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Abstract

The layered structure of deep neural networks hinders the use of numerous analysis tools
and thus the development of its interpretability. Inspired by the success of functional brain
networks, we propose a novel framework for interpretability of deep neural networks, that
is, the functional network. We construct the functional network of fully connected networks
and explore its small-worldness. In our experiments, the mechanisms of regularization
methods, namely, batch normalization and dropout, are revealed using graph theoretical
analysis and topological data analysis. Our empirical analysis shows the following: (1)
Batch normalization enhances model performance by increasing the global efficiency and
the number of loops but reduces adversarial robustness by lowering the fault tolerance. (2)
Dropout improves generalization and robustness of models by improving the functional
specialization and fault tolerance. (3) The models with different regularizations can be
clustered correctly according to their functional topological differences, reflecting the great
potential of the functional network and topological data analysis in interpretability.
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1. Introduction

Deep neural networks are considered black-box models without a sufficient level of inter-
pretability, which limits their wider applications and further development. Some studies
focused on the structural information to explain them. However, many limitations exist: (1)
Using only the structural information is insufficient to explain the performance differences
of a model on diverse datasets. (2) The connections between neurons are preset and fixed,
hindering the use of rich tools in network science. (3) The layered network structure only
depicts the interactions between the neurons in the adjacent layers, rather than those in the
same and non-adjacent layers. Hence, a new interpretable method with a general form that
focuses on the network functions is urgently required.

Introducing the methods on brain function explanation in deep learning is feasible because
many similarities exist between deep neural networks and the brain: (1) Deep learning is an
artificial neural network technology inspired by the brain. (2) Reports show that similar
coding mechanisms exist between them (Yang et al., 2019; Bi and Zhou, 2020). (3) Deep
neural networks have been used as the computational models of the primate brain to explain
its information processing (Yamins et al., 2014; Cadieu et al., 2014; Güçlü and van Gerven,
2015). An important method to understand the brain is to build a functional brain network
that describes the statistical dependencies among neural activities of brain regions (McNabb
et al., 2018; Beaty et al., 2018).

Motivated by the functional brain network, we propose a novel framework for inter-
pretability of deep neural networks, that is, the functional network. This network can
maintain practicability and provide insights into neuroscience. Given a deep neural network
and a dataset, we record the output values of neurons when the model processes the dataset,
compute the statistical dependencies among them, and construct the functional network
by network binarization. In contrast to the structural network, the functional network
depicts the functional interactions among neurons in the same layer and non-adjacent layers,
in addition to the adjacent layers. By constructing the functional network, we introduce
the powerful graph theoretical analysis (GTA) and topological data analysis (TDA) in the
complex brain network analysis into interpretability of deep neural networks to capture
the topological properties and high-order structures to explain how the models work. Fur-
thermore, when a neural network processes diverse datasets, various functional networks
are generated, and the variations in the functional networks can be utilized to explain the
performance differences.

In this work, we partly reveal the mechanisms of the fully connected network (FCN). The
results show that, similar to the functional brain network, the functional network of FCNs is a
small-world network. This result suggests that deep neural networks have a similar functional
organization to the brain, in which information transmits efficiently at a low cost. As an
application of the functional network, we quantitatively analyze the effects of commonly used
regularization techniques, namely, batch normalization and dropout, using graph theoretical
and topological methods and explain how the methods work. Moreover, according to the
topological differences between functional networks, the models with different regularizations
can be correctly clustered. These findings demonstrate that the functional network can not
only provide explanations for deep neural networks but also evaluate the models in practice.
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2. Related Works

In this section, we introduce the previous works on interpretability of deep neural networks,
particularly those using TDA, and the functional brain network in neuroscience.

Interpretability of Deep Neural Networks In recent years, interpretability of deep
learning has attracted increasing attention from researchers. Several methods have been
reported to address this issue, such as the extraction of logical rules or decision trees (Boz,
2002; Nayak, 2009), the interpretation for the semantics of neurons or convolutional layers
(Bau et al., 2017; Dalvi et al., 2019; Zeiler and Fergus, 2014), the local perturbation-based
explanations (Štrumbelj et al., 2009; Ribeiro et al., 2016; Akula et al., 2020), the prototype
selection (Bien and Tibshirani, 2011; Kim et al., 2014), and the generalization capability or
complexity measures (Rieck et al., 2019; Zhang et al., 2021; Raghu et al., 2017). However,
some disadvantages exist in the previous works. For instance, the prototype selection and
semantic interpretation only focus on the single data or feature and cannot provide a global
understanding. Moreover, the rule extraction is only appropriate for deep neural networks
with few neurons. Functional networks can overcome these shortcomings and explain the
network mechanisms globally from the perspective of the functions of neurons.

TDA and Interpretability Recently, several attempts have been made to apply TDA
to study interpretability of deep learning. Naitza et al. investigated the changes of data
topology in the working process of FCNs and found that FCNs work by simplifying data
topology until it becomes linearly separable (Naitzat et al., 2020). Rieck et al. proposed
neural persistence to estimate the structure complexity and generalization ability using
the zero-dimensional topological features (Rieck et al., 2019). Watanabe et al. extracted
the one-dimensional topological structure features to investigate the inner representations
of FCNs (Watanabe and Yamana, 2021). These studies indicated that TDA can extract
high-order topological information to explain neural networks. However, some methods only
use the structural information of the deep neural network and are not combined with data
and tasks (Rieck et al., 2019; Watanabe and Yamana, 2021). Some approaches are only
applicable to the model with a small number of neurons (Naitzat et al., 2020). In our work,
TDA for the functional network depicts the functional organization of a deep neural network
and evaluates its topological properties globally.

Functional Brain Network Analysis Using non-invasive brain-observation technolo-
gies, such as fMRI, researchers can record the neural activities of brain regions, calculate the
statistical dependencies among them as the functional connectivities, and model the brain
as a sparse binary graph, called the functional brain network. The nodes represent brain
regions, and the edges represent functional connectivities. GTA is a powerful mathematical
tool in complex brain network analysis. GTA is used to describe and interpret brain changes
during development (Menon, 2013), reveal learning mechanisms (Bassett et al., 2011, 2015),
understand the pathogenesis of brain diseases and provide imaging biomarkers for diagnosis
(Rudie et al., 2013; McNabb et al., 2018). Nevertheless, the graph can only model the binary
relation and cannot model the multivariate relation in the brain. Selecting a favorable
threshold for functional network construction is difficult. To address these problems, TDA, a
rapidly developing mathematical tool based on algebraic topology, is employed to assess the
brain structures (Singh et al., 2008; Petri et al., 2014), distinguish the brain states (Billings
et al., 2021), discover spatial coding principles (Dabaghian et al., 2012), and study the
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pathogenesis of diseases (Shnier et al., 2019). Those studies show that TDA can effectively
describe higher-order interactions and capture more topological information about functional
organizations in the brain without selecting a threshold. In our work, we used GTA and
TDA to reveal the mechanisms of deep neural networks.

3. Background: Graph Theoretical Analysis and Topological Data
Analysis

3.1 GTA

Graph theory is the main mathematical tool in the field of complex network analysis. A
complex network is modeled as a binary graph model G(V,E), where V = {vi}1≤i≤n is the
node set and E = {ek|ek = (vi, vj), vi, vj ∈ V }1≤k≤m is the edge set. Edges can be weighted,
and the weight function ψ : E → R+ ∪ {0} maps the edge ek = (vi, vj) to a non-negative
weight wij . W = {wij |wij = ψ(ek), ek = (vi, vj) ∈ E} is the weight set. G(V,E,W ) is called
a weighted graph. Referring to the textbook (Balakrishnan and Ranganathan, 2012), some
properties of a binary graph G(V,E) are briefly introduced as follows:

Density: The density of G(V,E) is the ratio of the number of edges in E to the maximum
possible number of edges,

density =
2m

n(n− 1)
(1)

where n and m are the number of nodes and edges in G, respectively. In complex network
analysis, the density has an important impact on other network properties.

Average shortest path length: The shortest path length lij between nodes vi and
vj is defined as the shortest length of all paths between vi and vj . This length can also be
called the distance between the two nodes. The average shortest path length L of G(V,E)
is the average value of the shortest path lengths between all node pairs:

L =
1

n(n− 1)

∑
vi,vj∈V,i 6=j

lij (2)

Global efficiency:The global efficiency Eglobal of G(V,E) is as follows:

Eglobal =
1

n(n− 1)

∑
vi,vj∈V,i 6=j

1

lij
(3)

where lij is the shortest path length between nodes vi and vj .
Clustering coefficient: For a node vi, Si = {(vj , vk)|(vj , vk), (vi, vj) and (vi, vk) ∈ E}

represents the edge set between its neighborhoods. The clustering coefficient ci of the node
vi is defined as the ratio of the number of actual edges between its neighborhoods and the
maximum possible number of edges between them:

ci =
2|Si|

ki(ki − 1)
(4)

where ki is the number of the neighborhoods of vi and |S| is the number of actual edges
between them. The average clustering coefficient C of G(V,E) is the average value of the
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clustering coefficients of all nodes:

C =
1

n

∑
vi∈V

ci (5)

3.2 TDA

TDA is a rapidly developing mathematical tool based on algebraic topology, which can
effectively extract the topological information of data. Please refer to (Edelsbrunner and
Harer, 2009) for more details.

Simplicial homology: The simplicial complex is the core object of TDA. A k-simplex
τ is the convex hull of k + 1 vertices. A 0-simplex is a vertex, a 1-simplex is a line segment,
and a 2-simplex is a triangle. A face of τ is the convex hull of any subset of the k+ 1 vertices.
A simplicial complex K is a set of simplexes satisfied: (1) All faces of a simplex in K are in
K. (2) The intersection of two simplexes in K is their common face. Simplicial homology
uses homology groups to describe the topological invariants of a simplicial complex. The
rank of its k-dimensional homology group is called the k-dimensional Betti number βk and
represents the number of k-dimensional holes (k-holes). The Betti numbers β0, β1, and β2
represent the numbers of connected components, loops, and voids contained in K, which is
the simplification of topological information.

Persistent homology: Persistent homology was developed to characterize the topo-
logical information of real data with noise. The super-level filtration adapted in this study
is defined as follows: Given a simplicial complex K and a weighting function φ that maps
the simplex τ in K to a weight wi, and the weight of τ must be less than or equal to the
weights of its faces. When the value ε is chosen, all the simplexes with weights greater
than ε form a simplicial complex Ki. Moreover, a simplicial complex sequence of K:
∅ = K0 ⊆ K1 ⊆ ... ⊆ Km = K is obtained by reducing the value ε.

In the filtration, a k-hole that generates at εi1 and dies at εi2 can be represented by a
point (εi1 , εi2) ∈ R2. All points representing the k-holes are drawn on a two-dimensional
plane, defined as a k-dimensional persistence diagram (k-PD) Dk, which describes the birth
and death times of all k-holes. The k-dimensional Betti number sequence of K can be
induced from Dk, which is called the k-dimensional Betti curve βk(ε) (Dong et al., 2021).
This Betti curve describes the topological invariant βk that persists across multiple scales.

4. Construction of Functional Networks

In this section, we introduce the method for constructing the functional network of an
FCN. As shown in Figure 1, the activation pattern matrix A is first generated to construct
the functional network for a given FCN. Then, the functional connectivity matrix F is
obtained by calculating the correlation matrix R according to the activation pattern matrix
A. Finally, the functional network G is produced by binarizing F . The details for generating
the functional network are elucidated as follows.

Activation Pattern Matrix Generation Suppose a trained FCN model M with
l(l ≥ 1) hidden layers and n hidden neurons in total and a dataset D with m data are given.
First, data di ∈ D is inputted into M, the output value of the jth hidden neuron is denoted as
aij , and an activation pattern (ai1, ai2, ..., ain) is generated, which represents the information
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Figure 1: Flow chart of constructing the functional network for a given deep neural network.

processing of M for di. The activation pattern matrix A is defined by considering all the
data di ∈ D(i = 1, 2, . . . ,m):

A = (aij)m×n, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (6)

In the activation pattern matrixA, the jth column vector is denoted asAj = [a1j , a2j , · · · , amj ]T ,
which represents the output of the jth hidden neuron. If the output vectors Ai and Aj
(i 6= j) are statistically dependent, then the ith and jth neurons have functional synergy,
which is called functional connectivity.

Functional Connectivity Matrix Construction The statistical dependency of two
hidden neurons is calculated based on the activation pattern matrix A. Many methods can
be used to measure the statistical dependency between two variables, including Pearson
correlation, partial correlation, and mutual information (Fornito et al., 2016). Compared
with Pearson correlation, the estimation of partial correlation is difficult (Ryali et al., 2012)
because of a large number of neurons in M. In addition, the inaccurate estimation of mutual
information limits its applications in practice (Daub et al., 2004). Consequently, we choose
Pearson correlation to measure the degree of the linear relationship between two neurons
(Heumann et al., 2016). The advantages of the Pearson correlation coefficient r are threefold:
low computational complexity, ranging from [−1, 1], and the clear significance, that is, the
closer the absolute value is to 1, the stronger the linear relationship between two variables is.

To summarize the correlations between all possible pairs of neurons, the correlation
matrix R of output values of hidden neurons is defined by the activation pattern matrix A
as follows:

Definition 1 (Correlation Matrix) Given an activation pattern matrix A, the Pearson
correlation coefficient rij between the output values of the ith and jth hidden neurons is
defined as follows:

rij =

∑m
k=1(aki − a?i)(akj − a?j)√∑m

k=1(aki − a?i)2
√∑m

k=1(akj − a?j)2
, (7)

where a?j = 1
m

∑m
k=1 akj is the average output value of the jth hidden neuron. Then, the

correlation matrix R = (rij)n×n is formed by rij.

We take the absolute value of rij as the strength of the functional connectivity between
the ith and jth hidden neurons and assume that a neuron has no functional connectivity
with itself. Accordingly, the functional connectivity matrix F is defined as follows:
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Definition 2 (Functional Connectivity Matrix) Given a correlation matrix R = (rij)n×n,
the functional connectivity matrix F = (fij)n×n is defined as follows:

fij =

{
|rij |, if i 6= j,

0, if i = j;
1 ≤ i, j ≤ n, (8)

where fij is the strength of the functional connectivity between the ith and jth hidden neurons,
0 ≤ fij ≤ 1.

The functional connectivity matrix F represents a weighted complete graph F (V,Ef ,Wf ).
Here, V = {v1, v2, . . . , vn} is the node set, and the node vj represents the jth hidden neuron
in M. Ef = {e1, e2, . . . , en(n−1)/2} is the edge set, and the edge ek = (vi, vj) = (vj , vi)

represents the functional connectivity between the ith and jth hidden neurons. Moreover,
a weight function ψ : Ef → R+ ∪ {0} is induced from F that maps the edge ek = (vi, vj)
to a non-negative weight: ψ(ek) = wk = fij . Wf = {wk|ψ(ek) = wk, ek ∈ Ef} is the weight
set. F (V,Ef ,Wf ) encodes the statistical dependencies between the hidden neurons in M.
However, considering all functional connectivities is inefficient. By binarizing F , the graph’s
structure is simplified, and the functional network is generated.

Functional Network Formation In neuroscience, network binarization is a common
method to construct the functional brain network from a weighted complete graph. We used it
to extract the functional network G(V,E) from F (V,Ef ,Wf ). First, the maximum spanning
tree T (V,Et,Wt) of F (V,Ef ,Wf ), which is the spanning tree with a maximum weight of
F , is constructed as the main node-edge structure of G(V,E) to ensure its connectivity.
This spanning tree contains all the nodes and n− 1 edges with the density of 2/n, which
is the ratio of the number of edges in the graph to that of the corresponding complete
graph. Et is a subset of Ef , and Wt = {wk|ψ(ek) = wk, ek ∈ Et} is the weight set. Then,
more edges are required to be added to it because the tree structure cannot completely
depict the interactions among neurons. One of the alternatives is to empirically select a
density threshold d for G(V,E), which satisfies 2/n ≤ d ≤ 1. This selection means that the
functional network G(V,E) should contain [d× n× (n− 1)/2] edges. We construct G(V,E)
as follows:

Definition 3 (Functional Network) Given a density d and a weighted complete graph
F (V,Ef ,Wf ), let Et be the edge set of its maximum spanning tree. The weights of edges
in the Ef \Et are sorted in a non-ascending order: w′1 ≥ w′2 ≥ ... ≥ w′(n−1)(n−2)/2, and the

edge set of the functional network is defined as

E = Et ∪ {ek ∈ Ef | ψ(ek) ≥ w′[d×n×(n−1)/2]−(n−1)}. (9)

The binary graph G(V,E) is called the functional network.

The selection of d determines the structure of G(V,E), but a unified density selection
method does not exist. In neuroscience, many studies show that the sparse network can
better manifest the differences of the functional organization (Varoquaux et al., 2013; Lv
et al., 2013). Therefore, we empirically selected multiple small densities for the network
binarization in practical applications.

In summary, the defined functional network G(V,E) depicts the functional interaction
between hidden neurons in the neural network globally, regardless of whether physical
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Table 1: Architectures of the FCNs trained in the small-world experiments.

Dataset Number of hidden layers Architecture

MNIST
2 [300,100],[300,300]
3 [300,300,100], [300,300,300]

Fashion-MNIST
2 [400,200],[400,400]
3 [400,400,200],[400,400,400]

CIFAR-10
2 [500,300],[500,500]
3 [500,500,300],[500,500,500]

connectivities exist, breaking the fixed connection relationships between them. By adopting
the functional network, GTA and TDA can be used to capture the functional organization of
deep neural networks and explain and distinguish various models based on their functional
differences, supported by the results of the following experiments.

5. Experiments

In this section, we demonstrate the utility and significance of the functional network for
FCNs through some experiments. First, we explore the small-worldness of the functional
network, which is observed on the functional brain network in the studies (Young et al.,
2000; Stam, 2004). Second, we investigate the impact of two commonly used regularization
techniques and explain how they work using GTA and TDA. Finally, unsupervised clustering
is performed according to the topological differences between the functional networks to
demonstrate the effectiveness of TDA in evaluating and distinguishing the FCNs. The
Fashion-MNIST (Xiao et al., 2017), MNIST (Deng, 2012), and CIFAR-10 (Krizhevsky, 2009)
datasets are employed in all experiments.

5.1 Datasets and Models

The MNIST, Fashion-MNIST, and CIFAR-10 datasets were employed in the experiments.
The contents of the MNIST, Fashion-MNIST, and CIFAR-10 datasets are 28× 28 grayscale
handwritten digits, 28×28 grayscale fashion products images, and 32×32 color photographs,
respectively (Deng, 2012; Xiao et al., 2017; Krizhevsky, 2009).

We used leaky ReLU activation functions with the negative slope of 0.01 in the hidden
layers and the Adam optimizer with a learning rate of 3× 10−4. Each deep neural network
was trained for 100 epochs with a batch size of 64. Tables 1 and 2 show the architecture of the
deep neural network trained in the small-world and regularization experiments, respectively.

5.2 Small-World Experiments

The network with a large average clustering coefficient and a small average shortest path
length is called a small-world network. This property is called the small-worldness, which
can be measured by the small-world coefficient σ (Humphries and Gurney, 2008):

σ =
Creal/Crandom
Lreal/Lrandom

, (10)
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Table 2: Architectures of the FCN trained in the regularization experiments.

Dataset Number of hidden layers Architecture

Fashion-MNIST
2 [400,200],[400,400]
3 [400,400,200],[400,400,400]

MNIST
2 [300,100]
3 [300,300,300]

CIFAR-10
2 [500,300]
3 [500,500,300]

[300,100]
[300,300]  

[300,300,100]
[300,300,300]

3.5

4.0

4.5

MNIST

[400,200]
[400,400]  

[400,400,200]
[400,400,400]

1.8

2.0

2.2

2.4

2.6
Fashion-MNIST

[500,300]
[500,500]  

[500,500,300]
[500,500,500]

3.0

3.5

4.0

4.5
CIFAR-10

Figure 2: Box plots for the small-world coefficients of the functional networks for the FCNs
with different architectures.

where Creal and Crandom mean the average clustering coefficient of the real network and its
equivalent random network, respectively; Lreal and Lrandom mean the average shortest path
length of the real network and its equivalent random network, respectively. If σ is greater
than 1, then the real network is deemed a small-world network. The larger σ is, the more
significant the small-worldness is.

Previous studies (Young et al., 2000; Stam, 2004) suggested that the functional brain
network is a small-world network and any two brain regions only have a small number
of intermediate steps to connect. This functional organization improves the efficiency of
global information transmission in the brain and reflects the optimal organization pattern for
information processing (Strogatz, 2001; Dodel et al., 2002; Egúıluz et al., 2005). Analogously,
a worthy question arises to explore the existence of the small-worldness in the functional
network of deep neural networks. To study it, we used the FCNs trained on three datasets.
For each dataset, we trained four groups of FCNs with different architectures, as shown in
Table 1 in Section 5.1. Each group includes 10 FCNs with only the initial values diverse.
Then, we constructed their functional networks with a density of 2.5%, calculated the
small-world coefficients σ, and illustrated the results in Figure 2.

For the FCNs trained on the MNIST and CIFAR-10 datasets, the small-world coefficients
of all functional networks are between 3.0 and 5.0, whereas for the FCNs trained on the
Fashion-MNIST dataset, the values are between 1.6 and 2.6. The small-world coefficients
are all greater than 1.0 for the trained FCNs. This result suggests that the functional
network of FCNs is a small-world network, which is general for FCNs with different initial
values, architectures, and training datasets. Meanwhile, Figure 2 shows that the proportional

9



relation between the small-world coefficients and the width and depth of network architectures
does not exist.

The small-world experiments illustrate that FCNs have a functional network that is
similar to and efficient as the functional network examined in the brain. The brain-like
functional organization of deep neural networks enhances their information transmission
and processing capability, ensuring optimal model performance.

5.3 Regularization Experiments

Deep neural networks have a high capacity and are prone to over-fit. Therefore, a number of
regularization strategies (Moradi et al., 2020) have been developed to improve generalization,
such as batch normalization (Ioffe and Szegedy, 2015) and dropout (Srivastava et al., 2014).
Previous studies showed that dropout increases the robustness of deep neural networks
(El Mhamdi et al., 2017; Park and Kwak, 2017), whereas batch normalization reduces it (Benz
et al., 2021). Moreover, when batch normalization and dropout are combined practically,
model performance degrades (Ioffe and Szegedy, 2015; Li et al., 2019). Our experiments
investigate the mechanisms of batch normalization and dropout and explain the results
mentioned above.

In the experiments, we trained FCNs with different architectures on three datasets, as
shown in Table 2 in Section 5.1. For each architecture, we trained three groups of FCNs,
where each group includes 20 models with only the initial values diverse. The models in the
first group (vanilla group) were trained without regularization, whereas the models in the
second (dropout group) and third groups (BatchNorm group) were trained with dropout and
batch normalization, respectively. The dropout rate was set to 50%.

We used GTA and TDA to explore how dropout and batch normalization affect the
functional network of FCNs. The effects of regularization strategies on network functional
interaction patterns are reflected in the graph theoretical and topological properties, which
explains their mechanisms. To show that topological features from TDA characterize FCNs,
we employed hierarchical clustering, an unsupervised method, to identify the models through
TDA features, compared with the clustering results using test accuracies.

5.3.1 GTA

For each group of the trained FCNs, we constructed and analyzed their functional networks
using GTA. First, an appropriate density for the functional network construction should
be selected. A high density introduces too much noise, whereas a low density makes
important connectivities removed. As a result, for FCN, we constructed the functional
network sequence by setting the density ranging from 2.5% to 20% with a 2.5% increment.
Then, we characterized the FCNs by the global efficiency, average shortest path length,
and average clustering coefficient of their functional networks. Specifically, the clustering
coefficient of a node measures the proportion of edges between its neighborhood, divided
by the maximum possible number of edges. In complex brain network analysis, the former
two measure functional integration and information transmission of the network. The latter
assesses the topological redundancy, local fault tolerance, and functional specialization
(Fornito et al., 2016).
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(a11)
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Figure 3: Graph theoretical properties of the functional networks with different densities
for the FCNs trained on the (a) Fashion-MNIST, (b) MNIST, and (c) CIFAR-10
datasets. The blue, red, and orange curves represent the corresponding average
index with the error bars of the functional networks on the first, second, and third
groups, respectively.

As shown in Figure 3, the standard deviations of the graph theoretical properties are
small for the FCNs in the same group, which suggests that the graph theoretical properties
are stable to the initial values. Moreover, at the same density, the global efficiency of the
BatchNorm group is over that of the vanilla group, whereas that of the dropout group is
below it. Meanwhile, for the average shortest path length and average clustering coefficient,
the corresponding relation of quantity between them is opposite: the values of the dropout
group are larger than those of the vanilla group, and those of the BatchNorm group are
less. The graph theoretical differences between the functional networks in various groups
show that the regularization techniques have different impacts on FCNs. The models
with batch normalization have higher global information transmission capability and more
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rapid, integrated, and efficient communication between neurons, which improves network
performance. However, the improvement of efficiency comes at the cost of a decrease in the
clustering coefficient. The clustering coefficient measures the network fault tolerance, and a
highly clustered network is resilient to random attacks (Fornito et al., 2016). The decrease
in the fault tolerance leads to a decline in adversarial robustness.

In contrast to batch normalization, dropout raises the average clustering coefficient
and average shortest path length while lowering the global efficiency. The high average
clustering coefficient demonstrates that numerous small subgraphs with tight internal
integration exist in the functional network. Moreover, the neurons in a subgraph encode
comparable features, which can be considered a functional group. The functional groups
facilitate functional specialization within the network, which contributes to fast and efficient
information processing (Ringo et al., 1994), and increase the network redundancy and fault
tolerance. Therefore, the robustness and model performance are improved.

In conclusion, batch normalization and dropout have different mechanisms: (1) Batch
normalization enhances model performance by increasing the global efficiency of neural
networks but reduces adversarial robustness by lowering the fault tolerance. (2) Dropout
facilitates functional specialization and fault tolerance by increasing functional groups, which
improves the generalization ability and robustness of neural networks. According to this
conclusion, we can explain the decline in network performance when dropout and batch
normalization are combined practically.

5.3.2 TDA and Clustering Experiments

Compared with GTA, TDA depicts the higher-dimensional interactions at different resolutions
without the density selection in GTA and is more robust to noise. In TDA, a network is
modeled as a simplicial complex K, which is a set of simplexes τ . A k-simplex τi is the
convex hull of k + 1 vertices, denoted as τi = [vi0, vi1, · · · , vik]. A face of τi is the convex
hull of its vertice subset.

Previous studies (Rieck et al., 2019; Watanabe and Yamana, 2021) showed that the
complexity of FCNs could be measured by their zero- and one-dimensional structural
topological features. Meanwhile, TDA is also used to capture the topological differences
between functional brain networks to identify and classify various types of brains (Billings
et al., 2021). In this work, we applied TDA to obtain the zero- and one-dimensional
Betti number curve of the functional network to explain the mechanisms of dropout and
batch normalization. To show that TDA characterizes deep neural networks, the clustering
experiments were performed to distinguish the FCNs trained with different regularizations
according to their functional topological features.

First, we modeled a functional network as a weighted simplicial complex K. Given a
weighted graph F (V,Ef ,Wf ) with the weight function ψ, we can define a simplicial complex
K = {[vi0, vi1, ..., vik]|vi0, vi1, ..., vik ∈ V and 0 ≤ k < n} with a weight function φ : K → R,
i.e.,

φ(τi) =


1, if τi = [vi0],

ψ((vi0, vi1)), if τi = [vi0, vi1],

minκ⊂τi φ(κ), otherwise,

(11)
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Figure 4: Direct outcome of TDA for the FCNs trained on the (a) Fashion-MNIST, (b)
MNIST, and (c) CIFAR-10 datasets: a1, a7, b1, and c1: the box plots of the
test accuracies for the FCNs; a2, a3, a8, a9, b2, b3, c2, and c3: the average zero-
and one-dimensional Betti curves with the error bars of the functional networks;
a4-a6, a10-a11, b4-b6, and c4-c6: the dendrograms of hierarchical clustering by
test accuracies, and zero- and one-dimensional Betti distances, where 0, 1, and 2
denote the FCNs in the vanilla, dropout, and BatchNorm groups, respectively.

where ψ((vi0, vi1)) is the weight of the edge (vi0, vi1) in F , and κ represents any face of
the simplex τi. Then, the super-level filtration was adapted to get the k-dimensional Betti
number curve βk(ε) of K, where ε represents the filtration threshold (Dong et al., 2021).

For F (V,Ef ,Wf ), the nodes in V are modeled as 0-simplexes with the weights of 1
in K. The functional connectivities in Ef are modeled as 1-simplexes with the weights
of corresponding functional connectivity strength. Moreover, the k-cliques (k ≥ 2) in
F (V,Ef ,Wf ) are modeled as k-simplexes with weights equal to the minimum weight of their
faces.

We analyzed the FCNs with architectures [400, 400] and [400, 400, 400] trained on the
Fashion-MNIST dataset, the FCNs with [300, 300] trained on the MNIST dataset, and
the FCNs with [500, 500, 300] trained on the CIFAR-10 dataset. For the FCN Mi, we
constructed the corresponding weighted simplicial complex Ki and obtained the zero- and
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one-dimensional Betti number curves βi0(ε) and βi1(ε) by filtering Ki from 1 to 0. The Betti
numbers βi0 and βi1 represent the numbers of connected components and loops contained in
Ki, respectively. Moreover, the zero- and one-dimensional Betti distances between functional
networks were calculated as follows to measure the functional topological differences between
the FCNs:

dk(K
i,Kj) =

∫
ε
|βik(x)− βjk(x)|2dx. (12)

where k = 0, 1. Finally, we clustered the networks hierarchically according to their test
accuracies, and zero- and one-dimensional Betti distances. We illustrated the clustering
results in the dendrograms.

Figure 4 (a1, a7, b1, and c1) shows that the median test accuracies of the FCNs with
regularization are higher than those of the vanilla FCNs. Figure 4 (a2, a3, a8, a9, b2, b3, c2,
and c3) displays the average zero- and one-dimensional Betti curves. The small standard
deviations of the Betti curves imply that the Betti numbers of functional networks are stable
to the initial values.

For the simplicial complexes at the same threshold value ε, average β0 in the BatchNorm
group is the largest, followed by that in the vanilla and dropout groups, whereas average β0
in the dropout group is the smallest. This result indicates that the functional networks in the
dropout group have the least number of connected components at the same threshold. That
is, the FCNs with dropout possess several functional groups, in which the neurons encode
similar features and thus have strong functional connectivities. Therefore, the connected
components in the same functional group merge early, causing a small β0. On the contrary,
the FCNs with batch normalization have few and weak functional groups, leading to a large
β0.

Compared with the peak of one-dimensional Betti curves for the vanilla group, that
for the BatchNorm group is significantly higher, whereas the peak for the dropout group
is lower. The maximum β1 represents the maximum number of loops that occur in the
filtration of the simplicial complex. The combinational effects of numerous neurons in deep
neural networks can be revealed through one-dimensional topological features (Watanabe
and Yamana, 2021). The loops might attribute to the feature coding in deep neural networks.
The previous study (Benz et al., 2021) showed that batch normalization allows the utilization
of more useful features to increase accuracy. The highest peak of the one-dimensional
Betti curves in the BatchNorm group may suggest that batch normalization potentially
improves the coding capability of neural networks by increasing the number of functional
loops. Furthermore, β0 and the maximum β1 of the functional networks in the dropout
and BatchNorm groups change in the opposite tendency. This result implies that dropout
and batch normalization have opposing impacts on zero- and one-dimensional topological
features, which is in accordance with the observation in GTA.

As shown in Figure 4 (a4-a6, a10-a12, b4-b6, and c4-c6), the FCNs with various regular-
izations can be correctly clustered according to the zero- and one-dimensional Betti distances
while being incorrectly clustered simply using the test accuracies. Although regularization
methods enhance network performance, the improvements in test accuracies are insufficient
to distinguish regularization techniques. This finding indicates that, compared with test
accuracies, TDA indexes can better evaluate and distinguish deep neural networks.
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Moreover, the best clustering index is the zero-dimensional Betti distance because it
produces a large distance between clusters and a small distance within a cluster. Although
the FCNs can be correctly clustered according to the one-dimensional Betti distances, the
distances between the vanilla and dropout groups are comparatively small. This finding
reflects that batch normalization has a greater impact on the one-dimensional topological
structures of the functional network than dropout. The findings also suggest the potential
of the functional network and TDA for extracting functional topological features to explain,
evaluate, and distinguish deep neural networks.

6. Conclusion

In this work, we propose the functional network as a novel framework for interpretability
of deep neural networks. We show that the functional network of FCNs is a small-world
network, similar to the brain functional network, suggesting that the two have a similar
functional organization. Batch normalization enhances model performance by increasing
the global efficiency and the number of functional loops but reduces adversarial robustness
by lowering the fault tolerance. Dropout enhances the functional specialization and fault
tolerance in models by increasing the number of functional groups and network redundancy,
improving the generalization ability and robustness of neural networks. Additionally, the
models with different regularizations were clustered correctly according to their functional
topological differences, reflecting that topological features based on TDA characterize the
FCNs.

In this work, Pearson correlation is used as the measure of statistical dependency
between neural activities of neurons. In future work, we will choose other methods to
measure functional connectivity. Another interesting avenue is to study the similarities and
differences of coding mechanisms between the brain and the deep neural network from the
perspective of the functional network, which will promote the research of brain-inspired
intelligence.
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