
Please cite as follows: K. Malialis, C. G. Panayiotou, M. M. Polycarpou, Nonstationary data stream

classification with online active learning and siamese neural networks, Neurocomputing, Volume 512,

Pages 235-252, 2022, doi: 10.1016/j.neucom.2022.09.065.

Nonstationary Data Stream Classification with Online
Active Learning and Siamese Neural Networks ?

Kleanthis Malialisa,b,∗, Christos G. Panayiotoua,b, Marios M. Polycarpoua,b

aKIOS Research and Innovation Center of Excellence, University of Cyprus, Cyprus
bDepartment of Electrical and Computer Engineering, University of Cyprus, Cyprus

Abstract

We have witnessed in recent years an ever-growing volume of information be-

coming available in a streaming manner in various application areas. As a result,

there is an emerging need for online learning methods that train predictive mod-

els on-the-fly. A series of open challenges, however, hinder their deployment in

practice. These are, learning as data arrive in real-time one-by-one, learning

from data with limited ground truth information, learning from nonstationary

data, and learning from severely imbalanced data, while occupying a limited

amount of memory for data storage. We propose the ActiSiamese algorithm,

which addresses these challenges by combining online active learning, siamese

networks, and a multi-queue memory. It develops a new density-based active

learning strategy which considers similarity in the latent (rather than the input)

space. We conduct an extensive study that compares the role of different active

learning budgets and strategies, the performance with/without memory, the per-

formance with/without ensembling, in both synthetic and real-world datasets,

under different data nonstationarity characteristics and class imbalance levels.

ActiSiamese outperforms baseline and state-of-the-art algorithms, and is effec-

?This work has been supported by the European Research Council (ERC) under grant
agreement No 951424 (Water-Futures), by the European Union’s Horizon 2020 research and
innovation programme under grant agreements No 883484 (PathoCERT) and No 739551
(TEAMING KIOS CoE), and from the Republic of Cyprus through the Deputy Ministry
of Research, Innovation and Digital Policy.

∗Corresponding author
Email addresses: malialis.kleanthis@ucy.ac.cy (Kleanthis Malialis),

christosp@ucy.ac.cy (Christos G. Panayiotou), mpolycar@ucy.ac.cy (Marios M.
Polycarpou)

Preprint submitted to Neurocomputing October 4, 2022

ar
X

iv
:2

21
0.

01
09

0v
1

 [
cs

.L
G

]
 3

 O
ct

 2
02

2

tive under severe imbalance, even only when a fraction of the arriving instances’

labels is available. We publicly release our code to the community.

Keywords: incremental learning, active learning, data streams, concept drift,

class imbalance

1. Introduction

There is at present an emerging need for online learning algorithms that

train predictive models on-the-fly as new information is continually becoming

available in a diverse set of applications, such as, monitoring systems (e.g. fault

detection in critical infrastructure systems [1], environmental monitoring [2]),

security (e.g., spam filtering [3]), finance (e.g., credit card fraud detection [4]),

and recommender systems [2]. Despite the great potential impact of online

predictive models, there are some key open challenges and problems that affect

their deployability in practical applications:

Limited labelled data. Acquiring ground truth information (e.g., labels in

classification tasks) as instances arrive one-by-one can be costly or impossible in

some real-time applications, such as, fault detection in critical infrastructures.

Nonstationary data. It refers to the problem of having a data distribution

that is unknown, and it evolves over time [2]. For example, nonstationarity can

be caused by hardware faults (e.g., sensors in monitoring systems), changes

in users’ behaviour (e.g., to evade detection in security systems), seasonality

or periodicity effects (e.g., consumption in a water distribution network), or

changes in users’ interests (e.g., in recommender systems).

Imbalanced data. Class imbalance refers to the problem of having a skewed

distribution of data [5]. It renders a learning algorithm ineffective in identifying

minority class examples as its performance declines significantly. The problem

becomes considerably harder for unlabelled and nonstationary data [3].

Therefore, for certain applications it is desirable to design an online learning

algorithm with these properties: (i) be able to respond in real-time as instances

arrive one-by-one; (ii) be able to learn from limited labelled data, since in some

2

applications it is not possible to rely solely on supervision; (iii) be able to adapt,

as an algorithm without these capabilities would be ineffective under nonsta-

tionary conditions; and (iv) perform well under severe imbalance. Importantly,

finding a good trade-off between these requirements is a challenging task.

An effective way to deal with limited labelled data is the active learning

paradigm, in which the classifier queries a human expert for the labels of selected

instances [6]. A number of industry-scale applications have been realised using

active learning, e.g., Google’s method for labelling malicious advertisements [7],

and NVIDIA’s [8] and Tesla’s [9] methods for their autonomous vehicles with

self-driving capability. This paper focuses on online active learning. The key

contributions of this work are the following:

1. We propose the ActiSiamese algorithm, which synergistically combines on-

line active learning, siamese networks, and a multi-queue memory. While

the majority of existing work focuses on uncertainty-based strategies, Ac-

tiSiamese proposes a new density-based strategy which considers similarity

in the encoding (rather than the input) space. ActiSiamese aims to ad-

dress the key challenges of online learning that were previously discussed.

2. We conduct an extensive study that compares and examines the role of dif-

ferent active learning budgets and strategies (uncertainty-based, density-

based), different neural network types (standard fully-connected, siamese),

the performance with and without memory, the performance with and

without ensembling, in both synthetic and real-world datasets, under dif-

ferent nonstationarity characteristics and imbalance severity levels. Ac-

tiSiamese outperforms strong baselines and state-of-the-art algorithms,

and is effective under conditions of extreme imbalance, even when only a

fraction of the arriving instances’ labels is available.

3. We provide new insights into learning from nonstationary and imbalanced

data streams, which constitutes a challenging and largely unexplored area

even in the presence of supervision [2, 3, 10].

3

ActiSiamese was first introduced in our brief conference paper [11], and this

work constitutes a significant extension of that. Unlike our preliminary paper:

(i) We extend ActiSiamese to allow ensembling to better address nonstation-

arity; (ii) We examine the performance of ActiSiamese in real-world datasets,

as well as in more synthetic datasets; (iii) We perform an extensive empirical

analysis of ActiSiamese that examines the role of its various parameters; (iv)

We perform an extensive comparative study as described above; and (iv) related

work has been considerably enriched. We publicly release our code1.

The paper is organised as follows. Preliminary material necessary to under-

stand the contributions made is provided in Section 2. Related work is presented

in Section 3. ActiSiamese is described in Section 4. Our experimental setup is

described in Section 5. An empirical analysis of ActiSiamese is provided in

Section 6. A comparative study is provided in Section 7. A discussion on im-

portant remarks about ActiSiamese, its computational aspects, advantages and

limitations is found in Section 8. We conclude in Section 9.

2. Preliminaries

Online learning considers a data generating process that provides at each

time t a sequence of examples S = {St}Tt=1, where St = {(xti, yti)}Mi=1. The

number of steps is denoted by T ∈ [1,∞) where the data are typically sampled

from a long, potentially infinite, sequence. The number of examples at each

step is denoted by M . If M = 1, it is termed one-by-one online learning,

otherwise it is termed batch-by-batch online learning [2]. The examples are

drawn from an unknown probability distribution pt(x, y), where xt ∈ Rd is a

d-dimensional vector in the input space X ⊂ Rd, yt ∈ {1, ...,K} is the class

label in the target space Y ⊂ Z+, and K ≥ 2 is the number of classes.

We focus on one-by-one learning, i.e., St = (xt, yt), which is important for

real-time monitoring. One-by-one learning requires the model to adapt imme-

1https://github.com/kmalialis/actisiamese

4

diately upon seeing a new example, and algorithms intended for batch-by-batch

learning are, typically, not applicable for one-by-one learning tasks [3]. A one-

by-one online classifier receives a new instance xt at time t and makes a pre-

diction ŷt based on a concept h : X → Y . In online supervised learning, the

classifier receives the true label yt, its performance is evaluated using a loss func-

tion and is then trained based on the loss incurred. This process is repeated at

each step. The gradual adaptation of the classifier without complete re-training

ht = ht−1.train(·) is termed incremental learning [12]. The rate or frequency

of adaptation, and its associated costs and benefits, have been examined in [13].

In streaming tasks, however, the label cannot be typically provided, as it’s

either impossible (e.g. in real-time tasks) or costly / impractical. To address this

issue, an alternative paradigm is active learning [6], which deals with strategies

to selectively query for labels from a human expert according to a pre-defined

“budget” B ∈ [0, 1], e.g., B = 0.2 means that 20% of the arriving instances

can be labelled. A budget spending mechanism must ensure that the labelling

spending b ∈ [0, 1] does not exceed the allocated budget.

In online active learning [14], a classifier is built that receives a new in-

stance xt at time t. At each time step the classifier calculates the predic-

tion probability p̂(y|xt). The classifier outputs the best prediction probability

h(xt) = maxy p̂(y|xt) and the predicted class ŷt = argmaxy p̂(y|xt). A given

active learning strategy α : X → {False, True} decides if the true label yt is

required, which is assumed that an expert will provide. The classifier is evalu-

ated using a loss function and is then trained based on the loss incurred. Note

that training occurs only if the budget allows and when α(xt) = True.

Since data are sampled from a long, potentially infinite, sequence which is

typically the case in data streams, it is unrealistic to expect that all acquired

labels will be available at all times. The classifier should use a fixed amount

of memory for data storage. If learning occurs on the most recent example,

without using a memory, it is termed one-pass learning [2]. In such case, the

cost J at time t is calculated using the loss function l as follows J = l(yt, h(xt)).

A significant challenge encountered in some streaming applications is that

5

of data nonstationarity [2, 15, 16], typically caused by concept drift, which

represents a change in the joint probability. The drift between steps ti and tj ,

where i 6= j, is defined as:

pti(x, y) 6= ptj (x, y) (1)

Another major challenge encountered in some streaming applications is the

presence of infrequent events, also known as class imbalance [5]. It occurs

when at least one class is under-represented, thus constituting a minority class.

In binary classification, imbalance is defined as follows:

∃y0, y1 ∈ Y pt(y = y0) >> pt(y = y1), (2)

where y1 represents the minority class.

3. Related Work

3.1. Online supervised learning

Methods that address drift fall into three groups. Memory-based methods

use data storage (e.g., a sliding window) to maintain a set of recent examples

that a classifier is trained on. Change detection-based methods use statisti-

cal tests to detect drift. Ensembling refers to a set of classifiers which can

incorporate new concepts by adding new classifiers, and “forget” old concepts

by discarding or updating existing ones [17]. We direct the interested reader

towards these excellent surveys [2, 15, 18, 16, 19, 12, 20].

3.1.1. Class imbalance

The combined problem of class imbalance and concept drift remains an open

challenge [21, 3]. There are two types of approaches, algorithm-level and data-

level. Examples of algorithm-level methods include modified splitting criteria

and distance metrics to make skew-insensitive the Decision Tree (e.g., [22])

and Nearest Neighbour (e.g., [23]) classifiers respectively. Genetic Program-

ming has also been used, and this method [24] increases skew-insensitive rule

6

interpretability and recovery speed from drift. Cost-sensitive learning, one-class

classification, and anomaly detection are other types of methods that can han-

dle imbalance. We direct the interested reader towards these excellent surveys

[21, 3].

Examples of data-level approaches refer to resampling methods, which alter

the training set to deal with the skewed distribution. In contrast to stationary

environments, resampling methods require dedicated strategies or mechanisms

to handle imbalance in data streams. The idea of having separate memories

and, specifically, queues for each class to address imbalance is introduced by

Queue-Based Resampling [25]. Adaptive REBAlancing (AREBA) [10] extends

this idea and proposes a dynamic mechanism to adaptively modify the size of

the queues to constantly maintain separate and balanced queues per class. To

address the problem of imbalance, resampling has been combined with ensem-

bling, specifically, online bagging. Such examples, include, Oversampling-based

Online Bagging (OOB) [26], Kappa Updated Ensemble (KUE) [27], and Ro-

bust Online Self-adjusting Ensemble (ROSE) [28]. Other ensembling methods,

include, EONN [29], ESOS-ELM [30], GRE [31] and HEEM [32].

While these algorithms have been shown to be effective, they typically rely

on supervision [21, 3].

3.2. Online active learning

3.2.1. Querying strategies

The most common strategy is uncertainty sampling, where the learner

queries the most uncertain instances, which are typically found near the decision

boundary [33]. The majority of existing active learning strategies assume the

availability of all training examples U ⊂ X (offline active learning) [34]. One

way to measure uncertainty [6] is to first find the instance xq with the least

confident best prediction:

xq = argmin
x∈U

h(x) (3)

7

where h(x) = maxy p̂(y|x) and request its label if it satisfies:

h(xq) < θ, (4)

where θ is a threshold which is typically fixed.

Some works consider batch-by-batch online active learning [35, 36, 37]. To

address drift, [35] uses ensembling, [36] uses a sliding window approach, while

[37] uses a change detection-based method. Work on one-by-one online active

learning is limited. The arriving xt is queried if:

h(xt) < θ, (5)

where h(xt) = maxy p̂(y|xt) and θ is a fixed threshold. This is called a fixed

uncertainty sampling strategy [14].

This strategy may not perform well if the threshold is set incorrectly, or if the

classifier learns enough so that the uncertainty remains above the fixed threshold

most of the time. In [14] a variable uncertainty sampling strategy is proposed,

which incorporates randomisation to ensure that the probability of labelling any

instance is non-zero. This is called a randomised variable uncertainty sampling

(RVUS) strategy and the threshold is modified as follows:

θ =

θ(1− s) if h(xt) < θrdm # request label

θ(1 + s) if h(xt) ≥ θrdm # don’t request

(6)

where s is a step size parameter, θrdm = θ ∗ η where η follows a Normal distri-

bution η ∼ N(1, δ) with a standard deviation of δ. Another work that proposes

a variable uncertainty sampling strategy is [38].

Query-by-committee [39] is a popular approach where a set of classifiers,

referred to as the committee, is in place. Each committee member “votes” or

predicts the label and the most informative query is considered to be the instance

they disagree the most. The majority are offline active learning methods. Early

examples are query by bagging and query by boosting [40] while another one is

Active-DECORATE [41], which focuses on building a diverse committee. An

8

abstaining mechanism is proposed in [42] to temporarily remove uncertain clas-

sifiers, with dynamically adjusting the abstaining criterion in favour of minority

classes. In [43], the problem has been approached as a multi-armed bandit prob-

lem, which obtains an efficient and adaptive ensemble active learning procedure

by selecting the most competent classifier from the pool for each query.

An alternative strategy is density sampling, whose idea is that informative

instances are not only those which lie near the decision boundary, but also those

which lie in high density regions i.e. those which inhabit dense regions of the

input space according to a distance or similarity metric. As with uncertainty

sampling, the majority of work is on offline active learning where the set of all

unlabelled instances U ⊂ X is already available. In [44] the instance queried for

labelling is selected by its average similarity to other instances in U as follows:

argmax
x∈U

1

|U |
∑
xu∈U

sim(x, xu), (7)

where x 6= xu and sim is a similarity function (e.g., cosine). This has also been

applied in batch-by-batch online learning where an informative instance is the

one which is similar to other unlabelled instances in the most recent batch [45].

Hybrid strategies have been proposed where various methods are combined

to query even more informative instances. In [44], the authors combine offline

density sampling with another strategy, such as, uncertainty sampling or query-

by-committee. In [45], the authors use a batch-by-batch online active learning

strategy where informative instances are selected based on uncertainty, density

and overlap. A one-by-one online active learning strategy is proposed in [46]

that uses uncertainty and density sampling.

An important and desirable property of online active learning strategies is

their data processing functionality [47]. Ideally, one-pass (or single-pass) ensures

that data is loaded sample-wise, the sample is processed through the active

learning strategy, the classifier is updated if the strategy returned true, and

then the sample is immediately discarded. Examples include the aforementioned

[14, 38], as well as [48, 49]. When storage is used (e.g., window), it is essential

that a fixed amount of memory is allowed for any storage [15].

9

Thus far, we have reviewed “classical” incremental approaches inspired by

the machine learning and data mining community. An alternative line of re-

search has focussed on enhanced evolving approaches (fuzzy models) inspired

by the soft computing community, which can deal with significant novelty con-

tent, and allows knowledge expansion of the models on-the-fly based on selected

samples [47]. Representative works, include, [50], [51] and [52]. We direct the in-

terested reader towards [47] for a comprehensive review of online active learning

strategies, including, evolving (fuzzy) approaches.

For completeness, active learning has been combined with other learning

paradigms, such as, semi-supervised and unsupervised learning [53, 54, 55].

One contribution of this work is that we propose a new density-based online

active learning strategy, whose novel characteristic is that the similarity is con-

sidered in the latent / encoding space rather than in the input / feature space.

Also, no online active learning strategy addresses effectively the combination of

drift and imbalance, while our work focuses exactly on this joint problem.

3.2.2. Budget spending mechanisms

One approach is to count the exact labelling spending [14]. Its drawback

is that the contribution of every next label will diminish over infinite time.

One way to solve the aforementioned problem is to count the exact labelling

spending over a sliding window bt =
ut
w

w , where utw is the number of instances

queried within the sliding window w. This, however, contradicts the incremental

learning concept as it needs to record previously labelling decisions. The authors

in [14] approximate the labelling spending b̂t =
ût
w

w by approximating the number

of instances queried within the sliding window as follows: ûtw = λût−1
w + a(xt),

where λ = w−1
w and a(xt) is a Boolean value that indicates if the true label for

xt is queried or not. The authors prove that b̂ is an unbiased estimate of b.

4. Proposed Method

ActiSiamese’s overview is shown in Fig 1. The component Qt is a multi-

queue memory where each class has its own sliding window which is implemented

10

!!

Classifier(s)

Prediction

Training

!!! !!" … !!%
!"! !"" … !"%

!$! !$" … !$%

#"
##

#$
…

$!

Active learning
strategy:

Query label?

Oracle

%"!

Append (!! , "!)

Output
prediction

True

Don’t train
False

Figure 1: ActiSiamese’s architecture which synergistically combines a multi-queue memory

(left), a classifier or an ensemble of classifiers (middle), and online active learning (right).

as a queue. In essence, this is ActiSiamese’s way to deal with concept drift. The

middle component denotes the classifier; notice that ensembling is supported.

The component on the right depicts the active learning strategy. Specifically,

at any time t, we observe an arriving instance xt. The classifier considers the

examples in Qt, and provides the predicted class ŷt. The flow of information for

the prediction part is shown in yellow. If the active learning strategy requests

the label, this is provided by the oracle. Alternatively, nothing is done and the

algorithm waits for the next arriving instance. This is shown in green. The

flow of information for incrementally training the classifier is shown in orange.

Each component is described below in detail. Towards the end of this section, we

discuss our design choices, computational aspects, and other important remarks.

4.1. Multi-queue memory

The framework uses multiple first-in-first-out (FIFO) queues that will be

populated by examples queried by the active learning strategy. At any time t

we maintain a set of K queues, one for each class as follows:

Qt = {qtc}Kc=1, (8)

11

where c is a class and K ≥ 2 is the number of classes. All queues are of the

same capacity L and a queue corresponding to class c is defined as follows:

qtc = {xc,i}Li=1, (9)

where for any two xc,i, xc,j ∈ qtc such that j > i, xc,j has been observed more

recently in time.

ActiSiamese assumes that the queues are initially full, i.e., it assumes the

initial availability of L labelled examples per class. While this may be difficult

to have in practise, we will show that ActiSiamese is effective for very small

values of L, e.g., up to ten. We argue that for the vast majority of applications

this assumption is realistic. The assumption is not needed for problems in which

imbalance does not exist, as the queues will be populated at a similar rate.

4.2. ActiSiamese

While the proposed architecture doesn’t impose any restrictions on the selec-

tion of the classifier, we propose the use of Siamese neural networks which have

been demonstrated (in the offline supervised learning framework) to be capable

of few-shot learning, that is, learning from a few examples per class [56].

At the core of ActiSiamese lies a siamese neural network [57] that consists

of two identical neural networks (the “twins”) as depicted in Fig 2. The basic

idea is to learn a function e that maps an input pattern x into a latent space,

thus forming its “encoding” e(x), in such a way that a simple distance in the

latent space approximates the neighbourhood relationships in the input space.

Traditional models, e.g. the k-nearest neighbour (k-NN) algorithm, con-

sider neighbourhood distances in the input space and, it is for this reason

that siamese networks have significantly outperformed these models in high-

dimensional spaces, e.g., for image recognition [56].

Given a pair of examples (xi, xj), the distance metric used is the element-

wise absolute difference as in [58]:

d(xi, xj) = |e(xi)− e(xj)| (10)

12

!)

#̂(!) , !*)

distance
sigmoid!*

NN

!(
!)…

!(
"
)…

NN

%(
!,
")

Figure 2: A siamese neural network.

The calculated distance is then provided to a sigmoid output unit. The siamese

network p̂ : X × X → [0, 1] will learn to output a probability p̂(xi, xj) that

indicates if the elements of the pair (xi, xj) belongs to the same class.

Class prediction: To predict the class of the arriving xt (yellow part in

Fig. 1), ActiSiamese considers all examples in Qt. For each queue, we find the

average similarity of xt to its elements. We choose the queue with the highest

average similarity:

ŷt = argmax
c∈{1,...,K}

1

L

L∑
i=1

p̂(xt, xc,i), (11)

where K is the number of classes, and xc,i ∈ qtc.

Active learning strategy: This work focuses on one-by-one learning strate-

gies (green part in Fig. 1). ActiSiamese proposes a randomised variable simi-

larity sampling (RVSS) strategy, where the selection criterion value is the max-

imum similarity in the predicted class:

v = max
i∈{1,...,L}

p̂(xt, xc,i), (12)

where c is the class selected using Eq. (11). This criterion is compared to a

variable threshold to determine whether or not to trigger selection, as follows:

θ =

θ(1− s) if v < θrdm # request label

θ(1 + s) if v ≥ θrdm # don’t request

(13)

where s is a step size parameter, θrdm = θ ∗ η where η follows a Normal distri-

bution η ∼ N(1, δ) with a standard deviation of δ. This was inspired by RVUS

13

[14] as shown in Eq. (6), although, the selection criterion value is no longer

h(xt) = maxy p̂(y|xt), but instead it is the proposed v.

Notice that ActiSiamese uses a one-by-one online active learning strategy.

In other words, when the active learning strategy returns true, it requests the

label of only the most recently observed instance xt. Therefore, the proposed

method does not need or store past unlabelled data. Recall that the memory

(multi-queue) holds only some of the previously labelled data.

Lastly, we use the budget spending mechanism from [14] described in Sec-

tion 3.2.2, however, any mechanism can be used which ensures that the labelling

spending b does not exceed the allocated budget B.

Incremental training: Recall that training (orange part in Fig. 1) is initi-

ated only when the active learning strategy requests and receives a class label.

At time t, we generate from Qt all possible combinations of size two Ct2. We

then generate two subsets of Ct2 as described below. The first subset contains

all pairs in which the two examples belong to the same class, while the second

subset contains all pairs in which the two examples belong to different queues:

Qtpos = {∀(xc1,i1 , xc2,i2) ∈ Ct2|c1 = c2} (14)

Qtneg = {∀(xc1,i1 , xc2,i2) ∈ Ct2|c1 6= c2} (15)

Importantly, we ensure that the two sets are always balanced and, if nec-

essary, we perform random downsampling to Qtneg. The training set is thus

formed as follows:

Qttrain = Qtpos ∪Qtneg (16)

Let t−∆ be the time of the last training, i.e., the last time a class label was

requested and provided by an expert. Let also t be the current time, and let’s

assume that the active learning strategy requested and received the class label.

The cost function J t at time t is defined as follows:

J t =
1

|Qttrain|
∑

(xi,xj)∈Qt
train

l(yi,j , p̂(xi, xj)) (17)

where yi,j ∈ {0, 1} is the ground truth and the loss function l used is the binary

14

cross-entropy. Learning is performed using incremental stochastic gradient de-

scent where each neural network weight w is updated according to the formula

wt ← wt−∆−α∂J
t

w , where ∂Jt

w is the partial derivative with respect to w, and α

is the learning rate. ActiSiamese is trained using the backpropagation algorithm

[59]. We clarify that ActiSiamese’s architecture remains fixed, and no layers are

incrementally added; there is no evolution of any structural components.

ActiSiamese’s pseudocode is shown in Algorithm 1.

4.3. ActiSiamese-WM

This algorithm refers to a collection of N classifiers {Si}Ni=1, where Si is an

ActiSiamese classifier.

Class prediction: In this work, we consider the popular Weighted Majority

(WM) algorithm [60]. We maintain a pool of weights for each classifier: {wi}Ni=1.

For each arriving instance xt, each classifier provides a prediction probability

p̂(c|xt) for each class c ∈ {1, ...,K}. We then calculate the weighted average

probability for each class:

{p̂tavg(c|xt)}Kc=1 (18)

The algorithm predicts the class of each xt as follows:

ŷt = argmax
c

p̂tavg(c|xt) (19)

The weight of each classifier i is updated using the formula below:

wti ← wt−1
i e−βz

t
i , (20)

where zti is the zero-one (0/1) loss of classifier i at time t and β is a pre-specified

multiplicative factor [60].

Active learning strategy: We use the proposed randomised variable simi-

larity sampling strategy described in the previous section, however, the selection

criterion value is now given as follows:

v = max
c∈{1,...,K}

p̂tavg(c|xt) (21)

Incremental training: Each Siamese network Si is trained exactly as de-

scribed earlier in Eq. (17).

15

Algorithm 1 ActiSiamese

Input:

1: a: active learning strategy

2: B: labelling budget

3: K: number of classes

4: L: queue length

5: D: labelled data . Optional, |D| = K × L

Initialisation:

6: init queues Q0 = FIFO(num = K, capacity = L, init = D)

7: init budget expenses b0 = 0

8: create model h0

Main:

9: for each time step t ∈ [1,∞) do

10: receive instance xt ∈ Rd

11: predict class ŷt using Eq. (11)

12: Qt = Qt−1

13: ht = ht−1

14: if bt−1 < B then . expenses within budget

15: calculate query criterion value v using Eq. (12)

16: if a(xt, v) == True then . label request using Eq. 13

17: receive true label yt

18: append example Qt = Qt−1.append(xt, yt)

19: prepare training pairs Qttrain using Eq. (16)

20: calculate cost J t using Eq. (17)

21: update classifier ht = ht−1.train(J t)

22: update budget expenses bt . Section 3.2.2

16

5. Experimental Setup

5.1. Datasets

5.1.1. Synthetic datasets

These are necessary as they provide us with the flexibility to control the

simulation conditions i.e. the imbalance rate, when to introduce drift, and the

nature of the drift.

(a) sea (b) sea drifted

0 2 4 6 8 10 12 14
x1

0
2
4
6
8

10
12
14

x2

(c) circles

0 2 4 6 8 10 12 14
x1

0
2
4
6
8

10
12
14

x2

(d) circles drifted

(e) blobs (f) blobs drifted

Figure 3: The synthetic data used in our experimental study.

sea [61]: It consists of two features x1, x2 ∈ [0, 15]. The original dataset was

a binary classification problem; we have extended it here to ten classes. The

17

decision boundaries are shown in Fig. 3a and defined as follows:

ρ0 ≤ x1 + x2 < ρ1 → class 1 (pink)

ρ1 ≤ x1 + x2 < ρ2 → class 2 (brown)

...

ρ9 ≤ x1 + x2 < ρ10 → class 10 (red)

(22)

The parameter values are ρ =< 0, 2, 4, ..., 18, 30 >. We will consider a version

of this dataset with posterior concept drift as depicted in Fig. 3b, where the

parameters become ρ =< 0, 12, 14, ..., 30 >. We will consider cases where the

drift occurs abruptly and recurrently. Furthermore, we will consider a version

of sea with prior drift, where initially the probability of all classes is p(y) = 0.1.

After a specified time, this will change to a multi-minority imbalance scenario.

circles [62]: It consists of two features x1, x2 ∈ [0, 15] and ten classes as

shown in Fig. 3c. Each class is represented by a circle of the form (x1− x1c)
2 +

(x2 − x2c)
2 = r2

c where (x1c, x2c) and rc are its centre and radius respectively.

Like with the sea dataset, we will consider posterior (depicted in Fig. 3d) and

prior types of drift, as well as abrupt and recurrent drift.

blobs: It consists of three features x1, x2, x3 ∈ [0, 15] and 12 classes as

shown in Fig. 3e. Each class is an isotropic Gaussian blob and noise exists due

to the standard deviation of the blobs. As before, we will consider abrupt and

recurrent posterior concept drift as depicted in Fig. 3f.

Notice that these datasets exhibit a different level of posterior drift severity,

specifically, drift is mild, severe and extreme in the circles, blobs and sea data

respectively. Moreover, we will consider abrupt and recurrent types of drift.

Furthermore, we produce imbalanced versions of the above datasets. We

consider the more challenging multi-minority class imbalance scenarios [63]. We

have chosen the pink class to be the majority class, and the rest constitute

minority classes with the same imbalance rate. We consider cases of severe

(1%) and extreme (0.1%) imbalance. For example, for sea where the number

of classes is K = 10, the extreme multi-minority scenario would correspond to:

p(y = pink) = 1.0− (K − 1)× p(y ∈ minority) = 1.0− 9× 0.001 = 0.991.

18

Two Patterns [64]: A simulated time series dataset in which each class

represents the presence of two step patterns (up, down). There are 128 features,

5000 examples, 4 classes (down-down, up-down, down-up, up-up), and it is a

balanced dataset.

Moving Squares [65]: Four equidistantly separated, squared uniform dis-

tributions are moving in horizontal direction with constant speed. The direction

is inverted whenever the leading square reaches a predefined boundary. Each

square represents a different class. There is a predefined time horizon of 120

examples before old instances may start to overlap current ones.

Interchanging RBF [65]: Fifteen Gaussians with random covariance ma-

trices are replacing each other every 3000 samples. Thereby, the number of

Gaussians switching their position increases each time by one until all are si-

multaneously changing their location. Altogether 67 abrupt drifts are occurring

within this dataset.

5.1.2. Real-world datasets

These are high-dimensional, noisy, and more challenging than synthetic

datasets, however, the true nature of concept drift may be unknown.

gestures [66]: The task is to classify four human gestures from electrical

activity of muscles (electromyography). Eight sensors are placed on skin surface,

and each arriving instance includes eight consecutive readings i.e. 64 features.

This dataset is balanced as the number of arriving instances per class is 2500.

Forest [67]: It contains cartographic information from the U.S. Forest Ser-

vice. The task is to predict the forest cover type for given 30x30m cells from

the Roosevelt National Forest in Colorado. There are seven forest cover types

each with 20000, 30000, 3500, 275, 1000, 1500, 2000 instances respectively.

MNIST [68]: The dataset consists of handwritten digits (“0”-“9”) where

each image is of size 28x28. While it is, typically used as a benchmark for

training image classification systems, we use it in our study as it can stress test

streaming algorithms with its high dimensionality of 784 features. We consider

two multi-minority scenarios where the majority class is the digit “0” and the

19

rest of the digits are the minority classes. In the first scenario the imbalance

level is 10%, that is, 5000 arriving images of digit “0”, and 500 from each of the

remaining digits. In the second scenario the imbalance level is 1%, that is, 5000

arriving images of digit “0”, and 50 from each of the remaining digits.

Keystroke [69]: The dataset was constructed after 51 users were requested

to type a specific password which was captured in eight sessions over different

days. The task is to identify four different users based on their typing rhythm.

It has 1600 examples and ten features which are extracted from the “flight time”

for each pressed key; defined as the difference between the times when a key is

released and when the next one is pressed.

UWave Gesture Library Z [70]: A time series dataset for a set of eight

simple gestures generated from accelerometers using the Wii remote. The data

consists of the Z coordinates of each motion. There are 8 classes with total 3582

samples with 315 features.

Insects [71]: These are data generated by a low-cost laser sensor, where the

task is to classify species of insects. This task is important as it constitutes a

step towards the development of intelligent traps, which will be able to capture

species of interest (e.g., for pest control, during diseases). The data stream is

nonstationary as the insects’ metabolisms are influenced by environmental con-

ditions (e.g. temperature), circadian rhythm, and age. The number of features

are 33 and the imbalance ratio is 20%.

5.2. Compared methods

RVUS: The seminal work [14] described in Sec. 3.2.1 and shown in Eq. (6).

It uses an uncertainty-based active learning strategy, a standard neural network,

and it is a one-pass learner (no memory).

RVUS-WM: The ensemble version of RVUS with size is N = 10 and the

multiplicative factor of the Weighted Majority algorithm is set to β = 0.5.

ActiQ: A state-of-the-art uncertainty-based algorithm [11] which uses the

RVUS, but within the proposed architecture shown in Fig. 1. In other words,

20

similarly to RVUS it uses a standard neural network, and similarly to ActiSi-

amese it uses the multi-queue memory.

ActiQ-WM: The ensemble version of ActiQ.

RVSS: A randomised variable similarity sampling active learning strategy

using cosine similarity as in [6]. It uses the memory (multi-queue) from the

proposed architecture (Fig. 1). Similarity is considered in the input space (rather

than the latent space).

RVSS-WM: The ensemble version of RVSS.

ActiSiamese: The proposed method described in Section 4.2 and Algo-

rithm 1. It uses a similarity-based active learning strategy, a Siamese network,

and it is a memory-based method. Similarity is considered in the latent space.

ActiSiamese-WM: The ensemble version of ActiSiamese (Section 4.3).

Our comparative study examines many crucial aspects of learning in data

streams, which are: i) one-pass learning (RVUS) vs memory-based (RVSS,

ActiQ, ActiSiamese); ii) uncertainty-based (RVUS, ActiQ) vs similarity-based

(RVSS, ActiSiamese) sampling strategies; iii) similarity-based in the input space

(RVSS) vs the latent space (ActiSiamese); and iv) single classifier (RVUS,

RVSS, ActiQ, ActiSiamese) vs ensembling (RVUS-WM, RVSS-WM, ActiQ-

WM, ActiSiamese-WM).

We have tried to make the comparison as fair as possible. First, we ensure

that no offline learning, i.e., no pre-training takes place. This means that all

methods start learning online at time t = 1 even if ActiQ and ActiSiamese have

access to E initial examples per class. Second, all active learning strategies use

the same parameter values, as suggested by [14]: step size s = 0.01, randomi-

sation threshold δ = 1.0 and sliding window size w = 300. Third, all methods

share the same classifier per dataset, which is standard neural network. For

ActiSiamese, it is replicated to form the “twin network”.

Classifiers are implemented in Keras [72]. For reproducibility, the hyper-

parameter values for synthetic datasets are shown in Table 1. The hyper-

parameter values for real-world datasets are shown in Table 2; any values not

shown are the same as in the synthetic datasets. Notice that the output acti-

21

Table 1: Hyper-parameter values for synthetic data

Sea Circles Blobs Two Patterns Interchanging RBF Moving Squares

Learning rate 0.01 0.001

Hidden layers [32, 32] [256, 256] [64, 64] [8, 32]

Mini-batch size 64 128

Weight initialiser He Normal [73]

Optimiser Adam [74]

Hidden activation Leaky ReLU(λ = 0.01) [75]

Num. of epochs 1

Output activation Binary (ActiSiamese) / Categorical cross-entropy

Loss function Sigmoid (ActiSiamese) / Softmax

Table 2: Hyper-parameter values for real-world data

Gestures Insects Forest Keystroke UWave Gestures MNIST

Learning rate 0.001 0.0001

Hidden layers [128, 128] [32, 32] [64, 128] [512, 1024] [1024, 1024]

Mini-batch size 128

vation and loss function depend on the type of the neural network used. The

standard fully-connected network learns the probability of an arriving example

xt belonging to each class, i.e., p̂(y|xt). As a result, the categorical cross-

entropy loss function and the softmax output activation are used. In contrast,

the Siamese network learns to output a probability p̂(xi, xj) that indicates if the

elements of the pair of examples (xi, xj) belongs to the same class (Fig. 2). As

a result, the binary cross-entropy and the sigmoid output activation are used.

5.3. Performance metrics and Evaluation method

Classifiers are typically evaluated using the overall accuracy metric. In the

presence of imbalance, however, this metric becomes unsuitable as it is biased

towards the majority class(es) [5]. A widely accepted performance metric which

is not sensitive to imbalance is the geometric mean: [76]:

G-mean = K

√√√√ K∏
c=1

Rc, (23)

where Rc is the recall of class c and K is the number of classes. Not only

G-mean is not sensitive to imbalance, it has some desirable properties as it is

22

high when all recalls are high and when their difference is small [5].

To evaluate and compare sequential learning algorithms, we use the popu-

lar prequential evaluation with fading factors method. It has been proven to

converge to the Bayes error when learning in stationary data [77]. Moreover,

a major advantage is that it does not require a holdout set and the predictive

algorithm is always tested on unseen data. The fading factor is set to ξ = 0.99.

In all simulations we plot the prequential G-mean in every step averaged over

20 repetitions, including the error bars displaying the standard error around the

mean. In some plots the error bars are very small but they are always included.

Moreover, we test for statistical significance using a one-way repeated mea-

sures ANOVA and then using posthoc multiple comparisons tests with Fisher’s

least significant difference correction procedure to show which of the compared

method is significantly different from the others.

6. Empirical Analysis of ActiSiamese

6.1. Effect of the budget B

Stationary data: Figs 4a - 4c depict the results for the three synthetic

datasets under stationary conditions. The “SL” corresponds to online super-

vised learning i.e. the label is presented at each step. Simulations were per-

formed for 20000 steps, therefore, the final performance is measured at t =

20000. The queue capacity is set to L = 10. RVUS performs significantly worse

than the proposed ActiQ and ActiSiamese. The ActiQ and ActiSiamese obtain

overall a similar final performance. Specifically, in Fig 4a and 4b ActiQ performs

slightly better, while in Fig 4c ActiSiamese performs slightly better. In a later

section, however, we will show that their learning speed differs substantially.

Nonstationary data: For sea, the same experiment was repeated when

drift occurs abruptly at t = 5000. We measure the performance at t = 5500, i.e.

only 500 steps after the drift, to examine the short-term effect of the drift on

performance. This is depicted in Fig 4d. The performance of RVUS declines as

the budget gets smaller, however, the decline rate is worse compared to Fig 4a.

23

SL 1.0 0.5 0.25 0.1 0.05 0.01
Budget

0.0

0.2

0.4

0.6

0.8

1.0
G

-m
ea

n

ActiSiamese
ActiQ
RVUS

(a) sea (t = 20000)

SL 1.0 0.5 0.25 0.1 0.05 0.01
Budget

0.0

0.2

0.4

0.6

0.8

1.0

G
-m

ea
n

ActiSiamese
ActiQ
RVUS

(b) circles (t = 20000)

SL 1.0 0.5 0.25 0.1 0.05 0.01
Budget

0.0

0.2

0.4

0.6

0.8

1.0

G
-m

ea
n

ActiSiamese
ActiQ
RVUS

(c) blobs (t = 20000)

SL 1.0 0.5 0.25 0.1 0.05 0.01
Budget

0.0

0.2

0.4

0.6

0.8

1.0

G
-m

ea
n

ActiSiamese
ActiQ
RVUS

(d) sea drifted (t = 5500)

SL 1.0 0.5 0.25 0.1 0.05 0.01
Budget

0.0

0.2

0.4

0.6

0.8

1.0

G
-m

ea
n

ActiSiamese
ActiQ
RVUS

(e) sea drifted (t = 20000)

Figure 4: The effect of the budget B on the performance (t = 20000) under balanced data.

Furthermore, we observe a significant drop in performance for ActiQ when the

budget is B = 1%. The performance at t = 20000, that is, 15000 steps after

the drift, is shown in Fig 4e. It is almost identical to Fig 4a, i.e., all algorithms

have recovered from the drift. In summary, important remarks are as follows:

• RVUS’ final performance severely declines as the budget gets smaller.

• For ActiQ and ActiSiamese, the decline rate is very small, even negligible

in some cases, with the exception of ActiQ when B = 1% under drift.

These approaches are robust to the choice of the budget.

• We have the first evidence that the multi-queue memory is beneficial com-

pared to the one-pass learner RVUS.

24

(a) sea (b) circles

(c) sea drifted (d) circles drifted

Figure 5: The effect of L on ActiSiamese under severe (1%) imbalance.

6.2. Role of the queue capacity L

Stationary data: Figs 5a - 5b show the learning curves for ActiSiamese in

sea and circles respectively. The curves show the prequential G-mean at every

step. For all experiments the budget is B = 1% and imbalance is severe (1%).

We conclude that the higher the value of L the higher the performance, however,

diminishing returns are obtained, e.g., the cases where L = 50 and L = 100 do

not differ considerably. Importantly, irrespective of the value of L, ActiSiamese

learns fast (all learning curves are steep). This is in contrast to ActiQ shown in

Figs 6a - 6b where the choice of L significantly affects its learning speed.

Nonstationary data: Figs 5c - 5d show the learning curves for ActiSiamese

in sea and circles respectively where drift occurs abruptly at t = 5000. Hence,

let’s focus on the part of the curves after the drift i.e. t ≥ 5000. In Fig 5c where

25

(a) sea (b) circles

(c) sea drifted (d) circles drifted

Figure 6: The effect of L on ActiQ under severe (1%) imbalance.

the drift is more severe, we observe a variation in performance (indicated by

the shaded regions) and a slight decrease in the final performance compared to

Fig 5a. ActiSiamese is robust to the choice of L; for comparison, Figs 6c - 6d

show the analogous plots for ActiQ. To sum up, important remarks are:

• In stationary data, ActiSiamese with larger values of L performs better,

however, diminishing returns are obtained.

• In nonstationary data, ActiSiamese is still robust to the choice of L, how-

ever, a slight performance variation is observed after the drift.

• We have the first evidence that the use of a Siamese network is beneficial

compared to ActiQ, which uses a standard neural network.

26

(a) normal (b) class imbalance (c) abrupt drift

(d) imbalance + abrupt (e) recurrent drift

Figure 7: Comparative study in sea: (a) normal (balanced, stationary), (b) extreme (0.1%)

imbalance, (c) abrupt drift, (d) extreme imbalance and abrupt drift, and (e) recurrent drift.

7. Comparative Study

7.1. Synthetic datasets

Figs. 7a-7e show the performance of the methods in the sea dataset under

normal conditions (stationary, balanced), extreme (0.1%) imbalance, abrupt

drift, both extreme imbalance with abrupt drift, and recurrent drift respectively.

In all experiments, the memory size is L = 10, and the budget is B = 1% unless

otherwise stated.

In Fig. 7a, ActiSiamese learns significantly faster. Given more time, ActiQ

will catch up. In Fig. 7b, the superiority of ActiSiamese is shown. In Fig. 7c

both ActiSiamese and ActiQ (to a lesser degree) deal well with abrupt drift;

notice how similar this figure with Fig. 7a is. The combination of drift with

imbalance in Fig. 7d causes some variation in the performance throughout the

27

(a) normal (b) class imbalance (c) abrupt drift

(d) imbalance + abrupt (e) recurrent drift

Figure 8: Comparative study in circles: (a) normal (balanced, stationary), (b) extreme (0.1%)

imbalance, (c) abrupt drift, (d) extreme imbalance and abrupt drift, and (e) recurrent drift.

experiment’s duration. We have run another simulation experiment with recur-

rent drift shown in Fig. 7e. Given the challenging conditions of recurrent drift,

the active learning budget has been increased from B = 1% to B = 5%.

The analogous plots for circles and blobs are shown in Figs. 8a-8e and

Figs. 9a-9e. The budget is set to B = 1% in all cases, except for recurrent

drift in blobs which is B = 5% (Fig. 9e). Overall, similar results are observed.

A notable observation is that in Fig. 8a, given additional time, ActiQ slightly

outperforms ActiSiamese.

The results for the remaining of the synthetic datasets are depicted in

Figs. 10a-10e. The active learning is B = 10% for circles, sea and Two Patterns,

while for the more challenging Interchanging RBF and Moving Squares datasets

it is set to B = 30%. In Figs.10a and 10b, ActiSiamese has a superior learning

speed; given additional time RVSS and ActiQ equalise its performance in sea

28

(a) normal (b) class imbalance (c) abrupt drift

(d) imbalance + abrupt (e) recurrent drift

Figure 9: Comparative study in blobs: (a) normal (balanced, stationary), (b) extreme (0.1%)

imbalance, (c) abrupt drift, (d) extreme imbalance and abrupt drift, and (e) recurrent drift.

and slightly outperform it in circles. In Figs. 10c and 10d ActiSiamese outper-

forms the rest. The “oscillations” observed in Fig. 10d are due to interchanging

nature of drift. Interestingly, in Fig. 10e, RVSS outperforms the rest.

Taking everything into account, important remarks are as follows:

• ActiSiamese, ActiQ, and RVSS that use the multi-queue memory signifi-

cantly outperform the one-pass learner RVUS in all scenarios.

• Among the memory-based methods, ActiSiamese learns significantly faster

than the rest. Given more time, ActiQ and RVSS may equalise ActiSi-

amese or may even slightly outperform it.

• ActiSiamese is superior under class imbalance.

• The methods that use the multi-queue memory deal with drift well, and

they are robust to it. However, under challenging drift conditions, we had

29

(a) circles (prior drift) (b) sea (prior drift) (c) Two Patterns

(d) Interchanging RBF (e) Moving Squares

Figure 10: Comparative study for the rest of the synthetic datasets.

to increase the memory size and / or active learning budget.

• ActiSiamese, which considers similarity in the latent space significantly

outperforms RVSS which considers similarity in the input space. An ex-

ception was observed in Fig. 10e.

• Overall, ensembles gain a few percentages of performance for all methods.

7.2. Real datasets

This section describes our study in real-world datasets. Figs. 11a - 11f show

the performance of each method in the Gestures, MNIST, Forest, Keystroke,

UWave Gestures, and Insects dataset respectively.

Recall that the active learning budget is critical to the success of a real-world

application. A budget too large would correspond to too frequent interactions

with a human expert, i.e., requesting ground truth information too often which

30

(a) Gestures (L=50,B=1%) (b) MNIST (L=10,B=1%) (c) Forest (L=50,B=1%)

(d) Keystroke

(L=50,B=10%)

(e) UWave Gestures

(L=50,B=10%)

(f) Insects (L=10,B=10%)

Figure 11: Comparative study for the real-world datasets.

could potentially cause a method to be impractical. It is for this reason, we

have kept the budget to a low value; in Gestures, MNIST, and Forest (Figs. 11a

- 11c) the budget is B = 1%, while in Keystroke, UWave Gestures, and Insects

(Figs. 11d - 11f) it is B = 10%. The memory size is L = 10 for MNIST and

Insects, and L = 50 for the rest which have proven to be more challenging due

to the small budget.

In summary, the results are in alignment with those obtained in the synthetic

datasets:

• The proposed methods (ActiSiamese, ActiSiamese-WM) significantly out-

perform the rest in two datasets (Gestures, Keystroke).

• ActiSiamese and ActiSiamese-WM learn significantly faster in two datasets

(MNIST, Forest). In these two datasets, the final performance is similar

31

Table 3: Mean performance and standard deviation at the last time step (Gestures, UWave

Gestures, Insects), and early in the learning process at t = 500 (MNIST, Forest, Keystroke).
Gestures MNIST Forest Keystroke UWave Gestures Insects

ActiSiamese (WM) 0.5616 (0.0189) 0.6785 (0.0238) 0.4654 (0.0571) 0.9428 (0.0041) 0.5778 (0.0175) 0.5263 (0.0208)

ActiSiamese 0.5456 (0.0191) 0.6193 (0.0376) 0.3653 (0.1857) 0.9393 (0.0061) 0.5729 (0.0180) 0.5258 (0.0179)

ActiQ (WM) 0.4311 (0.0239) 0.4415 (0.1563) 0.0000 (0.0000) 0.8627 (0.0091) 0.6440 (0.0139) 0.5247 (0.0185)

ActiQ 0.4175 (0.0191) 0.4172 (0.0518) 0.0000 (0.0000) 0.8322 (0.0212) 0.6441 (0.0097) 0.5269 (0.0168)

RVSS (WM) 0.4446 (0.0172) 0.4826 (0.0533) 0.0000 (0.0000) 0.8634 (0.0115) 0.6442 (0.0095) 0.5293 (0.0167)

RVSS 0.4193 (0.0284) 0.4289 (0.0414) 0.0000 (0.0000) 0.8396 (0.0253) 0.6463 (0.0116) 0.5259 (0.0159)

RVUS (WM) 0.2937 (0.0296) 0.0000 (0.0000) 0.0000 (0.0000) 0.3340 (0.1957) 0.4770 (0.0212) 0.1456 (0.0804)

RVUS 0.2831 (0.0220) 0.0000 (0.0000) 0.0000 (0.0000) 0.1761 (0.1605) 0.4739 (0.0209) 0.1548 (0.0794)

to RVSS(-WM) and ActiQ(-WM) which they make use of the multi-queue

memory of the proposed methods.

• An exception where ActiSiamese performs worse is in the UWave Gestures.

Expectedly, the proposed method is not the silver bullet to all problems.

• The one-pass learner RVUS (no memory) is significantly worse than the

rest, except in Forest which obtains a similar performance to them.

• Ensemble learning gains a few percentages of performance for all methods.

• In challenging problems, larger values of the memory L and budget B,

typically, improve the performance of all methods.

To verify the above, we further conducted a statistical analysis. The final

performance (i.e., at the last time step) is examined for Gestures, UWave Ges-

tures, and Insects, while the learning speed is examined early in the learning

process (t = 500) for MNIST, Forest, and Keystroke. Table 7.2 shows the mean

performances and standard deviations. The method which yields the higher

performance based on ANOVA and its posthoc tests (Section 5.3) is shown in

bold font which denotes statistical significance over the others.

8. Discussion

In this section we discuss important remarks concerning ActiSiamese’s com-

putational aspects, advantages, and limitations.

32

8.1. Computational aspects

Memory requirements: The memory size is |Qt| = K × L, and while

the number of classes K depends on the problem, this work has demonstrated

that ActiSiamese is effective when the queue capacity L is, typically, small

(e.g., ten). Due to the pair creation process (discussed in the point below),

ActiSiamese makes use of |Qttrain| training data which is, typically, larger than

|Qt|. Importantly, ActiSiamese satisfies one of the most important and desired

properties of learning in nonstationary environments, which is having a fixed

amount of memory for any storage [15]. Ideally, however, an algorithm should

be capable of one-pass learning; we discuss this below.

Training stage: A computational step of ActiSiamese is the creation of

pairs Qttrain from the original examples Qt. First, we have showed that ActiSi-

amese is effective even when the budget is low, hence, the pair creation process,

which is initiated only during training, doesn’t occur frequently. Second, only

a fraction of the training pairs need to be re-calculated at each training step.

Third, ActiSiamese is updated once (num epochs = 1) whenever trained. Not

only this helps to reduce the training cost, it can also prevent overfitting.

Prediction stage: For prediction, ActiSiamese computes the average sim-

ilarity of xt to its elements as shown in Eq. (11). Significant computation

speed can be gained by pre-computing the encodings, therefore, avoiding multi-

ple and repeated forward propagation computations. For the ensemble version

ActiSiamese-WM, significant gains can be achieved using parallelisation.

8.2. Advantages

Class imbalance: ActiSiamese has three “embedded” mechanisms which

make it robust to imbalance. First, the use of separate and balanced queues

per class alleviates the problem as propagating old examples in the most recent

training set is a form of oversampling. Second, the data preparation step creates

|Qttrain| training pairs from the K × L examples found in the original Qt. The

number of generated pairs depends on the values of K and L, however, most

of the times it is expected that |Qttrain| will be considerably larger than |Qt|,

33

thus constituting another form of oversampling. Third, the number of positive

and negative pairs is always balanced. As a result, we will later show that

ActiSiamese achieves a superior performance even under extreme imbalance.

Concept drift: ActiSiamese also has three mechanisms which make it ro-

bust to drift. First, it uses incremental learning to continually update the model

to reflect new changes as environments evolve. We have chosen this for a few

reasons. Drift is a multifaceted problem which can be classified according to

type, severity, speed, predictability, frequency, and recurrence [78]. As a re-

sult, it is hard to characterise and explicitly detect it in practise. Furthermore,

there is no explicit drift detection mechanism that can perform well under any

combination of drift characteristics [79]. Therefore, we have decided to learn

the concept drift using incremental training, rather than performing a complete

re-training when drift is detected. We discuss this further in our future work sec-

tion. Second, ActiSiamese uses a multi-queue memory. The fact that examples

are carried over a series of steps allows the classifier to “remember” old concepts.

“Forgetting” old concepts is achieved when obsolete examples eventually drop

off the queues. ActiSiamese is effective with small queue sizes, therefore, it en-

sures that obsolete examples will be discarded quicker. Third, ActiSiamese-WM

which uses ensembling helps by de-prioritising obsolete classifiers.

8.3. Limitations

Ome-pass learning: In our diverse study, ActiSiamese has been shown

to significantly outperform strong baseline and state-of-the-art methods under

various conditions. We attribute this to the many characteristics of ActiSiamese

which have been combined in a seamless and effective manner. These include,

few-shot learning for performing similarity learning, incremental learning, and

the various mechanisms to handle imbalance and drift as discussed in Section 8.2.

This is, however, at the expense of ActiSiamese not being a one-pass learner.

That is, if learning occurs using the most recently queried example, and then

discarding it (i.e., without storing it in a memory), it is termed one-pass learning.

Having said this, ActiSiamese satisfies one of the most important and desired

34

properties of learning in data streams, which is having a fixed amount of memory

for any storage. Also, ActiSiamese has been shown to be effective when the

queue capacity L is, typically, small (e.g., in the order of ten). These are

discussed in Section 8.1.

9. Conclusion

We proposed ActiSiamese which synergistically merges online active learn-

ing, a multi-queue memory, and siamese networks. It proposes a new density-

based active learning strategy which considers similarity in the latent space

rather than the input space. We conducted an extensive study where we show

that ActiSiamese outperforms baseline and state-of-the-art algorithms, and is

effective even under extreme imbalance, and even when only a fraction of the

arriving instances’ labels is available. Future work will examine the following:

Semi-supervised learning: A limitation of active learning is that it solely

attempts to explore the search space by querying selected instances for their

class labels. In other words, it ignores all the arriving instances for which their

label is not requested. In contrast, semi-supervised learning assumes the initial

availability of labelled data which the classifier is trained with, but it later uses

its learnt knowledge to automatically classify the arriving instances [80]. Future

work will consider combining ActiSiamese with semi-supervise learning.

Explicit concept drift detection: ActiSiamese has an implicit way of

dealing with drift using incremental learning and a multi-queue memory. An

explicit drift detection mechanism (e.g., using statistical tests) could allow better

reaction to drift. Future work will consider incorporating such a mechanism.

References

[1] E. Kyriakides, M. Polycarpou (Eds.), Intelligent monitoring, control, and

security of critical infrastructure systems, Vol. 565, Springer, 2014.

35

[2] G. Ditzler, M. Roveri, C. Alippi, R. Polikar, Learning in nonstationary

environments: A survey, IEEE Computational Intelligence Magazine 10 (4)

(2015) 12–25.

[3] S. Wang, L. L. Minku, X. Yao, A systematic study of online class imbalance

learning with concept drift, IEEE Transactions on Neural Networks and

Learning Systems 29 (10) (2018) 4802–4821.

[4] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, G. Bontempi, Credit

card fraud detection and concept-drift adaptation with delayed supervised

information, in: 2015 international joint conference on Neural networks

(IJCNN), IEEE, 2015, pp. 1–8.

[5] H. He, E. A. Garcia, Learning from imbalanced data, IEEE Transactions

on Knowledge and Data Engineering (9) (2008) 1263–1284.

[6] B. Settles, Active learning literature survey, Tech. rep., University of

Wisconsin-Madison Department of Computer Sciences (2009).

[7] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, Y. Zhou,

Detecting adversarial advertisements in the wild, in: Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and

data mining, ACM, 2011, pp. 274–282.

[8] NVIDIA-AI, Scalable active learning for autonomous driving, accessed 26

Jan. 2022.

URL https://medium.com/nvidia-ai/scalable-active-learning-for-autonomous-driving-a-practical-implementation-and-a-b-test-4d315ed04b5f

[9] A. Karpathy, Artificial intelligence for full self-driving, accessed 26 Jan.

2022.

URL https://www.youtube.com/watch?v=hx7BXih7zx8

[10] K. Malialis, C. G. Panayiotou, M. M. Polycarpou, Online learning with

adaptive rebalancing in nonstationary environments, IEEE Transactions

on Neural Networks and Learning Systems 32 (10) (2021) 4445–4459. doi:

10.1109/TNNLS.2020.3017863.

36

https://medium.com/nvidia-ai/scalable-active-learning-for-autonomous-driving-a-practical-implementation-and-a-b-test-4d315ed04b5f
https://medium.com/nvidia-ai/scalable-active-learning-for-autonomous-driving-a-practical-implementation-and-a-b-test-4d315ed04b5f
https://www.youtube.com/watch?v=hx7BXih7zx8
https://www.youtube.com/watch?v=hx7BXih7zx8
https://doi.org/10.1109/TNNLS.2020.3017863
https://doi.org/10.1109/TNNLS.2020.3017863

[11] K. Malialis, C. G. Panayiotou, M. M. Polycarpou, Data-efficient on-

line classification with siamese networks and active learning, in: Inter-

national Joint Conference on Neural Networks (IJCNN), 2020. doi:

10.1109/IJCNN48605.2020.9206730.

[12] V. Losing, B. Hammer, H. Wersing, Incremental on-line learning: A review

and comparison of state of the art algorithms, Neurocomputing 275 (2018)

1261–1274. doi:https://doi.org/10.1016/j.neucom.2017.06.084.

[13] I. Žliobaitė, M. Budka, F. Stahl, Towards cost-sensitive adaptation: When

is it worth updating your predictive model?, Neurocomputing 150 (2015)

240–249. doi:https://doi.org/10.1016/j.neucom.2014.05.084.

[14] I. Žliobaitė, A. Bifet, B. Pfahringer, G. Holmes, Active learning with drift-

ing streaming data, IEEE Transactions on Neural Networks and Learning

Systems 25 (1) (2013) 27–39.

[15] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on

concept drift adaptation, ACM Computing Surveys (CSUR) 46 (4) (2014)

44.

[16] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under concept

drift: A review, IEEE Transactions on Knowledge and Data Engineering

31 (12) (2018) 2346–2363.

[17] D. Brzezinski, J. Stefanowski, Ensemble classifiers for imbalanced and

evolving data streams, Series in Machine Perception and Artificial Intel-

ligence 83 (1) (2018) 44–68.

[18] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, M. Woźniak, Ensemble

learning for data stream analysis: A survey, Information Fusion 37 (2017)

132–156.

[19] S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woźniak, F. Herrera, A

survey on data preprocessing for data stream mining: Current status and

37

https://doi.org/10.1109/IJCNN48605.2020.9206730
https://doi.org/10.1109/IJCNN48605.2020.9206730
https://doi.org/https://doi.org/10.1016/j.neucom.2017.06.084
https://doi.org/https://doi.org/10.1016/j.neucom.2014.05.084

future directions, Neurocomputing 239 (2017) 39–57. doi:https://doi.

org/10.1016/j.neucom.2017.01.078.

[20] H. M. Gomes, J. P. Barddal, F. Enembreck, A. Bifet, A survey on ensemble

learning for data stream classification, ACM Computing Surveys (CSUR)

50 (2) (2017) 1–36.

[21] G. Aguiar, B. Krawczyk, A. Cano, A survey on learning from imbalanced

data streams: taxonomy, challenges, empirical study, and reproducible ex-

perimental framework, arXiv preprint arXiv:2204.03719 (2022).

[22] P. Ksieniewicz, The prior probability in the batch classification of imbal-

anced data streams, Neurocomputing 452 (2021) 309–316.

[23] V. Vaquet, B. Hammer, Balanced sam-knn: Online learning with heteroge-

neous drift and imbalanced data, in: International Conference on Artificial

Neural Networks, Springer, 2020, pp. 850–862.

[24] A. Cano, B. Krawczyk, Evolving rule-based classifiers with genetic pro-

gramming on gpus for drifting data streams, Pattern Recognition 87 (2019)

248–268.

[25] K. Malialis, C. Panayiotou, M. M. Polycarpou, Queue-based resampling for

online class imbalance learning, in: International Conference on Artificial

Neural Networks (ICANN), Springer, 2018, pp. 498–507. doi:10.1007/

978-3-030-01418-6_49.

[26] S. Wang, L. L. Minku, X. Yao, Resampling-based ensemble methods for

online class imbalance learning, IEEE Transactions on Knowledge and Data

Engineering 27 (5) (2015) 1356–1368.

[27] A. Cano, B. Krawczyk, Kappa updated ensemble for drifting data stream

mining, Machine Learning 109 (1) (2020) 175–218.

[28] A. Cano, B. Krawczyk, Rose: robust online self-adjusting ensemble for

continual learning on imbalanced drifting data streams, Machine Learning

(2022) 1–39.

38

https://doi.org/https://doi.org/10.1016/j.neucom.2017.01.078
https://doi.org/https://doi.org/10.1016/j.neucom.2017.01.078
https://doi.org/10.1007/978-3-030-01418-6_49
https://doi.org/10.1007/978-3-030-01418-6_49

[29] A. Ghazikhani, R. Monsefi, H. S. Yazdi, Ensemble of online neural net-

works for non-stationary and imbalanced data streams, Neurocomputing

122 (2013) 535–544.

[30] B. Mirza, Z. Lin, N. Liu, Ensemble of subset online sequential extreme

learning machine for class imbalance and concept drift, Neurocomputing

149 (2015) 316–329.

[31] S. Ren, B. Liao, W. Zhu, Z. Li, W. Liu, K. Li, The gradual resampling en-

semble for mining imbalanced data streams with concept drift, Neurocom-

puting 286 (2018) 150–166. doi:https://doi.org/10.1016/j.neucom.

2018.01.063.

[32] S. K. Siahroudi, D. Kudenko, An online learning algorithm for non-

stationary imbalanced data by extra-charging minority class, in: Pacific-

Asia Conference on Knowledge Discovery and Data Mining, Springer, 2021,

pp. 603–615.

[33] D. D. Lewis, W. A. Gale, A sequential algorithm for training text classifiers,

in: SIGIR’94, Springer, 1994, pp. 3–12.

[34] D. Cohn, L. Atlas, R. Ladner, Improving generalization with active learn-

ing, Machine Learning 15 (2) (1994) 201–221.

[35] X. Zhu, P. Zhang, X. Lin, Y. Shi, Active learning from data streams, in:

Seventh IEEE International Conference on Data Mining (ICDM), IEEE,

2007, pp. 757–762.

[36] P. Lindstrom, S. J. Delany, B. Mac Namee, Handling concept drift in a

text data stream constrained by high labelling cost, in: 23rd International

Florida Artificial Intelligence Research Society (FLAIRS) Conference, 2010.

[37] P. Lindstrom, B. Mac N., S. J. Delany, Drift detection using uncertainty

distribution divergence, Evolving Systems 4 (1) (2013) 13–25.

39

https://doi.org/https://doi.org/10.1016/j.neucom.2018.01.063
https://doi.org/https://doi.org/10.1016/j.neucom.2018.01.063

[38] N. Cesa-Bianchi, C. Gentile, L. Zaniboni, Worst-case analysis of selective

sampling for linear classification, Journal of Machine Learning Research

7 (Jul) (2006) 1205–1230.

[39] Y. Freund, H. S. Seung, E. Shamir, N. Tishby, Selective sampling using the

query by committee algorithm, Machine Learning 28 (2-3) (1997) 133–168.

[40] N. A. H. Mamitsuka, et al., Query learning strategies using boosting and

bagging, in: Proceedings of the fifteenth International Conference on Ma-

chine Learning, Vol. 1, Morgan Kaufmann Pub, 1998.

[41] P. Melville, R. J. Mooney, Diverse ensembles for active learning, in: Pro-

ceedings of the twenty-first International Conference on Machine Learning,

2004, p. 74.

[42] L. Korycki, A. Cano, B. Krawczyk, Active learning with abstaining classi-

fiers for imbalanced drifting data streams, in: IEEE International Confer-

ence on Big Data, 2019, pp. 2334–2343.

[43] B. Krawczyk, A. Cano, Adaptive ensemble active learning for drifting data

stream mining, in: International Joint Conference on Artificial Intelligence,

2019, pp. 2763–2771.

[44] B. Settles, M. Craven, An analysis of active learning strategies for se-

quence labeling tasks, in: Conference on Empirical Methods in Natural

Language Processing, Association for Computational Linguistics, 2008, pp.

1070–1079.

[45] R. Capo, K. B. Dyer, R. Polikar, Active learning in nonstationary environ-

ments, in: International Joint Conference on Neural Networks (IJCNN),

IEEE, 2013, pp. 1–8.

[46] S. Liu, S. Xue, J. Wu, C. Zhou, J. Yang, Z. Li, J. Cao, Online active

learning for drifting data streams, IEEE Transactions on Neural Networks

and Learning Systems (2021).

40

[47] E. Lughofer, On-line active learning: A new paradigm to improve practi-

cal useability of data stream modeling methods, Information Sciences 415

(2017) 356–376.

[48] W. Chu, M. Zinkevich, L. Li, A. Thomas, B. Tseng, Unbiased online ac-

tive learning in data streams, in: Proceedings of the 17th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2011,

pp. 195–203.

[49] S. Dasgupta, A. T. Kalai, C. Monteleoni, Analysis of perceptron-based

active learning., Journal of Machine Learning Research 10 (2) (2009).

[50] E. Lughofer, Single-pass active learning with conflict and ignorance, Evolv-

ing Systems 3 (4) (2012) 251–271.

[51] E. Weigl, W. Heidl, E. Lughofer, T. Radauer, C. Eitzinger, On improving

performance of surface inspection systems by online active learning and

flexible classifier updates, Machine Vision and Applications 27 (1) (2016)

103–127.

[52] M. Pratama, J. Lu, E. Lughofer, G. Zhang, S. Anavatti, Scaffolding type-

2 classifier for incremental learning under concept drifts, Neurocomputing

191 (2016) 304–329.

[53] K. B. Dyer, R. Capo, R. Polikar, Compose: A semisupervised learning

framework for initially labeled nonstationary streaming data, IEEE Trans-

actions on Neural Networks and Learning Systems 25 (1) (2013) 12–26.

[54] Z. S. Abdallah, M. M. Gaber, B. Srinivasan, S. Krishnaswamy, Adaptive

mobile activity recognition system with evolving data streams, Neurocom-

puting 150 (2015) 304–317.

[55] S. Mohamad, M. Sayed-Mouchaweh, A. Bouchachia, Online active learning

for human activity recognition from sensory data streams, Neurocomputing

390 (2020) 341–358.

41

[56] G. Koch, R. Zemel, R. Salakhutdinov, Siamese neural networks for one-shot

image recognition, in: ICML Deep Learning Workshop, Vol. 2, 2015.

[57] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah, Signature verifica-

tion using a “siamese” time delay neural network, in: Advances in Neural

Information Processing Systems, 1994, pp. 737–744.

[58] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: Closing the gap to

human-level performance in face verification, in: Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 1701–

1708.

[59] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations

by back-propagating errors, nature 323 (6088) (1986) 533–536.

[60] N. Littlestone, M. K. Warmuth, et al., The weighted majority algorithm,

University of California, Santa Cruz, Computer Research Laboratory, 1989.

[61] W. N. Street, Y. S. Kim, A streaming ensemble algorithm (sea) for large-

scale classification, in: Proceedings of the 7th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ACM, 2001, pp.

377–382.

[62] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with drift detection,

in: Brazilian Symposium on Artificial Intelligence, Springer, 2004, pp. 286–

295.

[63] S. Wang, X. Yao, Multiclass imbalance problems: Analysis and potential

solutions, IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 42 (4) (2012) 1119–1130.

[64] P. Geurts, Contributions to decision tree induction: bias/variance tradeoff

and time series classification (2002).

[65] V. Losing, B. Hammer, H. Wersing, Knn classifier with self adjusting mem-

ory for heterogeneous concept drift, in: 2016 IEEE 16th International Con-

ference on Data Mining (ICDM), 2016.

42

[66] K. Yashuk, Classify gestures by reading muscle activity, accessed 26 Jan,

2022.

URL https://www.kaggle.com/kyr7plus/emg-4

[67] J. A. Blackard, D. J. Dean, Comparative accuracies of artificial neural

networks and discriminant analysis in predicting forest cover types from

cartographic variables, Computers and Electronics in Agriculture 24 (3)

(1999) 131–151.

[68] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning ap-

plied to document recognition, Proceedings of the IEEE 86 (11) (1998)

2278–2324.

[69] V. M. A. Souza, D. F. Silva, J. Gama, G. E. A. P. A. Batista, Data stream

classification guided by clustering on nonstationary environments and ex-

treme verification latency, in: Proceedings of the 2015 SIAM International

Conference on Data Mining, 2015, pp. 873–881.

[70] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, V. Vasudevan, uwave:

Accelerometer-based personalized gesture recognition and its applications,

in: 2009 IEEE International Conference on Pervasive Computing and Com-

munications, 2009.

[71] V. M. A. Souza, D. F. Silva, G. E. A. P. A. Batista, Classification of data

streams applied to insect recognition: Initial results, in: 2013 Brazilian

Conference on Intelligent Systems, 2013.

[72] F. Chollet, et al., Keras, https://keras.io (2015).

[73] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification, in: Proceedings of the

IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.

[74] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Pro-

ceedings of the 3rd International Conference on Learning Representations

(ICLR), 2015.

43

https://www.kaggle.com/kyr7plus/emg-4
https://www.kaggle.com/kyr7plus/emg-4
https://keras.io

[75] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve

neural network acoustic models, in: Proceedings of the 30th International

Conference on Machine Learning, 2013.

[76] Y. Sun, M. S. Kamel, Y. Wang, Boosting for learning multiple classes with

imbalanced class distribution, in: Sixth International Conference on Data

Mining (ICDM’06), IEEE, 2006, pp. 592–602.

[77] J. Gama, R. Sebastião, P. P. Rodrigues, On evaluating stream learning

algorithms, Machine Learning 90 (3) (2013) 317–346.

[78] L. L. Minku, A. P. White, X. Yao, The impact of diversity on online en-

semble learning in the presence of concept drift, IEEE Transactions on

Knowledge and Data Engineering 22 (5) (2010) 730–742.

[79] R. Barros, S. Santos, A large-scale comparison of concept drift detectors,

Information Sciences 451 (2018) 348–370.

[80] O. Chapelle, B. Schlkopf, A. Zien, Semi-Supervised Learning, 1st Edition,

The MIT Press, 2010.

44

	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 Online supervised learning
	3.1.1 Class imbalance

	3.2 Online active learning
	3.2.1 Querying strategies
	3.2.2 Budget spending mechanisms

	4 Proposed Method
	4.1 Multi-queue memory
	4.2 ActiSiamese
	4.3 ActiSiamese-WM

	5 Experimental Setup
	5.1 Datasets
	5.1.1 Synthetic datasets
	5.1.2 Real-world datasets

	5.2 Compared methods
	5.3 Performance metrics and Evaluation method

	6 Empirical Analysis of ActiSiamese
	6.1 Effect of the budget B
	6.2 Role of the queue capacity L

	7 Comparative Study
	7.1 Synthetic datasets
	7.2 Real datasets

	8 Discussion
	8.1 Computational aspects
	8.2 Advantages
	8.3 Limitations

	9 Conclusion

