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Abstract. We propose a unified framework for multi-view subspace learning

to learn individual orthogonal projections for all views. The framework inte-

grates the correlations within multiple views, supervised discriminant capacity,
and distance preservation in a concise and compact way. It not only includes

several existing models as special cases, but also inspires new novel models. To

demonstrate its versatility to handle different learning scenarios, we showcase
three new multi-view discriminant analysis models and two new multi-view

multi-label classification ones under this framework. An efficient numerical
method based on successive approximations via eigenvectors is presented to

solve the associated optimization problem. The method is built upon an iter-

ative Krylov subspace method which can easily scale up for high-dimensional
datasets. Extensive experiments are conducted on various real-world datasets

for multi-view discriminant analysis and multi-view multi-label classification.

The experimental results demonstrate that the proposed models are consis-
tently competitive to and often better than the compared methods that do

not learn orthogonal projections.

1. Introduction

Multi-view data are increasingly collected for a variety of applications in the real
world. They usually contain complementary, redundant, and corroborative contents
and so are more informative than single-view data when it comes to characterize
objects of the real-world. It is rather natural for human beings to perceive the world
through comprehensive information collected by multiple sensory organs, but it is
an open question on how to endow machines with analogous cognitive capabilities to
do the same. One of the fundamental challenges is how to represent and summarize
multi-view data in such a way that comprehensive information concealed in multi-
view data can be properly exploited by multi-view learning models.

The heterogeneity gap [1] among multiple views makes it challenging to con-
struct such representations since features extracted from different views with sim-
ilar semantics may be located in completely different subspaces, e.g., text is often
symbolic while audio and image are signals. A significant research effort has been
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about narrowing this gap by seeking a common semantic subspace into which the
heterogeneous features from different views are projected.

Multi-view subspace learning, as the most popularly studied methodology for
multi-view learning [2, 3], aims to narrow the heterogeneity gap under the assump-
tion that all views are generated from a common latent space via some unknown
transformations in the first place. The most representative subspace learning model
is the canonical correlation analysis (CCA) [4], which was originally proposed to
learn two linear projections by maximizing the cross-correlation between two views
in a common space. It has since been extended to more than two views [5], nonlinear
projections via either kernel representation [6] or deep representation [7], supervised
learning [8, 9, 10], and multi-output learning such as multi-label classification [11]
and multi-target regression [12].

Recent researches have demonstrated that orthogonality built into single-view
subspace learning models admits desirable advantages such as more noise-tolerant,
better suited for data visualization and distance preservation [13, 14, 15, 16, 17, 18].
An orthogonal projection preserves the pairwise distance so long as the vectors to
be projected live in the range of the projection. Distance preservation, as one of
the most important learning criteria, has also been successfully demonstrated in
learning methods such as kernel learning [19] and density estimation [20].

Orthogonality has been successfully explored in multi-view subspace learning, in-
cluding orthogonal CCA (OCCA) [12, 21, 22, 23], orthogonal multiset CCA (OM-
CCA) [23, 24], and multi-view partial least squares (PLS) [25]. However, most
multi-view subspace learning methods stay clear from orthogonality constraints for
two technical obstacles:

1) adding orthogonality constraints may cause incompatibility to inherent con-
straints already there in existing models, and

2) even if there is no incompatibility issue, the resulting optimization problem is
generally hard to solve.

Generic optimization methods are often too slow even for datasets of modest scale
and practically infeasible for high dimensional data. As a result, most exist-
ing learning methods [8, 9, 26] resort to solving certain related relaxed problems
of their original formulations as generalized eigenvalue problems, for which well-
developed numerical linear algebra techniques can be readily deployed to handle
high-dimensional datasets but at a price of degrading learning performance.

This issue has been previously studied in the case of the trace ratio formulation
vs. the ratio trace formulation for single-view dimensionality reduction in the con-
text of linear discriminant analysis (LDA). Authors in [15] argued that the trace
ratio formulation with the orthogonality constraint is essential and can lead to su-
periority over the ratio trace formulation which is a relaxation of the trace ratio
formulation as a generalized eigenvalue problem. The cross-correlation between
two views in CCA is inherently defined as a trace ratio formulation [4]. More-
over, the objective function of the trace ratio formulation is invariant under any
orthogonal transformation, which is more beneficial to classification and clustering
in the reduced space than the ratio trace formulation that is invariant under any
non-singular transformation. This motivates the study of orthogonal LDA (OLDA)
[15, 16] and orthogonal CCA (OCCA) [22]. However, no orthogonal extension to
supervised multi-view subspace learning has yet been explored.
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Our goals in this paper are twofold. We will propose a unified framework for
orthogonal multi-view analysis to resolve the obstacle 1) we previously pointed out.
Specifically, we take the trace ratio formulation to model the pairwise correlations
of multiple views by strictly following their original definitions. Various supervised
information can be incorporated into the numerators or denominators of the trace
ratios in order to capture the class separability or coherence. Orthogonality con-
straints are added without causing any incompatibility issue. All three ingredients
are integrated together in a concise and consistent way by the proposed framework.
However, the resulting optimization problem is a challenging one. That is the ob-
stacle 2) we previously pointed out. Instead of solving the optimization problem
as it is, we propose an efficient optimization method called orthogonal successive
approximation via eigenvectors (OSAVE) to calculate an approximate solution.
Contributions. The main contributions of this paper are summarized as follows:

• We propose a unified multi-view subspace learning framework, which can
naturally integrate the dependency among multiple views, supervised infor-
mation, and simultaneously learn orthogonal projections in a concise and
compact formulation. OLDA, OCCA and OMCCA are special cases of the
proposed framework.
• Our framework can be flexibly adapted for various learning scenarios. To

justify the flexibility, we instantiate several new models from the proposed
framework. Three models are proposed for multi-view feature extraction,
and two models for multi-view multi-label classification. Different from
existing ones, our models are directly built on the essential trace ratio
formulation with orthogonality constraints.
• To solve the challenging optimization problem of the proposed framework,

we present a successive approximation algorithm, which is built upon well-
developed numerical linear algebra techniques. We describe an iterative
Krylov subspace method for calculating the top eigenvector of generalized
eigenvalue problem Axxx = λBxxx with possibly a singular B. The Krylov
subspace method can serve as the workhorse for scalability.
• Extensive experiments are conducted for evaluating the proposed models

against existing learning methods in terms of two learning tasks: multi-view
feature extraction and multi-view multi-label classification. Experimental
results on various real-world datasets demonstrate that our proposed mod-
els perform competitively to and often better than baselines.

Paper organization. We first describe the background of this work from single-
and multi-view feature extraction and briefly review the relevant existing models
in Section 2. In Section 3, we propose the novel unified framework for orthogo-
nal multi-view analysis, and their instantiated models for multi-view discriminant
analysis and multi-view multi-label classification. The proposed successive approx-
imation algorithm is presented in Section 5 with its key component in Section 4.
Extensive experiments are conducted in Section 6. Finally, we draw our conclusions
in Section 7.
Notation. Rm×n is the set of m × n real matrices and Rn = Rn×1. In ∈ Rn×n

is the identity matrix of size n × n, and 111n ∈ Rn is the vector of all ones. ‖xxx‖2
is the 2-norm of a vector xxx ∈ Rn. For B ∈ Rm×n, R(B) is the column subspace.
B � 0(� 0) means that B is symmetric positive definite (semi-definite). The Stiefel
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manifold

On×k = {X ∈ Rn×k : XTX = Ik}(1)

is an embedded submanifold of Rn×k endowed with the standard inner product
〈X,Y 〉 = tr(XTY ) for X,Y ∈ Rn×k, where tr(XTY ) is the trace of XTY .

2. Background and Related Work

Feature extraction is an important tool for multivariate data analysis. A number
of methods have been proposed in the literature. In what follows, we will review a
large family of feature extraction methods for learning linear transformations and
then explain their characteristics.

2.1. Problem Setup. We start by a general setup for feature extraction learning
on data of multiple views and their class labels, and then explain their representa-
tions in a common space.

Let {(xxx(1)i , . . . ,xxx
(v)
i , yyyi)}ni=1 be a dataset of v views, where the ith data points

xxx
(s)
i ∈ Rds of all views (1 ≤ s ≤ v) are assumed to share the same class labels in yyyi

of c labels.
The labels can have different interpretations, dependent of the underlying learn-

ing task. For multi-output regression, yyyi ∈ Rc, and it reduces to a scalar for the
classical regression for which c = 1. For multi-label classification, yyyi ∈ {0, 1}c with
an understanding that the ith data points of all views have the class label r if
(yyyi)r = 1 and otherwise 0, where (yyyi)r is the rth entry of yyyi. If 111Tc yyyi = 1, then
multi-label classification becomes a problem of c-class classification since one and
only one class label is assigned to each instance of data points of all views. In
particular, if c = 2 and 111Tc yyyi = 1, then it is just the binary classification.

For the purpose of feature extraction learning, objective fulfilling linear trans-
formations are sought to extract the latent representation for each view. Let

Ps ∈ Rds×k be the projection matrix for view s to transform xxx
(s)
i from Rds to

zzz
(s)
i = PT

s xxx
(s)
i in the common space Rk. Represent the n data points of view s by

Xs = [xxx
(s)
1 , . . . ,xxx

(s)
n ] ∈ Rds×n and its latent representation by Zs = [zzz

(s)
1 , . . . , zzz

(s)
n ] =

PT
s Xs ∈ Rk×n. Accordingly, we denote the centered matrix and the sample mean

of view s, and the label matrix by

X̂s = XsHs, mmms =
1

n
Xs111n, Y = [yyy1, . . . , yyyn],(2)

respectively, where Hn = In − 1
n111n111Tn .

The sample cross-covariance between view s and view t is given by

Cs,t =
1

n
XsHnX

T
t .(3)

In particular, Cs,s is the covariance of view s. It is not so hard to verify that

X̂s = Xs −mmms111
T = [xxx

(s)
1 −mmms, . . . ,xxx

(s)
n −mmms],

Cs,t =
1

n
X̂sX̂

T
t =

1

n

n∑
i=1

(xxx
(s)
i −mmms)(xxx

(s)
i −mmms)

T,

upon noticing H2
n = Hn.
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For the c-class classification, i.e., Y ∈ {0, 1}c×n and 111Tc yyyi = 1, we have the
following properties:

Y T111c = 111n, Σ = Y Y T = diag(n1, . . . , nc),(4)

where nr =
∑n

i=1(yyyi)r is the number of data points in class r. Denote by uuuTr the
rth row of Y , and define

mmmr
s :=

1

nr
Xsuuur,∀r,(5)

the mean of all data points in view s having class label r. So, we have
∑c

r=1 uuur =
Y T111c = 111n. The between-class scatter matrix Ss

b can be written as

Ss
b = Xs(Q−

1

n
111n111Tn )XT

s ,(6)

where

Q = Y TΣ−1Y =

c∑
r=1

1

nr
uuuruuu

T
r .

To see (6), we note, by definition, that

Ss
b =

c∑
r=1

nrmmm
r
s(mmmr

s)T−nmmmsmmm
T
s

=

c∑
r=1

nr(mmmr
s−mmms)(mmm

r
s−mmms)

T,

where we have used
c∑

r=1

nrmmm
r
s =

c∑
r=1

Xsuuur = Xs111n = nmmms

and
∑c

r=1 nr = n. Since Ss
w = nCs,s−Ss

b , the within-class scatter matrix takes the
form

Ss
w = Xs(I −Q)XT

s .(7)

A graph Laplacian is a matrix representation of a graph and popularly used to
approximate the manifold structure of data via locality information encoded by the
edge weights of the undirected graph. Denote Gs = (Vs, Es,Ws) built for Xs, where

Vs = {1, . . . , n} is the graph nodes and Ws = [w
(s)
i,j ] ∈ Rn×n is symmetric with its

entry w
(s)
i,j being the weight of edge (i, j) ∈ Es. The graph Laplacian matrix of Gs

is defined as Ls = Ds−Ws, where Ds = diag(Ws111n). The manifold approximation
is captured by

1

2

n∑
i=1

n∑
j=1

w
(s)
i,j ‖zzz

(s)
i − zzz

(s)
j ‖

2 = tr(PT
s XsLsX

T
s Ps).(8)

By minimizing (8) with respect to Ps, the optimal projection matrix Ps satisfies

the following criterion: if xxx
(s)
i is close to xxx

(s)
j , i.e., the similarity w

(s)
i,j is large, the

distance between two corresponding projected points, zzz
(s)
i and zzz

(s)
j , is also small in

the projected space.
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We point out that Ss
b and Ss

w in (6) and (7) can be expressed in terms of some
graph Laplacians as

Ss
b = −XsLsX

T
s , Ws = Q− 1

n
111n111Tn ,(6′)

Ss
w = XsLsX

T
s , Ws = Q.(7′)

In fact, Ss
w of (7′) was used in the Fisher score for supervised feature selection

[27], and both Ss
b and Ss

w here were used in [28] with modified weight matrices to
incorporate local information.

2.2. Single-view Feature Extraction. A series of single-view (i.e., v = 1) feature
extraction methods that learn a linear transformation matrix have been proposed.
Principal component analysis (PCA) seeks the directions of the input space so that
the variance of the projected data is maximized. The joint optimization to obtain
transofrmation matrix P1 is formulated as

max
P1∈Rd1×k

tr(PT
1 C1,1P1) : s. t. PT

1 P1 = Ik.(9)

PCA is an unsupervised method since it does not incorporate any output data, and
so PCA projections may not be consistent with output data.

For multi-class classification, linear discriminant analysis (LDA) incorporates
output labels to search a projection matrix so that the within-class scatter is min-
imized while the between-class scatter is maximized. The commonly used LDA
formulation is

max
P1∈Rd1×k

tr(PT
1 S

1
bP1) : s. t. PT

1 NP1 = Ik.(10)

It is popular, in large part because it admits an analytic solution as a generalized
eigenvalue problem, where N is either S1

w or C1,1. Another approach is the trace
ratio formulation for the same purpose

max
P1∈Rd1×k

tr(PT
1 S

1
bP1)

tr(PT
1 MP1)

: s. t. PT
1 NP1 = Ik,(11)

where M and N can be one of C1,1, S1
w and In. Some of the interesting combinations

are as follows:

(1) (11) with M = C1,1 [15] or with M = S1
w [16] to obtain an orthonormal

projection matrix by letting N = Id1 ,
(2) (11) with M = S1

w and N = C1,1 to learn uncorrelated directions [29, 30],
(3) (11) with M = C1,1 and N = S1

w, equivalent to (10) since nC1,1 = S1
w +S1

b ,
(4) (11) with M = N 6= Id1

, reducing to (10).

Another special case is with M = N = Id1
to give

max
P1∈Rd1×k

tr(PT
1 S

1
bP1) : s. t. PT

1 P1 = Ik.(12)

For multi-output regression and multi-label classification, partial least squares
(PLS) and canonical correlation analysis (CCA) are two common approaches that
also learn projection matrices for output data. PLS looks for a projection matrix
that maximizes the cross-covariance between the projected input and output:

max
P1∈Rd1×k,PY ∈Rc×k

tr(PT
1 X1HnY

TPY )(13a)

s. t. PT
1 P1 = PT

Y PY = Ik,(13b)
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where PY ∈ Rc×k is the projection matrix for the output. CCA also maximizes the
cross-correlation

max
P1∈Rd1×k,PY ∈Rc×k

tr(PT
1 X1HnY

TPY )(14a)

s. t. PT
1 C1,1P1 = PT

Y Y Y
TPY = Ik,(14b)

except that they have different constraints. Manifold learning can be used for
feature extraction in both supervised and unsupervised settings depending on how
the graph is constructed. In [31], a general framework called graph embedding [31]
is formulated as

min
P1

tr(PT
1 X1L1X

T
1 P1)(15a)

s. t. PT
1 X1BX

T
1 P1 = Ik or PT

1 P1 = Ik,(15b)

where B is to be specified. According to (6′) and (7′), PCA (9) and LDA (10)
are special cases of (15), but the trace ratio formulation (11) is not. Locality
preserving projection (LPP) [32] is (15) with graph Laplacian matrix L1 = D1−W1,
and B = diag(W1111n), while Laplacian eigenmap (LE) [33] solves LPP directly for
PT
1 X1 instead of P1. As stated in [31], locally linear embedding (LLE) [34] and

ISOMAP [35] are also spacial cases of (15).

2.3. Multi-view Feature Extraction. As multiple inputs may come from differ-
ent sources (views), they are most likely heterogeneous and have large discrepancy.
The aim of multi-view feature extraction is to exploit consensual, complementary,
and overlapping information among different views.

PLS (13) and CCA (14) can be directly applied to two-view data (v = 2) simply
by replacing Y and PY in (13) or (14) with X2 and P2 of view 2, respectively. For
v > 2, the multi-set CCA (MCCA) [5]

max
{Ps∈Rds×k}

v∑
s=1

v∑
t=1

tr(PT
s Cs,tPt)(16a)

s. t.

v∑
s=1

PT
s Cs,sPs = Ik,(16b)

is the most popularly used, chiefly due to its analytic solution via the generalized
eigen-decomposition that has been well studied [36, 37]. Orthogonal multiset CCA
(OMCCA)

max
{Ps∈Rds×k}

v∑
s=1

v∑
t=1

tr(PT
s Cs,tPt)√

tr(PT
s Cs,sPs)

√
tr(PT

t Ct,tPt)
(17a)

s. t. PT
s Ps = Ik,∀s(17b)

is proposed in [23]. Its special case v = 2 is the orthogonal CCA (OCCA) [12, 21,
22]. In [24], a variant of (17) was studied. The key in (16) and (17) is the use
of pairwise cross-covariance matrices {Cs,t} to capture the consensus among the v
views.

Recently, PLS is extended for v > 2 in [25], too, where the orthogonality con-
straints PT

s Ps = Ik for all s are imposed.
For supervised learning, the output label Y can be naturally considered as one

input view [11]. However, the special structure of label information is neglected. To
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compensate that negligence and to take full advantage of label data, sophisticated
multi-view feature extraction methods have been proposed. In [8], generalized
multi-view analysis (GMA) is formulated, by integrating LDA (or some variants of
it) and CCA, as

max
{Ps}

v∑
s=1

tr(PT
s S

s
bPs) +

v∑
s=1

v∑
t=1,t6=s

αs,t tr(PT
s Cs,tPt)(18a)

s. t. PT
s S

s
wPs = Ik,∀s,(18b)

where αs,t is the weight for cross-covariance between view s and view t. Unfor-
tunately, this is a difficult optimization problem whose KKT condition leads to a
multi-parameter eigenvalue problem like (36) later for which there is no efficient
numerical method for its solution. For that reason, authors in [8] proposed to
solve, instead, a relaxed problem: the same objective but a constraint different
from (18b):

v∑
s=1

γsP
T
s S

s
wPs = Ik,(19)

resulting in a generalized eigenvalue problem [37], where γs are parameters to bal-
ance v independent constraints. Ss

b and Ss
w can be the ones in (6′) and (7′) for

the classical LDA, or those in [28, 31]. Multi-view uncorrelated linear discrimi-
nant analysis (MULDA) [10] was proposed to replace (18b) with the uncorrelated
constraints

v∑
s=1

γsP
T
s Cs,sPs = Ik.(20)

Multi-view modular discriminant analysis (MvMDA) [9] aims to maximize the
distances between different class centers across different views and minimize the
within-class scatter

max
{Ps}

v∑
s=1

v∑
t=1

tr(PT
s XsAX

T
t Pt)(21a)

s. t.

v∑
s=1

PT
s S

s
wPs =Ik,(21b)

where A = Y TΣ−1HcΣ
−1Y .

It is worth noting that imposing orthogonality constraints has attracted much
attention in multi-view feature extraction in unsupervised learning, but it is seldom
explored in supervised learning. In addition, it has been widely studied in single-
view methods in both unsupervised and supervised learning.

3. Orthogonal Multi-view Analysis

In this section, we propose a novel unified framework for multi-view discriminant
analysis in order to learn orthogonal projections onto a latent common space.
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3.1. Motivation. An orthogonal projection is able to preserve the pairwise dis-
tance if the vectors to be projected live in the range of the projection. Specifically,

if xxx
(s)
i ∈ R(Ps) for all i and PT

s Ps = Ik, then we have xxx
(s)
i = Psz̃zz

(s)
i for some z̃zz

(s)
i

and
Pszzz

(s)
i = Ps(P

T
s xxx

(s)
i ) = Ps P

T
s Ps︸ ︷︷ ︸ z̃zz(s)i = Psz̃zz

(s)
i = xxx

(s)
i .

Now, the pairwise Euclidean distance between xxx
(s)
i and xxx

(s)
j

‖xxx(s)i − xxx
(s)
j ‖

2 = ‖Ps(zzz
(s)
i − zzz

(s)
j )‖2 = ‖zzz(s)i − zzz

(s)
j ‖

2(22)

is preserved in the projected space. Distance preservation as an important learning
criterion has been successfully used in single-view dimensionality reduction with
kernel representation [19] and Bayesian estimation [20].

Orthogonal projection has been explored in LDA (11) with N = Id1
in [15, 16] for

single-view feature extraction, and in CCA with two views [12, 21, 22] and MCCA
with more than two views [23, 24] for multi-view feature extraction. However,
imposing orthogonality constraints has not yet been well studied for supervised
multi-view subspace learning.

3.2. A Unified Framework. We propose a novel unified orthogonal multi-view
subspace learning (OMvSL) framework in the trace ratio formulation given by

max
{Ps}

v∑
s=1

v∑
t=1

tr(PT
s Φs,tPt)√

tr(PT
s Ψs,sPs)

√
tr(PT

t Ψt,tPt)
(23a)

s. t. PT
s Ps = Ik,∀s,(23b)

where Ψs,s for s = 1, . . . , v are positive semi-definite matrices. As stated in [15], the
trace ratio formation is an essential formulation for general dimensionality reduc-
tion and may lead to solutions that are superior to the ones from the ratio trace
formulation.

The proposed OMvSL (23) encompasses OLDA and OMCCA as special cases:

(1) For v = 1, (23) with Ψ1,1 = S1
b and Ψ1,1 = M reduces to OLDA (11).

(2) For v ≥ 2, (23) with Φs,t = Cs,t and Ψs,s = Cs,s becomes OMCCA (17).

OMvSL (23) can be used to inspire various models in the form of trace ratio for-
mulations. We shall present various novel models instantiated from OMvSL (23)
for multi-view discriminant analysis in subsection 3.3 and multi-label classification
in subsection 3.4.

OMvSL is a versatile framework, but it presents a difficult optimization problem
to solve. Generic optimization techniques [38, 39, 40] can always be applied, but
they ignore the special form in the objective, are usually not so efficient as cus-
tomized algorithms, and, worst of all, are not practically feasible even for datasets
of modest scale. In Section 5, we will present a successive approximation algorithm
that approximately solves OMvSL efficiently.

It is tempting to modify OMvSL (23) by adding

PT
s Ψs,sPs = Ik,∀s,(24)

to eliminate the denominators in the objective in hope for a simpler problem to
solve. But (24) and (23b) may conflict. To see that, we note that PT

s Ψs,sPs �
λminP

T
s Ps where λmin is the smallest eigenvalue of Ψs,s, and so if λmin > 1, then

there is no way to satisfy both (24) and (23b) at the same time. On the other hand,
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(23a) with (24) but not (23b) bears similarity to existing models of the ratio trace
formulation in subsection 2.3.

3.3. Novel Multi-view Discriminant Analysis Models. Three orthogonal multi-
view discriminant analysis models are proposed, inspired by existing models similar
to (23) for multi-class classification where yyyi ∈ {0, 1}c and yyyTi 111c = 1 [8, 9, 10]. Each
new model is intrinsically different from its corresponding existing model due to the
trace ratio formulation (23a) and orthogonality constraints (23b).
Orthogonal GMA. The proposed orthogonal variant of GMA (18), called Or-
thogonal GMA (OGMA), is (23) with

Φs,t =

{
Ss
b , s = t,
αs,tCs,t, s 6= t,

(25a)

Ψs,s = Ss
w.(25b)

Orthogonal MLDA. The proposed orthogonal variant of MLDA (18a) with (20),
called Orthogonal MLDA (OMLDA), is (23) with (25a) and

Ψs,s = Cs,s.(26)

Orthogonal MvMDA. The proposed orthogonal variant of MvMDA (21), called
Orthogonal MvMDA (OMvMDA), is (23) with

Φs,t = A, Ψs,s = Ss
w.(27)

3.4. Novel Multi-view Multi-label Classification Models. In multi-view multi-
label classification, the output yyyi ∈ {0, 1}c with c labels and {xxx(1)i , . . . ,xxx

(v)
i , yyyi}ni=1 is

the paired data. Under the proposed framework (23), we can come up the following
two strategies to incorporate output data for multi-view multi-label classification:
Orthogonal Multi-view Multi-label CCA (OM2CCA). This approach is pro-
posed to take the output labels in Y = [yyy1, . . . , yyyn] ∈ {0, 1}c×n as the (v+1)st view
Xv+1 := Y in OMCCA [11]. Together with v input views, there are v + 1 views.
OMCCA is employed to learn projection matrices {Ps} and Pv+1 := PY in a latent
common space. This idea has been explored for v = 1 in [11, 12, 23]. OMCCA is
instantiated from (23) with

Φs,t =

{
0, s = t,
Cs,t, s 6= t,

(28a)

Ψs,s = Cs,s,(28b)

for s, t = 1, . . . , v + 1, where Cs,v+1 = XsHY = CT
v+1,s.

Orthogonal Hilbert-Schmidt Independence Criterion (OHSIC). This ap-
proach is proposed to take the HSIC criterion [41] for learning embedding of each
input view. The estimator of HSIC is defined as

HSIC(Zs, Y ) =
1

(n− 1)2
tr(ZT

s ZsHnY
TY Hn),(29)

where Zs = PT
s Xs and ZT

s Zs is the linear kernel of the projected data of view s.
To achieve the best alignment between Zs and Y , the maximization of HSIC with
respect to Ps is expected. The proposed HSIC method is instantiated from (23)



OMVA 11

with

Φs,t =

{
XsHnY

TY HnX
T
s , s = t,

αs,tCs,t, s 6= t,
(30a)

Ψs,s = Cs,s,(30b)

for s, t = 1, . . . , v. Different from (28), this approach does not learn PY .

4. An eigenvalue algorithm

Currently there is no numerically efficient method to solve OMvSL (23), es-
pecially for high-dimensional datasets. In preparing for presenting a successive
approximation method in the next section, in what follows we will outline a Krylov
subspace method that is suitable for computing the top eigenpair for the generalized
eigenvalue problem. To simplify notation, we will explain the method generically
for

(31) Axxx = λBxxx with xxx ∈ R(B),

where A, B ∈ Rd×d are symmetric, R(A) ⊆ R(B), B � 0. Suppose that matrix-
vector products, Axxx and Bxxx for any given xxx, are the only operations that can be
done numerically.

The Krylov subspace method will serve as the workhorse of our successive ap-
proximation algorithm that approximately solves OMvSL (23). It is worth noting
that B may be singular and will be singular in our applications. A common past
practice in data science is simply to perturb B to B + εId for some tiny ε > 0 as
a regularization and solve Axxx = λ(B + εId)xxx instead. While this successfully gets
rid of the singularity issue, it may create a more serious one in that the eventually
computed top eigenvector likely falls into the null spaces of A and B and is thus
useless for the underlying application.

The method is the so-called Locally Optimal Block Preconditioned Extended
Conjugate Gradient method (LOBPECG) [42, Algorithm 2.3] which combines LOBPCG
of Knyazev [43] and the inverse free Krylov subspace method of Golub and Ye [44].
For our current application, we will simply use the version without preconditioning
and blocking. Algorithm 1 outlines an adaption of [42, Algorithm 2.3] for (31).

A few comments regarding this algorithm and its efficient implementation are in
order:

(1) There is no need to use ‖A‖2 and ‖B‖2 exactly. Some very rough estimates
are just good enough so long as the estimates have the same magnitudes,
respectively.

(2) At line 2, it is to make sure xxx1 ∈ R(B).
(3) There are two parameters to choose: the order nkry of the Krylov space (32)

and the stopping tolerance tol. There is no easy way to determine what the
optimal nkry is. In general, the larger nkry is, the faster the convergence,
but then more work in generating the orthonormal basis matrix Z. Usually
nkry = 10 is good. For applications that required accuracy is not too
stringent, tol = 10−6 is often more than adequate.

(4) The orthonormal basis matrix Z can be efficiently computed by the sym-
metric Lanczos process [45]. For better numerical stability in making sure
ZTZ = I within the working precision, re-orthogonalization may be neces-
sary.



12 L. WANG, L. ZHANG, C. SHEN, AND R. LI

Algorithm 1 Locally Optimal Extended Conjugate Gradient method (LOECG)

Input: eigenvalue problem (31), nkry, tolerance tol;
Output: top eigenpair (λ,xxx).

1: pick a random xxx1 ∈ Rd;
2: xxx1 = Bxxx1, xxx1 = xxx1/‖xxx1‖2, ρ = xxxT1Axxx1/xxx

T
1Bxxx1;

3: rrr = Axxx1 − ρBxxx1, res = ‖rrr‖2/(‖A‖2 + |ρ|‖B‖2);
4: xxx0 = 0;
5: while res ≥ tol do
6: compute an orthonormal basis matrix Z of the Krylov subspace

(32) R(Z)=R([xxx1, (A− ρB)xxx1, . . . , (A− ρB)nkryxxx1]);

7: ppp = xxx0 − Z(ZTxxx0), W = [Z,ppp/‖ppp‖2];
8: compute the top eigenpair (ρ,zzz) of WTAW − λWTBW , where ‖zzz‖2 = 1;
9: xxx0 = xxx1;

10: xxx1 = Wzzz, rrr = Axxx1 − ρBxxx1, res = ‖rrr‖2/(‖A‖2 + |ρ|‖B‖2);
11: end while
12: return (ρ,xxx1).

(5) At line 7, some guard step must be taken. For example, in the first iteration
xxx0 = 0 and so ppp = 0. We should just let W = Z. In the subsequent
iterations, we will have to test whether xxx0 is in or nearly in R(Z). For
that purpose, we need another tolerance, e.g., if ‖ppp‖2 ≤ 10−12, then we will
regard already xxx0 ∈ R(Z) and set W = Z; otherwise, re-orthogonalize ppp
against Z: ppp = ppp − Z(ZTppp) to make sure WTW = I within the working
precision.

(6) At line 8, AW and BW , except their last columns, are likely already com-
puted at the time of generating Z at line 6. They should be reused here to
save work.

(7) The eigenvalue problem for WTAW−λWTBW is of very small size (nkry+
1)× (nkry + 1) at most and also WTBW � 0 as guaranteed by Lemma 4.1
below. It can be solved by first computing the Cholesky decomposition
WTBW = RTR and then the full eigen-decomposition ofR−T(WTAW )R−1.
Finally, zzz = R−1www, where www is the top eigenvector of R−T(WTAW )R−1.

Lemma 4.1. In Algorithm 1, R(W ) ⊆ R(B) and thus WTBW � 0.

Proof. Initially, after line 2, xxx1 ∈ R(B). Therefore at (32), R(Z) ⊆ R(B) because
R(A) ⊆ R(B). In the first iteration of the while-loop, xxx0 = 0 and W = Z
and so R(W ) ⊆ R(B), xxx0, xxx1 ∈ R(B). Inductively, each time at the beginning
of executing the while-loop, we have xxx0, xxx1 ∈ R(B). So we will have at line 7,
ppp ∈ R(B) and R(Z) ⊆ R(B), implying R(W ) ⊆ R(B). Consequently, at the
conclusion of executing the while-loop, we still have xxx0, xxx1 ∈ R(B).

Since B � 0 and R(W ) ⊆ R(B), WTBW must be positive definite. �

5. Algorithm for OMvSL

For ease of presentation, we rewrite OMvSL (23) as

(33) max
{Ps}

g({Ps}) : s. t. PT
s Ps = Ik, R(Ps) ⊆ R(Ψs,s)∀s,
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where

g({Ps}) :=

v∑
s=1

v∑
t=1

tr(PT
s Φs,tPt)√

tr(PT
s Ψs,sPs)

√
tr(PT

t Ψt,tPt)
.

For k = 1, all Ps are column vectors. By convention that we use lowercase letters
for vectors, we will replace them by ppps instead. Since g({ppps}) is homogeneous in
each ppps, i.e., g({ppps/αs}) ≡ g({ppps}) for any scalar αs > 0, the constraints pppTs ppps = 1
is inconsequential. In fact, (33) is equivalent to

(34) max
{ppps∈Rns}

f({ppps}) : s.t. pppTs Ψs,sppps = 1, ppps ∈ R(Ψs,s)∀s,

where f({ppps}) is given by

(35) f({ppps}) :=

v∑
s=1

v∑
t=1

pppTs Φs,tpppt.

The KKT condition of (34) gives rise to a multi-parameter eigenvalue problem:

(36a) A ppp = BΛppp, ppp ∈ R(B),

where

(36b) A =


Φ11 Φ12 · · · Φ1v

Φ21 Φ22 · · · Φ2v

...
...

. . .
...

Φv1 Φv2 · · · Φvv

 , B =


Ψ11

Ψ22

. . .

Ψvv

 ,

(36c) Λ =


λ1In1

λ2In2

. . .

λvInv

 , ppp =

 ppp1
...
pppv

 .
This is also a long standing problem in statistics, and there is no existing numerical
technique that is readily available to solve it with guarantee. Existing methods
include variations of the power method for matrix eigenvalues [46], which are sim-
ple to use but often slowly convergent, and adaptations of common optimization
techniques onto Riemannian manifolds to solve (34) [47, 48], which often converge
faster but use the gradient or even Hessian of f and, as a result, are not particularly
well suited for large scale problems. None of those methods guarantee to deliver
the global optimum of (34).

In many real-world applications, an approximate solution is just as good as a
very accurate solution. A relaxed problem to (34) is

(37) max
{qqqs}

f({qqqs}) : s.t.

v∑
s=1

qqqTs Ψs,sqqqs = 1, qqqs ∈ R(Ψs,s).

The KKT condition for (37) is

(38) A qqq = λBqqq, qqq ∈ R(B)

which is a generalized eigenvalue problem that has been well studied, where A and
B are as given by (36b). Often

R(A ) ⊆ R(B)
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which we will assume in this paper and the top eigenvector qqq is the maximizer of
(37). Even though B is positive semi-definite, it is possible that B is singular. In
the previous section, we discussed a common practice and its fatal shortcoming for
the underlying data science application. Algorithm 1 in section 4 can be applied
to solve (38) for its top eigenpair in such a way that singular B does not matter,
without regularization.

We propose to construct an approximation solution for (34), and thereby for (33)
with k = 1, from the solution to (37) for k = 1 as follows. Let (λ1, qqq

opt = [qqqopts ]) with
qqqopts ∈ Rds be the top eigenpair of the eigenvalue problem (38). An approximate
solution is then constructed by

(39) γs = ‖qqqopts ‖2 , pppopts = qqqopts /γs, ∀s.

This solves (33) with k = 1 approximately, or finds an approximation to the first
columns of optimal Ps of (33). Suppose that approximations to the first ` columns,

say ppp
(j)
s ∈ Rds for 1 ≤ j ≤ `, of nearly optimal Ps of (33) are obtained and ` < k.

Let

(40) P (`)
s =

[
ppp(1)s , ppp(2)s , . . . , ppp(`)s

]
∈ Rds×`, ∀s.

It is reasonable to assume

(41) [P (`)
s ]TP (`)

s = I`, R(P (`)
s ) ⊆ R(Ψs,s), ∀s.

We propose to find the next columns of nearly optimal Ps for all s of (33) by solving

max
{qqqs∈Rns}

f({qqqs}) : s.t.

v∑
s=1

qqqTs Ψs,sqqqs = 1, qqqs ∈ R(Ψs,s)∀s,(42a)

qqqTs P
(`)
s = 0∀s,(42b)

and then normalize each qqqs of the optimizer of (42) as in (39) to construct the next

ppp
(`+1)
s .

Theorem 1. Given P
(`)
s as in (40) satisfying (41), problem (42) is equivalent to

(43) max
{qqqs∈Rns}

f`({qqqs}) : s.t.

v∑
s=1

qqqTs Ψ
(`)
s,sqqqs = 1, qqqs ∈ R(Ψ (`)

s,s )∀s,

where

Π(`)
s = Ins

− P (`)
s

[
P (`)
s

]T
,(44a)

Φ
(`)
s,t = Π(`)

s Φs,tΠ
(`)
t , Ψ (`)

s,s = Π(`)
s Ψs,sΠ

(`)
s ,(44b)

f`({qqqs}) =
∑
s,t

qqqTs Φ
(`)
s,tqqqt.(44c)

Proof. We will show that the feasible sets for (42) and (43) are the same and
f({qqqs}) = f`({qqqs}) for any vector {qqqs} in the feasible set.

Let {qqqs} satisfy the constraints of (42). Since qqqTs P
(`)
s = 0, we have Π

(`)
s qqqs = qqqs.

Since qqqs ∈ R(Ψs,s) = R(Ψ
1/2
s,s ) where Ψ

1/2
s,s is the unique positive semi-definite square
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root of Ψs,s, we have qqqs = Ψ
1/2
s,s wwws for some wwws. Therefore

qqqs = Π(`)
s qqqs = Π(`)

s Ψ1/2
s,s wwws

∈ R(Π(`)
s Ψ1/2

s,s ) = R(Π(`)
s Ψs,sΠ

(`)
s ),

qqqTs Φs,tqqqt =
[
Π(`)

s qqqs
]T
Φs,t

[
Π(`)

s qqqt
]

= qqqTs Φ
(`)
s,tqqqt.

Hence {qqqs} satisfies the constraints of (43) and f({qqqs}) = f`({qqqs}). On the other

hand, let {qqqs} satisfy the constraints of (43). Since qqqs ∈ R(Ψ
(`)
s,s ) = R(Π

(`)
s Ψ

1/2
s,s ),

we have qqqs = Π
(`)
s Ψ

1/2
s,s wwws for some wwws and therefore

qqqTs P
(`)
s = wwwT

s Ψ
1/2
s,s Π

(`)
s P (`)

s = 0,

qqqs = Ψ1/2
s,s wwws − P (`)

s

[
P (`)
s

]T
Ψ1/2
s,s wwws ∈ R(Ψ1/2

s,s ) = R(Ψs,s).

That qqqTs P
(`)
s = 0 implies Π

(`)
s qqqs = qqqs for all s, and therefore

qqqTs Φs,tqqqt = qqqTsΠ
(`)
s Φs,tΠ

(`)
t qqqt = qqqTs Φ

(`)
s,tqqqt.

Hence also {qqqs} satisfies the constraints of (42) and f({qqqs}) = f`({qqqs}). �

In view of our previous discussion, problem (43) is equivalent to finding the top
eigenpair of

(45) A (`)qqq = λB(`)qqq with qqq ∈ R(B(`)),

where A (`) and B(`) take the same form as A and B in (36b), except with all Φs,t

and Ψs,s replaced by Φ
(`)
s,t and Ψ

(`)
s,s , respectively. Note now that B(`) is guaranteed

singular for ` > 1 because for each s,

rank(Ψ (`)
s,s ) = rank(Π(`)

s Ψ1/2
s,s )

≤ min{rank(Π(`)
s ), rank(Ψ1/2

s,s )}

≤ rank(Π(`)
s ) = ns − `.

Hence the range constraint qqq ∈ R(B(`)) is indispensable. Any straightforward ap-
plication of existing eigen-computation routine to A (`)−λB(`) will likely encounter

some numerical issue. Note that qqq ∈ R(B(`)) is equivalent to qqqs ∈ R(Ψ
(`)
s,s )∀s in

(43).
Algorithm 2 summarizes our range constrained successive approximation method

for solving OMvSL, which calls Algorithm 1 to compute the top eigenvector of
A (`) − λB(`), where A (`) ≡ A and B(`) ≡ B for ` = 0.

According to Algorithm 1, the efficiency of Algorithm 2 critically depends on the
execution of matrix-vector products by A (`) and B(`). Noting that how A (`) and
B(`) are defined, together with (44a) and (44b), we find that

A (`) = Π(`)AΠ(`), B(`) = Π(`)BΠ(`),

where Π(`) = diag(Π`
1, . . . ,Π

`
s). Thus yyy := X (`)xxx where X is either A or B can

be done in three steps:

xxx← Π(`)xxx,(46a)

yyy ←X xxx,(46b)

yyy ← Π(`)yyy.(46c)
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Algorithm 2 OSAVE: Orthogonal Successive Approximation via Eigenvectors

Input: {Φs,t ∈ Rds×nt , 1 ≤ s, t ≤ v}, {Ψs,s ∈ Rds×ds , 1 ≤ s ≤ v}, integer 1 ≤ k ≤
min{d1, . . . , dv};

Output: {Ps ∈ Ods×k}, the set of most correlated matrices.
1: compute the top eigenvector [qqqT

1 , qqq
T
2 . . . , qqq

T
v ]

T of A − λB by Algorithm 1, where qqqs ∈
Rds ;

2: ppp
(1)
s = qqqs/‖qqqs‖2 for s = 1, 2, . . . , v;

3: for ` = 1, 2 . . . , k − 1 do
4: compute the top eigenvector [qqqT

1 , qqq
T
2 . . . , qqq

T
v ]

T of A (`)−λB(`) by Algorithm 1, where
qqqs ∈ Rds ;

5: ppp
(`+1)
s = qqqs/‖qqqs‖2 for s = 1, 2, . . . , v;

6: end for
7: Ps = [ppp

(1)
s , . . . , ppp

(k)
s ] for s = 1, 2, . . . , v;

8: return {Ps ∈ Ods×k}.

The operations in (46a) and (46c) are the same one, and should be implemented as
follows. In the case of (46a), write xxx = [xxxT1 , . . . ,xxx

T
v ]T where xxxs ∈ Rns and do

xxxs ← xxxs − P (`)
s

([
P (`)
s

]T
xxxs
)
∀s,

where the bracket must be respected for maximum computational efficiency. The
operation in (46b) can be broken into many mini-ones Φs,txxxt, Ψs,sxxxs for all s, t
whose calculations depend on the structures in Φs,t and Ψs,s from the underlying
task. While it is impossible for us to offer recommendations on a very general
setting, a frequent scenario where OMvSL is needed has Φs,t and Ψs,s taking the
form

(47a) Φs,t = AsA
T
t , Ψs,s = BsB

T
s

where

As = Araw
s

(
Ima −

1

ma
111ma

111Tma

)
∈ Rds×ma ,(47b)

Bs = Braw
s

(
Ims −

1

ms
111ms

111Tms

)
∈ Rds×ms .(47c)

Here Araw
s and Braw

s represent raw input data matrices from an application, which
may also be sparse. In such a scenario, As and Bs should not be formed explicitly
in a large scale application, i.e., at least one of ds, ma, and ms is large, say in
the tens of thousands or more, and neither should Φs,t and Ψs,s. As an example,
yyys := Φs,txxxt can be executed in the order as follows:

zzz ← (Araw
t )Txxxt, zzz ← zzz −

111Tma
zzz

ma
, yyys ← Araw

s zzz.

To get a sense of the computational complexity of OSAVE (Algorithm 2), in
what follows we present a rough estimate, assuming Φs,t and Ψs,s are given and
dense. For the `th loop: lines 3–6 of Algorithm 2 which calls Algorithm 1, we have,
for the leading cost terms for one loop of Algorithm 1 (lines 6–10),

(a) matrix-vector products by A (`) and B(`): 2nnkry
(d2 +

∑
s d

2
s + 8d`),

(b) orthgonalization in generating W : 6dnnkry
if by the Lanczos process or 2dn2nkry

if also with full reorthgonalization (recommended),
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(c) forming WTAW and WTBW (assuming AW and BW built along the way are
reused): 4dn2nkry

,

(d) solving WTAW − λWTBW : 14n3nkry
[37, p.500].

Here d =
∑

s ds and these estimates work for ` = 0, i.e., line 1 of Algorithm 2, too.
For simplicity, let us assume that on average Algorithm 1 takes m iterations to fin-
ish, and full reorthgonalization is used for robustness. Then the overall complexity
estimate is

(48) m

{
knnkry

[
2d2 +

∑
s

d2s + 6dnnkry

]
+ 8nnkry

dk2

}
≈ 2mknnkry

d2,

where we have dropped the cost in solving WTAW − λWTBW due to that nnkry

is usually of O(1), and we have assumed k � d in practice. Further improvement
in complexity is possible if As and Bs in (47) are very sparse, and then d2 in (48)
can be replaced by the total number of nonzero entries in As and Bs for all s.

6. Experiments

In this section, we will evaluate the effectiveness of our proposed models in-
stantiated from the unified framework (23) by comparing with existing methods
on two learning tasks: multi-view feature extraction and multi-view multi-label
classification.
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6.1. Multi-view Feature Extraction.

6.1.1. Datasets. Six datasets in Table 1 are used to evaluate the performance of the
proposed models: OGMA, OMLDA, and OMvMDA in terms of multi-view feature
extraction. We apply various feature descriptors, including CENTRIST [49], GIST
[50], LBP [51], histogram of oriented gradient (HOG), color histogram (CH), and
SIFT-SPM [52], to extract features of views for image datasets: Caltech1011[53]
and Scene152 [52]. Note that we drop CH for Scene15 due to the gray-level im-
ages. Multiple Features (mfeat)3, Internet Advertisements (Ads)4, and Reuters5

are publicly available from UCI machine learning repository. The dataset mfeat
contains handwritten numeral data with six views including profile correlations
(fac), Fourier coefficients of the character shapes (fou), Karhunen-Love coefficients
(kar), morphological features (mor), pixel averages in 2 × 3 windows (pix), and
Zernike moments (zer). Ads is used to predict whether or not a given hyperlink
(associated with an image) is an advertisement and has three views: features based
on the terms in the images URL, caption, and alt text (url+alt+caption), features
based on the terms in the URL of the current site (origurl), and features based on
the terms in the anchor URL (ancurl). Reuters is a multi-view text categorization
dataset containing feature characteristics of documents originally written in five
languages (English, French, German, Italian, and Spanish) and their translations
over a common set of six categories (C15, CCAT, E21, ECAT, GCAT, and M11).
Only a subset of Reuters, those written in English and their translations in other
four languages, is used. As the feature dimension of Reuters is too big to handle
by the baseline methods, a preprocessing step is performed by PCA to keep 500
features per view.

6.1.2. Compared methods. As shown in Subsection 3.3, our proposed models, al-
though instantiated from the proposed framework (23), are inspired by some of the
existing ones. Hence, the three proposed models have close counterparts via solving
generalized eigenvalue problems. Specifically, the compared methods include

• GMA [8]
• MLDA and MLDA-m with modifications [10]
• MvMDA [9]
• MULDA and MULDA-m with modifications [10]
• OGMA: the proposed model instantiated from (23) with (25)
• OMLDA: the proposed model instantiated from (23) with (25a) and (26)
• OMvMDA: the proposed model instantiated from (23) with (27).

Except for MvMDA and OMvMDA, all methods share the same trade-off parameter
to balance the pairwise correlation and supervised information. In our experiments,
we set αs,t = α,∀s 6= t so as to reduce the complexity of model selection and tune
α ∈ {0.01, 0.1, 1, 10, 100} for proper balance in supervised setting. To prevent the
singularity of matrices {Ψs,s}, we add a diagonal matrix with a small value, e.g.,
10−8, to Ψs,s ∀s for all compared methods.

1http://www.vision.caltech.edu/Image Datasets/Caltech101/
2https://figshare.com/articles/15-Scene Image Dataset/7007177
3https://archive.ics.uci.edu/ml/datasets/Multiple+Features
4https://archive.ics.uci.edu/ml/datasets/internet+advertisements
5https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2

+Multilingual,+Multiview+Text+Categorization+Test+collection
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6.1.3. Classification. To evaluate the learning performance of compared methods,
the 1-nearest neighbor classifier as the base classifier is employed. We run each
method to learn projection matrices by varying the dimension of the common sub-
space k ∈ [2, 30] for all datasets except for mfeat with k ∈ [2, 6] due to the smallest
view of 6 features. We split the data into training and testing with ratio 10/90.
The learned projection matrices are used to transform both training and testing
data into the latent common space, and then classifier is trained and tested in
this space. Following [24, 23, 12], the serial feature fusion strategy is employed by
concatenating projected features from all views. Classification accuracy is used to
measure the learning performance. Experimental results are reported in terms of
the average and standard deviation over 10 randomly drawn splits.

Table 2 shows the best results of 9 compared methods on 6 multi-view datasets
with 10% training and 90% testing over all tested ks and αs (the analysis on pa-
rameter sensitivity and training sample size will be discussed in subsections 6.1.4
and 6.1.5, respectively). From Table 2, we have the following observations: (i)
our proposed models instantiated from (23) generally outperform their counter-
parts that solve some relaxed generalized eigenvalue problems. Although GMA
produces the best results on Reuters, the differences compared to each of the three
proposed methods are all marginal; (ii) three proposed models demonstrate best
results on different datasets, while OGMA and OMLDA perform consistently bet-
ter than OMvMDA on five of six datasets. This empirically shows that the model
hypothesis in each model is data-dependent.

6.1.4. Parameter Sensitivity Analysis. The sensitivity analyses on parameters k
and α are performed by varying one of them while recording the best average
accuracy over the other within its testing range.

Figure 1 shows the results of 9 methods on six datasets as k varies. Most com-
pared methods demonstrate the increasing trend when k increases. The proposed
methods produce consistently better accuracies than others. On Ads, Caltech101-7
and Reuters, our methods show the saturation on accuracy, while MvMDA shows
a significant drop after the certain k on four of six datasets.

We further investigate the impact of parameter α on GMA, OGMA, MLDA
and OMLDA except MvMDA and OMvMDA since both methods does not contain
parameter α. In Figure 2, GMA and OGMA demonstrates quite robust to α, and
the best accuracy can be obtained around α = 10−2. However, MLDA and OMLDA
are quite sensitive to α and the accuracy decreases significantly especially for α >
0.1. These observations imply that more contribution from pairwise correlation
may hurt MLDA and OMLDA, but no noticeable impact on GMA and OGMA.
Over all tested αs, our proposed methods outperform their counterparts.

6.1.5. Impact on Training Sample Size. We further show the impact of training
sample size on the compared methods by varying the ratio of training data from
10% to 60%. The best average results over 10 randomly drawn splits are reported.
Fig. 3 shows the accuracy improves when the training ratio is increasing on Ads
and Caltech101-7. It is observed that (i) all methods show better performance when
training sample size increases, (ii) our proposed methods show consistently better
results than others, and (iii) all methods converge to similar results when training
sample size becomes very large except MvMDA.

6.2. Multi-view Multi-label Classification.
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Figure 1. Classification accuracy of 9 methods on 6 datasets over
10 random splits (10% training and 90% testing), as k varies.

Table 3. Multi-view multi-label datasets for classification

samples labels views
emotions 593 6 2
Corel5k 4999 260 7
espgame 20770 268 7
iaprtc12 19627 291 7
mirflickr 25000 38 7
pascal07 9963 20 7
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Figure 2. Classification accuracy by 4 methods on mfeat and Ads
over 10 random splits (10% training and 90% testing), as α varies
in [10−5, 102].
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Figure 3. Classification accuracy by all 9 methods on Ads and
Scene15 as the ratio of training data varies from 10% to 60%.

6.2.1. Datasets. The statistics of six publicly available datasets are shown in Ta-
ble 3, which are employed to evaluate the proposed methods for multi-view multi-
label classification. Dataset emotions6 has two feature views: 8 rhythmic attributes
and 64 timbre attributes. Corel5k [54] is a benchmark dataset for keyword based
image retrieval and image annotation. Dataset espgame [55] is obtained from an
online game where two players gain points by agreeing on words describing the
image. Dataset iaprtc12 [55] is a set of images accompanied with descriptions in
several languages for cross-lingual retrieval. Both pascal07 [56] and mirflickr [57]
are collected from the Flickr website. The last five datasets have been preprocessed
with various feature descriptors and are publicly available7 [58, 59]. In our experi-
ments, we choose 7 descriptors: DenseHue (100), DenseHueV3H1 (300), DenseSift
(1000), Gist (512), HarrisHue (100), HarrisHueV3H1 (300), and HarrisSift (1000).

6.2.2. Compared Methods. Multi-label classification [60] is a variant of the classi-
fication problem, where one instance may have various numbers of labels from a

6http://mulan.sourceforge.net
7http://lear.inrialpes.fr/people/guillaumin/data.php
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Figure 4. Results with respect to five metrics by compared meth-
ods on Corel5k (top row) and pascal07 (bottom row) over 10 ran-
dom splits (10% training and 90% testing), as k varies.
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Table 4. Results in terms of the 5 metrics on the six datasets
(10% for training and 90% for testing over 10 random splits). Best
results are in bold.
method Hamming Loss ↓ Ranking Loss ↓ One Error ↓ Coverage ↓ Average Precision ↑

emotions

view-1 0.3060 ± 0.0156 0.3038 ± 0.0195 0.4672 ± 0.0312 2.4903 ± 0.1790 0.6647 ± 0.1319
view-2 0.3403 ± 0.0247 0.4392 ± 0.0173 0.5949 ± 0.0422 3.1069 ± 0.0625 0.5678 ± 0.0625
concat 0.3046 ± 0.0155 0.3596 ± 0.0279 0.4869 ± 0.0359 2.8039 ± 0.1208 0.6290 ± 0.1091
MCCA 0.3661 ± 0.0267 0.4554 ± 0.0188 0.6399 ± 0.0321 3.1830 ± 0.1291 0.5468 ± 0.1291

OM2CCA 0.3006 ± 0.0124 0.3249 ± 0.0346 0.4948 ± 0.0488 2.5740 ± 0.1779 0.6492 ± 0.1777
HSIC-GEV 0.3646 ± 0.0241 0.4547 ± 0.0105 0.6223 ± 0.0466 3.0798 ± 0.1888 0.5553 ± 0.1888
OHSIC 0.2953 ± 0.0110 0.3079 ± 0.0248 0.4655 ± 0.0342 2.4850 ± 0.1222 0.6662 ± 0.1222

Corel5k

view-1 0.0131 ± 0.0001 0.1684 ± 0.0031 0.7153 ± 0.0147 95.3444 ± 1.4930 0.2637 ± 1.5828
view-2 0.0131 ± 0.0001 0.1672 ± 0.0034 0.7031 ± 0.0110 94.9287 ± 1.6843 0.2689 ± 1.6548
view-3 0.0131 ± 0.0001 0.1664 ± 0.0033 0.6606 ± 0.0072 95.3894 ± 1.7478 0.2862 ± 1.7478
view-4 0.0131 ± 0.0000 0.1724 ± 0.0030 0.7187 ± 0.0154 97.7932 ± 1.6951 0.2592 ± 1.6252
view-5 0.0131 ± 0.0000 0.1709 ± 0.0027 0.7366 ± 0.0107 96.2485 ± 1.4062 0.2502 ± 1.4062
view-6 0.0131 ± 0.0000 0.1707 ± 0.0025 0.7365 ± 0.0137 96.2007 ± 1.3439 0.2520 ± 1.3704
view-7 0.0131 ± 0.0000 0.1691 ± 0.0026 0.6906 ± 0.0065 96.3108 ± 1.3974 0.2716 ± 1.5536
concat 0.0131 ± 0.0001 0.1597 ± 0.0040 0.6591 ± 0.0135 92.5057 ± 2.1126 0.2999 ± 2.1126
MCCA 0.0131 ± 0.0000 0.2013 ± 0.0020 0.7799 ± 0.0115 104.9648 ± 1.4837 0.2121 ± 1.4837

OM2CCA 0.0130 ± 0.0000 0.1668 ± 0.0028 0.6982 ± 0.0106 94.7535 ± 1.4380 0.2729 ± 1.4651
HSIC-GEV 0.0131 ± 0.0000 0.1933 ± 0.0031 0.7885 ± 0.0161 104.6444 ± 1.5763 0.2011 ± 1.6329
OHSIC 0.0130 ± 0.0001 0.1601 ± 0.0026 0.6374 ± 0.0126 91.8414 ± 1.5051 0.3022 ± 1.3774

iaprtc12

view-1 0.0196 ± 0.0000 0.1871 ± 0.0012 0.6746 ± 0.0047 142.9013 ± 0.9209 0.2216 ± 0.8681
view-2 0.0196 ± 0.0000 0.1850 ± 0.0014 0.6611 ± 0.0041 141.9732 ± 1.0396 0.2272 ± 1.1048
view-3 0.0195 ± 0.0000 0.1738 ± 0.0012 0.6262 ± 0.0066 137.2026 ± 0.6685 0.2535 ± 0.6685
view-4 0.0196 ± 0.0000 0.1768 ± 0.0009 0.6375 ± 0.0024 138.5784 ± 0.6618 0.2508 ± 0.6618
view-5 0.0197 ± 0.0000 0.1879 ± 0.0010 0.6902 ± 0.0039 143.2122 ± 0.7937 0.2179 ± 0.7937
view-6 0.0197 ± 0.0000 0.1862 ± 0.0013 0.6802 ± 0.0033 142.4131 ± 0.9414 0.2233 ± 0.9414
view-7 0.0196 ± 0.0000 0.1720 ± 0.0013 0.6341 ± 0.0049 136.0222 ± 0.7975 0.2587 ± 0.7975
concat 0.0195 ± 0.0000 0.1696 ± 0.0010 0.6218 ± 0.0032 134.6660 ± 0.7990 0.2649 ± 0.8544
MCCA 0.0196 ± 0.0000 0.1804 ± 0.0109 0.6447 ± 0.0252 140.0515 ± 5.4482 0.2400 ± 5.0702

OM2CCA 0.0196 ± 0.0000 0.1709 ± 0.0011 0.6220 ± 0.0030 135.2006 ± 0.8948 0.2559 ± 0.9850
HSIC-GEV 0.0195 ± 0.0001 0.1648 ± 0.0022 0.5893 ± 0.0035 132.1792 ± 1.2844 0.2776 ± 1.2844
OHSIC 0.0195 ± 0.0000 0.1673 ± 0.0009 0.6078 ± 0.0025 133.6776 ± 0.7331 0.2661 ± 0.7209

espgame

view-1 0.0174 ± 0.0000 0.2150 ± 0.0011 0.6762 ± 0.0052 134.8974 ± 0.5372 0.2235 ± 0.5178
view-2 0.0174 ± 0.0000 0.2144 ± 0.0013 0.6766 ± 0.0058 134.6899 ± 0.6207 0.2238 ± 0.6207
view-3 0.0175 ± 0.0000 0.2035 ± 0.0009 0.7213 ± 0.0049 129.8373 ± 0.4775 0.2185 ± 0.6298
view-4 0.0175 ± 0.0000 0.2030 ± 0.0012 0.7169 ± 0.0032 129.1738 ± 0.7794 0.2201 ± 0.7794
view-5 0.0174 ± 0.0000 0.2157 ± 0.0009 0.6668 ± 0.0051 135.3101 ± 0.4779 0.2262 ± 0.4854
view-6 0.0174 ± 0.0000 0.2159 ± 0.0009 0.6687 ± 0.0033 135.4435 ± 0.4592 0.2252 ± 0.5143
view-7 0.0175 ± 0.0000 0.2054 ± 0.0006 0.7279 ± 0.0049 130.7208 ± 0.5104 0.2160 ± 0.5104
concat 0.0175 ± 0.0000 0.2015 ± 0.0010 0.6989 ± 0.0063 128.8904 ± 0.6606 0.2283 ± 0.6859
MCCA 0.0174 ± 0.0001 0.2136 ± 0.0061 0.6784 ± 0.0518 134.1460 ± 1.9614 0.2249 ± 1.9531

OM2CCA 0.0174 ± 0.0000 0.2076 ± 0.0008 0.6283 ± 0.0040 132.0874 ± 0.5329 0.2454 ± 0.5074
HSIC-GEV 0.0174 ± 0.0000 0.2068 ± 0.0010 0.6236 ± 0.0053 131.9247 ± 0.6241 0.2481 ± 0.6241
OHSIC 0.0174 ± 0.0000 0.2061 ± 0.0010 0.6207 ± 0.0053 131.5208 ± 0.5965 0.2495 ± 0.5965

mirflickr

view-1 0.1224 ± 0.0004 0.1798 ± 0.0014 0.4960 ± 0.0041 15.3929 ± 0.0753 0.4993 ± 0.0734
view-2 0.1220 ± 0.0002 0.1780 ± 0.0014 0.4872 ± 0.0033 15.3257 ± 0.0511 0.5054 ± 0.0613
view-3 0.1177 ± 0.0004 0.1614 ± 0.0012 0.4259 ± 0.0031 14.5379 ± 0.0488 0.5451 ± 0.0488
view-4 0.1186 ± 0.0003 0.1672 ± 0.0013 0.4414 ± 0.0046 14.8891 ± 0.0513 0.5329 ± 0.0513
view-5 0.1227 ± 0.0004 0.1815 ± 0.0013 0.5053 ± 0.0040 15.4924 ± 0.0535 0.4933 ± 0.0641
view-6 0.1226 ± 0.0003 0.1805 ± 0.0011 0.5027 ± 0.0045 15.4430 ± 0.0631 0.4963 ± 0.0631
view-7 0.1171 ± 0.0006 0.1592 ± 0.0016 0.4263 ± 0.0036 14.3775 ± 0.0864 0.5471 ± 0.0864
concat 0.1170 ± 0.0003 0.1617 ± 0.0015 0.4192 ± 0.0035 14.5937 ± 0.0706 0.5470 ± 0.0667
MCCA 0.1176 ± 0.0006 0.1612 ± 0.0017 0.4178 ± 0.0061 14.5641 ± 0.0847 0.5483 ± 0.0847

OM2CCA 0.1181 ± 0.0005 0.1626 ± 0.0016 0.4202 ± 0.0052 14.6236 ± 0.0982 0.5482 ± 0.1014
HSIC-GEV 0.1131 ± 0.0008 0.1507 ± 0.0011 0.3460 ± 0.0024 13.9975 ± 0.0970 0.5868 ± 0.1280
OHSIC 0.1169 ± 0.0003 0.1586 ± 0.0014 0.4127 ± 0.0058 14.4238 ± 0.0572 0.5530 ± 0.0572

pascal07

view-1 0.0730 ± 0.0005 0.2786 ± 0.0049 0.5946 ± 0.0029 6.9247 ± 0.1447 0.4425 ± 0.1447
view-2 0.0729 ± 0.0002 0.2708 ± 0.0046 0.5950 ± 0.0031 6.7332 ± 0.1332 0.4466 ± 0.1332
view-3 0.0715 ± 0.0005 0.2373 ± 0.0033 0.5819 ± 0.0044 5.9969 ± 0.1021 0.4800 ± 0.0754
view-4 0.0702 ± 0.0003 0.2328 ± 0.0041 0.5656 ± 0.0042 5.8909 ± 0.0956 0.4928 ± 0.0956
view-5 0.0716 ± 0.0004 0.2714 ± 0.0031 0.5941 ± 0.0026 6.7623 ± 0.0936 0.4482 ± 0.0936
view-6 0.0719 ± 0.0006 0.2692 ± 0.0042 0.5945 ± 0.0022 6.7054 ± 0.0993 0.4498 ± 0.0993
view-7 0.0699 ± 0.0005 0.2219 ± 0.0032 0.5617 ± 0.0049 5.6492 ± 0.0718 0.5006 ± 0.0718
concat 0.0700 ± 0.0003 0.2268 ± 0.0045 0.5634 ± 0.0061 5.7465 ± 0.1130 0.4996 ± 0.1130
MCCA 0.0691 ± 0.0002 0.2183 ± 0.0029 0.5700 ± 0.0054 5.5241 ± 0.0599 0.4991 ± 0.0599

OM2CCA 0.0694 ± 0.0003 0.2179 ± 0.0037 0.5723 ± 0.0060 5.5003 ± 0.0788 0.4960 ± 0.0714
HSIC-GEV 0.0678 ± 0.0004 0.2185 ± 0.0052 0.5569 ± 0.0046 5.4652 ± 0.1018 0.5088 ± 0.1018
OHSIC 0.0678 ± 0.0004 0.2122 ± 0.0034 0.5604 ± 0.0046 5.3753 ± 0.0679 0.5073 ± 0.0525

set of predefined categories, i.e., a subset of labels. In addition, the multi-view
multi-label classification data consists of multiple views as the input. It is different
from multi-view feature extraction in Section 6.1, where each instance only has a
single label.
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Following [12, 23], we first use a multi-view subspace learning method as a super-
vised dimensionality reduction step for the purpose multi-view multi-label classifi-
cation so that the embeddings obtained by the method hopefully encode important
correlations among multiple views and their output labels, and then multi-label
classification is conducted in the common space. Hence, it is expected to have bet-
ter performance for multi-view multi-label classification comparing with a single-
view method applied to each view only or to the naive concatenation approach.
Specifically, we compare the following multi-view subspace learning approaches:

• view-s: PCA on the sth view.
• concat: the concatenation of all views in the common space by PCA.
• MCCA [5]: the output labels considered as an additional view. Hence, there

are v+ 1 views. The projection matrix for the output labels is learned but
not used.
• HSIC-GEV: the proposed model solved as a generalized eigenvalue problem,

which is similar to MLDA, but Φs,s is defined in (30a) catering for multi-
label outputs.
• OM2CCA: the proposed model instantiated from (23) for v + 1 views with

(28). Different from [23], all multiple views as input are used.
• OHSIC: the proposed model instantiated from (23) with (30).

After the projection matrices are learned, we apply ML-kNN8 in the common space
as the backend multi-label classifier [61], which has demonstrated good performance
over various datasets.

6.2.3. Performance Evaluation. Five widely-used metrics are used to measure the
performance, including Hamming Loss, One Error, Ranking Loss, Coverage and
Average Precision. Each evaluates the performance of a multi-label predictor from
different aspects. Their concrete definitions can be found in [62]. In particular, the
larger the Average Precision is, the better the performance, while for the other four
metrics, the smaller the value the better the performance. Following [61], for each
method we report the best results and their standard deviations over 10 random
training/testing splits in each of the five metrics.

Results by compared methods are shown in Table 4, in which the best results
are reported by tuning α ∈ {0.01, 0.1, 1, 10, 100} and k ∈ {2, 5 : 5 : 50} except
for emotions, mirflickr and pascal07 (MCCA and OM2CCA cannot have k larger
than the number of labels), over 10 random splits of 10% training and 90% testing.
From Table 4, it can be observed that (i) the joint subspace learning methods
generally work better than PCA and the concatenation of individually projected
views by PCA, (ii) the proposed HSIC-GEV and OHSIC consistently outperform
others except in terms of Ranking Loss on emotions, Corel5k and espgame, and (iii)
HSIC-GEV takes the top spots on iaprtc12 and mirflickr, while OHSIC takes most
of the top spots on emotions, Corel5k and espgame. On pascal07, both approaches
work equally well.

We further investigate the impact of parameter k on each of the five metrics.
Fig. 4 shows the trends of five metrics on Corel5k and pascal07 as k varies. It
is observed that a large k generally leads to better performance for all methods,
as it should be. Although Hamming Loss on Corel5k shows some fluctuation, the

8http://lamda.nju.edu.cn/files/MLkNN.rar
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absolute difference is negligibly in the order of 10−5. In summary, HSIC-GEV and
OHSIC can work consistently well over all tested ks.

7. Conclusion

In this paper, we start by proposing a unified multi-view subspace learning frame-
work, which aims to learn a set of orthogonal projections for desirable advantages
such as more noise-tolerant, better suited for data visualization and distance preser-
vation. The proposed framework can be easily extended for single-view and multi-
view learning in the settings of both unsupervised and supervised learning. An
efficient successive approximations via eigenvectors method (OSAVE) is designed
to approximately solve the optimization problem resulted from the proposed frame-
work. It is built upon well developed numerical linear algebra technique and can
handle large scale datasets. To verify the capability of the proposed framework
and the approximate optimization method, we showcases six new models for two
learning tasks. Experimental results on various real-world datasets demonstrate
that our proposed models solved by our successive approximation method OSAVE
perform competitively to and often better than the baselines.
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