↑ 0.759 0.759

Generalized diversity ↑ 0.547 0.548

Mnist

Q statistics ↓ 0.591 0.599
Disagreement ↑ 0.323 0.327
Double fault ↓ 0.646 0.641

Kohavi-Wolpert variance ↑ 0.145 0.147
Entropy ↑ 0.383 0.388

Generalized diversity ↑ 0.200 0.203

Car

Q statistics ↓ 0.531 0.448
Disagreement ↑ 0.386 0.385
Double fault ↓ 0.217 0.216

Kohavi-Wolpert variance ↑ 0.174 0.173
Entropy ↑ 0.513 0.511

Generalized diversity ↑ 0.471 0.472
(More diverse if the measure is greater (↑) or lower (↓))

10



4.5.3. Diversity between evolved bags
In the design of EvoBagging, mutation and generation gap

aims to keep the fitted individual learners diverse. That is,
those learners must not be highly correlated and must not be
highly similar to each other. It is essential to verify whether
EvoBagging can be compared with other baselines regarding
this property. Again, we use the six diversity measures in the
previous section to measure the similarity between individual
learners. Contrary to the previous section, in this experiment,
a more favourable result is a more diverse group of individual
learners.

Table 10 shows the six diversity measures between individ-
ual learners for EvoBagging and bagging. We observe that
EvoBagging is consistently more diverse on the three datasets
Ring, Mnist and Car, while being comparable with bagging
on Red wine. Therefore, the learners fitted using EvoBagging
can be seen as relatively diverse, which demonstrates the effec-
tiveness of the algorithm design. The mutation and generation
gap successfully introduces further diversity to the ensemble of
bags. We find that the ensemble usually shrinks to covering
only a small part of the whole training dataset if further evo-
lution with crossover operator is continuously applied. This is
a result of breeding between only a group of bags with high
fitness.

Table 10: Compare diversity measures among individual learners between bag-
ging and EvoBagging. In this experiment, being more diverse is desirable.

Dataset Measure Bagging EvoBagging
Q statistics ↓ 0.747 0.753

Red

Disagreement ↑ 0.164 0.161
Double fault ↓ 0.062 0.0.061

wine
Kohavi-Wolpert variance ↑ 0.080 0.079

Entropy ↑ 0.220 0.217
Generalized diversity ↑ 0.570 0.570

Ring

Q statistics ↓ 0.658 0.639
Disagreement ↑ 0.176 0.181
Double fault ↓ 0.049 0.049

Kohavi-Wolpert variance ↑ 0.087 0.089
Entropy ↑ 0.232 0.240

Generalized diversity ↑ 0.641 0.648

Mnist

Q statistics ↓ 0.734 0.726
Disagreement ↑ 0.184 0.189
Double fault ↓ 0.079 0.080

Kohavi-Wolpert variance ↑ 0.090 0.093
Entropy ↑ 0.256 0.260

Generalized diversity ↑ 0.537 0.543

Car

Q statistics ↓ 0.867 0.847
Disagreement ↑ 0.060 0.066
Double fault ↓ 0.016 0.017

Kohavi-Wolpert variance ↑ 0.029 0.033
Entropy ↑ 0.080 0.092

Generalized diversity ↑ 0.649 0.659
(More diverse if the measure is greater (↑) or lower (↓))

4.5.4. Effect of selected bags
Evolutionary algorithms utilise the selection step which is

applied in each iteration to produce new offspring by probabilis-

Table 11: Effect of separate selection step on EvoBagging

Num. Selected Bags 0 4 8 12 16
Accuracy 77.04 76.22 75.87 75.58 75.63

tically selecting individuals from the current generation. One of
our goals is to maintain diversity in the data assigned to the bags
of the ensemble rather than optimisation.

We implement rank selection in which the bags with the
highest fitness are selected as part of the next generation. We
conduct the experiment using the Pima dataset, where the num-
ber of bags selected during each iteration (generation) is varied.
In Table 11, we find that the selection step leads to a reduction
in accuracy as more bags are selected.

Figure 11 presents the proportion of training data covered by
all bags at each iteration with a different number of selected
bags. Clearly, a higher selection rate leads to a constant de-
crease in data coverage. Over time, such an evolutionary pro-
cess will only cover a small portion of the data. The reason for
this phenomenon is that if a bag has high fitness, it will be more
likely to be selected in both the selection step and as a parent
for the crossover step. As a result, the data points in this bag
will appear more frequently in later generation and eventually
dominate the population. An explanation of this is that as fewer
data points are covered, the bags will be more similar to each
other, which will reduce the overall diversity as discussed in the
previous section. In addition, a bag that has high fitness usually
contains data points that are easier to learn. Therefore, the final
population will only cover the ”easy to learn” part of the data
which cannot be a good representation of the original training
data. However, that is rarely the case in real world applications
where labeled data is both scarce and hard to find. An example
is the class imbalanced dataset, where applying an evolution-
ary algorithm with selection step will likely ignore the minor-
ity class and optimize only for the majority class. Hence, a
more sophisticated fitness function is required to maintain both
the classification metric and the balance in learning different
classes.

Figure 11: The ratio between the number of unique training samples in all bags
and the total number of training samples reduces more significantly when the
number of selected bags increases from 8 to 16.

11



Intuitively, additional bags in the selection step performs
poorly since it is used together with the crossover operator, and
adding new or synthetic data instances (i.e. via data augmenta-
tion or increasing the rate for generation gap or mutation) can
fix the shrinking problem. The selection step tries to retain con-
tent (data) of the bag based on their fitness. As bootstrapping
allows duplication of a data instances in one bag, the search
space of all available bags for this optimization problem will be
NN if there are N data instances, and we limit the maximum bag
size to be N. By simply keeping/removing the whole bag, we
miss the opportunity to optimize at a deeper level by changing
the content of the bag and will have to rely on random search of
a very large search space. By swapping the data points between
two bags based on the fitness, the crossover operator is capable
of directly reducing the bias of the two individual learners. We
need diversity in the bags for better performance of the ensem-
ble, rather than providing the bags with similar content.

4.5.5. Results on imbalanced datasets
Apart from existing works where the fitness function is

designed specifically for imbalanced datasets [28, 18, 29],
EvoBagging simply optimizes a relatively simple objective de-
fined by the classification performance. Nevertheless, EvoBag-
ging can still perform well on imbalanced datasets as can be
seen in Table 4. In this experiment, we further test its perfor-
mance on different rates of imbalance between the positive and
negative classes for the task of binary classification. To be spe-
cific, we perform under-sampling without replacement for the
negative class of the Red wine dataset (i.e. the majority class)
where 100%, 75%, 50% or 25% of data points in the majority
class remain. On the other hand, all data points in the positive
class (i.e. the minority class) are used. Unlike previous experi-
ments, we use the F1 score, which includes precision and recall
and is standard for imbalanced datasets, as the classification
metric for more informative results.

Table 12 shows that EvoBagging dominates the baseline
models on the given class imbalance ratio settings. An im-
portant observation is that with higher imbalance ratio, there
is significant improvement of EvoBagging when compared to
the baseline methods (bagging and random forests). There is
clear evidence of the effectiveness of EvoBagging in strongly
imbalanced datasets although no mechanisms in the algorithm
is specifically designed for this purpose. The reason for this ef-
fect is the ability of the algorithm to optimize towards a repre-
sentative set of bags using its operators, namely the crossover,
mutation, and the selection with generation gap. These oper-
ators directly update the content of a bag for a higher fitness
value. As the classification metric (F1 in this case), plays a ma-
jor role in the fitness function; the second term k+φb

k remains
rather stable after a few iterations as a result of stable bag sizes.
We find that the classification for both majority and minority
classes are improved.

4.5.6. Effect of the voting rule
The voting rule plays a crucial role in the task of classifica-

tion using an ensemble machine learning model as the predic-
tions of individual learners must be aggregated for the final out-

put. Hence, majority voting is commonly implemented while
weighted voting based on the individual learner’s performance
is slightly more complicated with more computation required.
To build an ensemble machine learning model, one usually has
to determine which voting rule to use in order to limit costly
hyperparameter tuning. In situations where there are computa-
tional constraints and stable results are required, it is especially
beneficial for a machine learning model not to be highly prone
to changes in the hyper-parameters, including the choice of vot-
ing rule in this situation.

(a) Pima

(b) Two-spiral

Figure 12: Compare classification accuracy between two different voting rules
for each iteration

Fortunately, our experiments with EvoBagging have shown
that its performance is not strongly affected by the voting rule
used. On Pima and Two-spiral datasets, we record the accuracy
of the aggregated prediction on the test set using both majority
voting and weighted voting for each iteration. In weighted vot-
ing, the aggregated prediction for a data point is determined by
the following formula:

ŷ =

0, if
∑

l∈L Pnegaccl <
∑

l∈L Pposaccl

1, other wise
(3)

where l is an individual learner in the set L, and accl is the
training accuracy of l.

In Figure 12a, we observe that the accuracy scores of both

12



Table 12: Performance of bagging, random forest and EvoBagging for class imbalanced datasets.

Dataset Imbalance ratio Model Split F1 Precision Recall AUC

Red wine

1:1

Bagging
Train

100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0)
Random forest 100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0)
EvoBagging 99.96 (0.01) 99.94 (0.01) 99.98 (0.01) 99.96 (0.01)
Bagging

Test
83.09 (0.02) 97.62 (0.01) 72.36 (0.03) 82.66 (0.01)

Random forest 79.12 (0.02) 98.48 (0.01) 66.15 (0.02) 81.04 (0.01)
EvoBagging 85.28 (0.02) 97.49 (0.01) 75.86 (0.04) 84.03 (0.02)

1:3.68

Bagging
Train

99.97 (0.01) 100.00 (0) 99.95 (0.01) 99.98 (0.01)
Random forest 99.98 (0.01) 100.00 (0) 99.97 (0.01) 99.98 (0.01)
EvoBagging 99.77 (0.01) 99.97 (0.01) 99.57 (0.01) 99.78 (0.01)
Bagging

Test
74.10 (0.04) 94.09 (0.01) 61.27 (0.05) 78.56 (0.03)

Random forest 70.64 (0.03) 95.45 (0.01) 56.13 (0.04) 76.65 (0.02)
EvoBagging 78.55 (0.01) 95.53 (0.01) 66.77 (0.02) 81.65 (0.02)

1:6.35

Bagging
Train

99.83 (0.01) 100.00 (0) 99.66 (0.01) 99.83 (0.01)
Random forest 99.88 (0.01) 100.00 (0) 99.77 (0.01) 99.89 (0.01)
EvoBagging 99.53 (0.01) 99.94 (0.01) 99.13 (0.01) 99.56 (0.01)
Bagging

Test
67.41 (0.02) 75.52 (0.02) 63.02 (0.02) 79.65 (0.01)

Random forest 66.35 (0.03) 75.73 (0.03) 58.60 (0.03) 77.90 (0.02)
EvoBagging 69.99 (0.01) 76.57 (0.02) 65.11 (0.02) 80.93 (0.01)

Pima

1:1

Bagging
Train

99.99 (0.01) 99.99 (0.01) 99.99 (0.01) 99.99 (0.01)
Random forest 100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0)
EvoBagging 99.87 (0.01) 99.90 (0.01) 99.85 (0.01) 99.88 (0.01)
Bagging

Test
71.27 (0.03) 93.13 (0.01) 57.84 (0.04) 70.42 (0.02)

Random forest 67.76 (0.04) 93.14 (0.01) 53.39 (0.05) 68.87 (0.02)
EvoBagging 71.70 (0.01) 93.81 (0.01) 58.02 (0.01) 71.36 (0.01)

1:3.68

Bagging
Train

99.93 (0.01) 99.98 (0.01) 99.88 (0.01) 99.94 (0.01)
Random forest 99.96 (0.01) 100.00 (0) 99.93 (0.01) 99.96 (0.01)
EvoBagging 99.25 (0.01) 99.67 (0.01) 98.83 (0.01) 99.33 (0.01)
Bagging

Test
61.40 (0.03) 66.94 (0.03) 56.76 (0.02) 70.78 (0.01)

Random forest 58.92 (0.03) 68.64 (0.03) 51.67 (0.03) 69.46 (0.02)
EvoBagging 64.52 (0.01) 70.36 (0.01) 59.63 (0.02) 73.01 (0.01)

Abalone

1:1

Bagging
Train

100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0)
Random forest 100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0)
EvoBagging 99.96 (0.01) 99.93 (0.01) 100.00 (0.01) 99.96 (0.01)
Bagging

Test
39.35 (0.04) 97.35 (0.01) 24.73 (0.03) 61.04 (0.01)

Random forest 31.29 (0.03) 97.40 (0.01) 18.68 (0.02) 58.36 (0.01)
EvoBagging 50.26 (0.02) 97.78 (0.02) 33.84 (0.02) 65.40 (0.01)

1:5.66

Bagging
Train

99.95 (0.01) 99.99 (0.01) 99.91 (0.01) 99.95 (0.01)
Random forest 99.99 (0.01) 100.00 (0) 99.98 (0.01) 99.99 (0.01)
EvoBagging 99.80 (0.01) 99.93 (0.01) 99.67 (0.01) 99.83 (0.01)
Bagging

Test
34.69 (0.04) 86.63 (0.02) 21.75 (0.03) 59.71 (0.01)

Random forest 23.23 (0.05) 85.78 (0.04) 13.51 (0.01) 56.00 (0.02)
EvoBagging 41.29 (0.02) 91.87 (0.01) 26.64 (0.01) 64.49 (0.01)

1:10.32

Bagging
Train

99.87 (0.01) 99.98 (0.01) 99.75 (0.01) 99.88 (0.01)
Random forest 99.93 (0.01) 100.00 (0) 99.85 (0.01) 99.93 (0.01)
EvoBagging 97.64 (0.01) 99.83 (0.01) 95.58 (0.01) 97.78 (0.01)
Bagging

Test
30.81 (0.06) 79.97 (0.05) 19.21 (0.04) 58.71 (0.02)

Random forest 15.28 (0.04) 75.06 (0.06) 8.56 (0.03) 53.76 (0.01)
EvoBagging 34.60 (0.01) 84.37 (0.01) 21.78 (0.02) 60.11 (0.01)

1:15

Bagging
Train

99.54 (0.01) 100.00 (0) 99.09 (0.01) 99.55 (0.01)
Random forest 99.65 (0.01) 100.00 (0) 99.31 (0.01) 99.65 (0.01)
EvoBagging 88.90 (0.06) 99.67 (0.01) 80.67 (0.09) 90.33 (0.05)
Bagging

Test
27.06 (0.02) 41.57 (0.02) 20.10 (0.02) 59.11 (0.01)

Random forest 16.76 (0.04) 38.21 (0.08) 10.77 (0.03) 54.81 (0.02)
EvoBagging 28.60 (0.02) 48.16 (0.04) 20.38 (0.02) 59.46 (0.01)

13



majority voting and weighted voting are mostly similar over
time (iterations) for the Pima dataset (slightly class imbal-
anced). When the classes are perfectly balanced in the two-
spiral problem, the result is unchanged (see Figure 12b). The
voting rule has little to no impact on the performance of the al-
gorithm; hence, majority voting can be used for faster inference
and no tuning is necessary for the choice of voting rule.

5. Discussion

The most important part of the EvoBagging algorithm is the
crossover operation. By constantly replacing incorrectly classi-
fied samples with new samples, it is expected that a bag will
eventually contain samples that can be effectively modeled.
Note that these samples are not essentially adjacent in a rep-
resentation space. They can be seen as those that follow a sim-
pler set of rules than the random bootstrapped samples. There
is considerable support in the literature for the importance of
crossover in obtaining convergence [64, 65]. It has been shown
in the case of genetic algorithms that crossover plays a role in
diversification [66]. It has also been shown that crossover can
improve convergence with bagging in the presence of imbal-
anced datasets [29]. The computational results are therefore
consistent and support theoretical literature in particular [29].

We note that the proposed framework provides reasonably
accurate results using single objective optimization when com-
pared to other methods from the literature. In future works,
given more complicated problems, we can approach the pro-
posed framework using a multi-objective optimization ap-
proach since they have shown to be promising in ensemble
learning. EvoBagging considers the optimisation of the en-
semble of bags using an evolutionary algorithm where the pop-
ulation of individuals represents the data in the bags which
are evolved by shuffling the indices. Hence, this is a discrete
parameter optimisation problem that improved the content of
the bags for better individual learning models (bags). Hence,
EvoBagging has the ability to optimize the grouping of the data
featured in the bags, unlike bagging which considers the bag
to be fixed in the ensemble. EvoBagging can also be used as a
post-processing step to gain better results from bagging or ran-
dom forest. The design of EvoBagging does not require heavy
hyper-parameter tuning, and a global convergence is guaranteed
due to global search properties of evolutionary algorithms.

EvoBagging has only been evaluated on classification tasks
and its effectiveness on regression tasks can be explored in fu-
ture work. Furthermore, in our implementation, decision trees
are used as individual learners for the ensemble in EvoBag-
ging. The effectiveness of EvoBagging can be further verified
for other types of learners such as neural networks; however,
this could be computationally costly.

The computational requirement of EvoBagging is much
larger than that of bagging or random forest. Let T be the
amount of time to train an individual learner such as a deci-
sion tree or an artificial neural network. The time complexity
of bagging and random forest will be O(N × T ) since boot-
strapping is generally faster than training a machine learning
model. O(N × T ) is also the time complexity of each iteration

of EvoBagging where each individual learner will be trained on
a bag. The reason is that the time complexities of operators
like generation gap (multiple bootstrappings), crossover (swap-
ping data indices between bags), and mutation (swapping data
indices between a bag and the remaining data) are again mini-
mal compared to training individual learners. Therefore, if an
EvoBagging algorithm takes I iterations to converge, its time
complexity will be O(I × N × T ). To be scalable for larger
datasets, future works should focus on methods to reduce the
computational requirement of EvoBagging by either optimising
with fewer iterations or approximating the fitness score without
a full evaluation of all the bags.

6. Conclusions

In this paper, we presented a novel implementation of evo-
lutionary algorithm for ensemble learning known as EvoBag-
ging. We provided an extensive evaluation on multiple datasets
to evaluate the effectiveness and to provide rationale for the al-
gorithm design. Our results show that EvoBagging improves
the bias (error) in the individual learners from the bags that are
sampled with bootstrapping.

The results have shown that EvoBagging successfully outper-
forms bagging and random forests for both binary and multi-
class classification problems. The results have also shown
that EvoBagging can maintain good performance on both class
balanced and imbalanced datasets. The design choices for
EvoBagging components, such as crossover, mutation, and gen-
eration gap-based selection have demonstrated their relevance
by providing improved performance accuracy. EvoBagging
maintains a diverse ensemble of individual learners which is a
major factor for the improved performance when compared to
conventional ensemble methods such as bagging and random
forests.

Code and data

The code and all datasets for reproducing the experi-
ments are available at: https://github.com/sydney-machine-
learning/evolutionary-bagging.

References

[1] D. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 1 (1997) 67–82.

[2] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, 1st ed.,
Chapman & Hall/CRC, 2012.

[3] Y. Su, S. Shan, X. Chen, W. Gao, Hierarchical ensemble of gabor fisher
classifier for face recognition, in: 7th International Conference on Auto-
matic Face and Gesture Recognition (FGR06), 2006, pp. 6 pp.–96.

[4] D. Kumar, J. Garain, D. R. Kisku, J. K. Sing, P. Gupta, Unconstrained and
constrained face recognition using dense local descriptor with ensemble
framework, Neurocomputing 408 (2020) 273–284.

[5] K. Singh, S. Rajora, D. K. Vishwakarma, G. Tripathi, S. Kumar, G. S.
Walia, Crowd anomaly detection using aggregation of ensembles of fine-
tuned convnets, Neurocomputing 371 (2020) 188–198.

[6] D. Xue, X. Zhou, C. Li, Y. Yao, M. M. Rahaman, J. Zhang, H. Chen,
J. Zhang, S. Qi, H. Sun, An application of transfer learning and ensem-
ble learning techniques for cervical histopathology image classification,
IEEE Access 8 (2020) 104603–104618.

14



[7] Q. Gu, Y.-S. Ding, T.-L. Zhang, An ensemble classifier based prediction
of g-protein-coupled receptor classes in low homology, Neurocomputing
154 (2015).

[8] L. Breiman, Bagging predictors, Mach. Learn. 24 (1996) 123–140.
[9] R. Kohavi, D. H. Wolpert, Bias plus variance decomposition for zero-one

loss functions, in: ICML, 1996.
[10] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.
[11] P. Geurts, D. Ernst, L. Wehenkel, Extremely Randomized Trees, Machine

Learning 36 (2006) 3–42.
[12] T. K. Ho, A data complexity analysis of comparative advantages of deci-

sion forest constructors, Pattern Analysis & Applications 5 (2002) 102–
112.

[13] P. Bühlmann, B. Yu, Analyzing bagging, The Annals of Statistics 30
(2002) 927 – 961.

[14] J. H. Friedman, P. Hall, On bagging and nonlinear estimation, Journal of
Statistical Planning and Inference 137 (2007) 669–683. Special Issue on
Nonparametric Statistics and Related Topics: In honor of M.L. Puri.

[15] G. Martı́nez-Muñoz, A. Suárez, Out-of-bag estimation of the optimal
sample size in bagging, Pattern Recognition 43 (2010) 143–152.

[16] S. Hido, H. Kashima, Y. Takahashi, Roughly balanced bagging for imbal-
anced data, Statistical Analysis and Data Mining: The ASA Data Science
Journal 2 (2009) 412–426.

[17] J. Błaszczyński, J. Stefanowski, Neighbourhood sampling in bagging for
imbalanced data, Neurocomputing 150 (2015) 529–542.

[18] B. Sun, H. Chen, J. Wang, H. Xie, Evolutionary under-sampling based
bagging ensemble method for imbalanced data classification, Frontiers of
Computer Science 12 (2017).

[19] T. Back, Evolutionary algorithms in theory and practice: evolution strate-
gies, evolutionary programming, genetic algorithms, Oxford university
press, 1996.

[20] P. A. Vikhar, Evolutionary algorithms: A critical review and its future
prospects, in: 2016 International Conference on Global Trends in Signal
Processing, Information Computing and Communication (ICGTSPICC),
2016, pp. 261–265.

[21] A. A. Freitas, A Review of evolutionary Algorithms for Data Mining,
Springer US, Boston, MA, 2008, pp. 79–111.

[22] R. Chandra, A. Gupta, Y. Ong, C.-K. Goh, Evolutionary multi-task learn-
ing for modular knowledge representation in neural networks, Neural
Processing Letters 47 (2018) 993–1009.

[23] R. Chandra, Y.-S. Ong, C.-K. Goh, Co-evolutionary multi-task learning
with predictive recurrence for multi-step chaotic time series prediction,
Neurocomputing 243 (2017) 21–34.

[24] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho, A. A. Freitas,
A survey of evolutionary algorithms for decision-tree induction, IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 42 (2012) 291–312.

[25] D. Oliva, S. Hinojosa, V. Osuna-Enciso, E. Cuevas, M. Cisneros,
G. Sanchez-Ante, Image segmentation by minimum cross entropy using
evolutionary methods, Soft Computing 23 (2019).

[26] R. Chandra, A. Tiwari, Distributed bayesian optimisation framework for
deep neuroevolution, Neurocomputing 470 (2022) 51–65.

[27] R. Chandra, M. Frean, M. Zhang, Adapting modularity during learning in
cooperative co-evolutionary recurrent neural networks, Soft Computing
16 (2012) 1009–1020.

[28] S. Garcı́a, F. Herrera, Evolutionary undersampling for classification with
imbalanced datasets: Proposals and taxonomy, Evolutionary Computa-
tion 17 (2009) 275–306.

[29] S. E. Roshan, S. Asadi, Improvement of bagging performance for clas-
sification of imbalanced datasets using evolutionary multi-objective opti-
mization, Engineering Applications of Artificial Intelligence 87 (2020)
103319.

[30] J. Sylvester, N. Chawla, Evolutionary ensembles : Combining learning
agents using genetic algorithms, 2005.

[31] J. Sylvester, N. Chawla, Evolutionary ensemble creation and thinning,
in: The 2006 IEEE International Joint Conference on Neural Network
Proceedings, 2006, pp. 5148–5155.

[32] C. V. Garcı́a-Mendoza, O. J. Gambino, M. G. Villarreal-Cervantes,
H. Calvo, Evolutionary optimization of ensemble learning to determine
sentiment polarity in an unbalanced multiclass corpus, Entropy 22 (2020).

[33] D. Wang, M. Alhamdoosh, Evolutionary extreme learning machine en-
sembles with size control, Neurocomputing 102 (2013) 98–110. Ad-

vances in Extreme Learning Machines (ELM 2011).
[34] C. Gagné, M. Sebag, M. Schoenauer, M. Tomassini, Ensemble learn-

ing for free with evolutionary algorithms?, in: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, GECCO
’07, Association for Computing Machinery, New York, NY, USA, 2007,
p. 1782–1789.

[35] K. Jong, E. Marchiori, M. Sebag, Ensemble learning with evolution-
ary computation: Application to feature ranking, in: X. Yao, E. K.
Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria,
J. E. Rowe, P. Tiňo, A. Kabán, H.-P. Schwefel (Eds.), Parallel Problem
Solving from Nature - PPSN VIII, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004, pp. 1133–1142.

[36] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cam-
bridge, MA, USA, 1996.

[37] D. E. Goldberg, Real-coded genetic algorithms, virtual alphabets, and
blocking, Complex Syst. 5 (1991).

[38] R. A. Caruana, J. D. Schaffer, Representation and hidden bias: Gray vs.
binary coding for genetic algorithms, in: J. Laird (Ed.), Machine Learning
Proceedings 1988, Morgan Kaufmann, San Francisco (CA), 1988, pp.
153–161.

[39] K. Deep, K. P. Singh, M. Kansal, C. Mohan, A real coded genetic algo-
rithm for solving integer and mixed integer optimization problems, Ap-
plied Mathematics and Computation 212 (2009) 505–518.

[40] A. Blanco, M. Delgado, M. Pegalajar, A real-coded genetic algorithm for
training recurrent neural networks, Neural Networks 14 (2001) 93–105.

[41] I. Damousis, A. Bakirtzis, P. Dokopoulos, Network-constrained eco-
nomic dispatch using real-coded genetic algorithm, IEEE Transactions
on Power Systems 18 (2003) 198–205.

[42] C. Z. Janikow, Z. Michalewicz, An experimental comparison of binary
and floating point representations in genetic algorithms., in: R. K. Belew,
L. B. Booker (Eds.), ICGA, Morgan Kaufmann, 1991, pp. 31–36.

[43] The Theory of Evolution Strategies, Springer-Verlag, Berlin, Heidelberg,
2001.

[44] R. Storn, K. Price, Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces, Journal of Global Opti-
mization 11 (1997) 341–359.

[45] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings
of ICNN’95 - International Conference on Neural Networks, volume 4,
1995, pp. 1942–1948 vol.4.

[46] T. Riechmann, Genetic algorithm learning and evolutionary games, Jour-
nal of Economic Dynamics and Control 25 (2001) 1019–1037.

[47] O. Maimon, D. Braha, A genetic algorithm approach to scheduling pcbs
on a single machine, International Journal of Production Research 36
(2010) 761–784.

[48] A. C. dos Santos-Paulino, J.-C. Nebel, F. Flórez-Revuelta, Evolutionary
algorithm for dense pixel matching in presence of distortions, in: EvoAp-
plications, 2014.

[49] L. V. Snyder, M. S. Daskin, A random-key genetic algorithm for the
generalized traveling salesman problem, European Journal of Operational
Research 174 (2006) 38–53.

[50] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, W. Rei,
A hybrid genetic algorithm for multidepot and periodic vehi-
cle routing problems, Operations Research 60 (2012) 611–624.
arXiv:https://doi.org/10.1287/opre.1120.1048.

[51] K.-C. Wong, K.-S. Leung, M.-H. Wong, An evolutionary algorithm with
species-specific explosion for multimodal optimization, in: Proceedings
of the 11th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO ’09, Association for Computing Machinery, New York, NY,
USA, 2009, p. 923–930.

[52] E. Dilettoso, N. Salerno, A self-adaptive niching genetic algorithm for
multimodal optimization of electromagnetic devices, IEEE Transactions
on Magnetics 42 (2006) 1203–1206.

[53] Y. Liang, K.-S. Leung, Genetic algorithm with adaptive elitist-population
strategies for multimodal function optimization, Applied Soft Computing
11 (2011) 2017–2034.

[54] L. Xie, A. Yuille, Genetic cnn, in: Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017.

[55] S. Bouktif, A. Fiaz, A. Ouni, M. A. Serhani, Optimal deep learning lstm
model for electric load forecasting using feature selection and genetic al-
gorithm: Comparison with machine learning approaches †, Energies 11
(2018).

15

http://arxiv.org/abs/https://doi.org/10.1287/opre.1120.1048


[56] T. Gadekallu, P. Reddy, K. Lakshman, D. Rajput, R. Kaluri, G. Srivastava,
Hybrid genetic algorithm and a fuzzy logic classifier for heart disease
diagnosis, Evolutionary Intelligence 13 (2020).

[57] B. Efron, R. J. Tibshirani, An introduction to the bootstrap, CRC press,
1994.

[58] R. Chandra, A. Gupta, Y.-S. Ong, C.-K. Goh, Evolutionary multi-task
learning for modular training of feedforward neural networks, in: A. Hi-
rose, S. Ozawa, K. Doya, K. Ikeda, M. Lee, D. Liu (Eds.), Neural Infor-
mation Processing, Springer International Publishing, Cham, 2016, pp.
37–46.

[59] X. Yao, Y. Liu, A new evolutionary system for evolving artificial neural
networks, IEEE Transactions on Neural Networks 8 (1997) 694–713.

[60] D. Dua, C. Graff, UCI machine learning repository, 2017. URL: http:
//archive.ics.uci.edu/ml.

[61] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, J. H. Moore,
Pmlb: a large benchmark suite for machine learning evaluation and com-
parison, BioData Mining 10 (2017) 36.

[62] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, J. Reis, Modeling wine
preferences by data mining from physicochemical properties, Decision
Support Systems 47 (2009) 547–553. Smart Business Networks: Con-
cepts and Empirical Evidence.

[63] W. A. Albukhanajer, Y. Jin, J. A. Briffa, Classifier ensembles for image
identification using multi-objective pareto features, Neurocomputing 238
(2017) 316–327.

[64] T. Jansen, I. Wegener, et al., The analysis of evolutionary algorithms–a
proof that crossover really can help, Algorithmica 34 (2002) 47–66.

[65] B. Doerr, E. Happ, C. Klein, Crossover can provably be useful in evolu-
tionary computation, Theoretical Computer Science 425 (2012) 17–33.

[66] X. Qi, F. Palmieri, Theoretical analysis of evolutionary algorithms with
an infinite population size in continuous space. part ii: Analysis of the
diversification role of crossover, IEEE Transactions on Neural Networks
5 (1994) 120–129.

16

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	1 Introduction
	2 Background
	3 Methodology
	3.1 EvoBagging Algorithm
	3.2 Fitness function
	3.3 Generation gap
	3.4 Crossover and mutation

	4 Results
	4.1 Datasets
	4.1.1 N-bit parity and two-spiral problem
	4.1.2 Benchmark datasets

	4.2 Experiment setting
	4.3 Preliminary results
	4.4 Influence of hyperparameters
	4.4.1 Maximum bag size S
	4.4.2 Generation gap G
	4.4.3 Number of mutated bags M
	4.4.4 Mutation size
	4.4.5 Bag size

	4.5 Ablation study
	4.5.1 Evolution
	4.5.2 The bias-variance trade-off
	4.5.3 Diversity between evolved bags
	4.5.4 Effect of selected bags
	4.5.5 Results on imbalanced datasets
	4.5.6 Effect of the voting rule


	5 Discussion
	6 Conclusions

