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Abstract

This paper introduces Wasserstein Adversarially Regularized Graph Autoencoder
(WARGA), an implicit generative algorithm that directly regularizes the latent
distribution of node embedding to a target distribution via the Wasserstein metric.
The proposed method has been validated in tasks of link prediction and node
clustering on real-world graphs, in which WARGA generally outperforms state-of-
the-art models based on Kullback-Leibler (KL) divergence and typical adversarial
framework.

1 Introduction

Graph, consisting of a set of nodes and links, is an essential type of data that captures the topological
structure within observations. Typical tasks on graphs involve link prediction, node clustering,
node classification, etc., which have received an increasing amount of attention in social network
analysis [3], recommendation system [11] and bioinformatics [1].

Recently, node embedding, an approach that provides low-dimensional vector-space representations
for graph nodes, has become a paradigm in graph analysis. The learned embedding preserves
useful information from the original features and retains the topological structure of the graph in
the meantime, such that the algorithm will be both effective and efficient when performing the
aforementioned downstream tasks. Some embedding methods assume that only topological structure
is given, such as Spectral Clustering [16], DeepWalk [14] and node2vec [5], while others not only
consider the graph structure but also exploit the content features, such as Graph Convolutional
Networks (GCN) [10], GraphSAGE [6] and Graph Attention Networks (GAT) [18].

Among the embedding models, some take the generative approach, which, instead of learning a
fixed vector representation for each node, assume that the latent representation follows a particular
probability distribution. For example, Variational Graph Autoencoder (VGAE) [9] takes a standard
Gaussian as the prior distribution, and then uses variational inference to estimate the posterior
distribution of the latent embedding, with Kullback-Leibler (KL) divergence being the measurement
of “distance” between distributions (Nevertheless KL divergence is not a metric for distance by strict
definition as it fails to satisfy symmetry and triangular inequality). Adversarially Regularized Graph
Autoencoder (ARGA) [13], based on VGAE, further proposes an adversarial framework that involves
a discriminator to distinguish the encoded distribution from the prior, and then optimizes both encoder
and discriminator simultaneously as a minimax problem, leading to a better result in performance.

Meanwhile, Wasserstein distance, also known as Earth-Mover distance [15], has gained popularity
in machine learning research for its effective measurement of the distance between distributions.
Compared to the other commonly used “distance” metrics such as KL divergence and Jensen-Shannon
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(JS) divergence, Wasserstein distance is suitable for estimating distributions with disjoint supports.
For instance, Wasserstein Generative Adversarial Networks (WGAN) [2] replaces the discriminator
in Generative Adversarial Nets (GAN) [4] by Wasserstein metric to handle the problems of unstable
training and mode collapsing. Moreover, Wasserstein Autoencoder (WAE) [17] outperforms Vari-
ational Autoencoder (VAE) [8] by enforcing a continuous encoded latent distribution to match the
target distribution, as opposed to VAE that individually enforces each observation’s latent distribution
to match the target distribution.

In this work, we propose Wasserstein Adversarially Regularized Graph Autoencoder (WARGA),
which directly regularizes the encoded latent distribution to a target distribution via 1-Wasserstein
distance. Compared to the methods that use KL divergence to measure the similarity of graph embed-
dings’ distributions, Wasserstein distance can provide useful information when the two distributions
share no common support. Compared to adversarial methods that regularize the embedding by
distinguishing encoded distributions from target distributions as a classification task, Wasserstein
distance provides a more natural explanation for regularization by using the distance between distri-
butions other than artificially designing a discriminator. Empirical studies of link prediction and node
clustering on three popular citation networks have been conducted to test our model’s performance
against KL divergence and adversarial framework methods.

2 Background and related work

In this section, we review graph embedding approaches that use KL divergence and give an overview
on Wasserstein distance.

2.1 Variational Graph Autoencoder

Let G = (V,A) denote a graph consisting of a set of N nodes V = {v1, ...,vN} with their features
X = {x1, ...,xN} and an adjacency matrix A with Aij = 1 if there is a link between node vi and
vj , and Aij = 0 otherwise.

VGAE is optimized to perform link prediction task by maximizing the variational lower bound L:
L = Eq(z|A,X)[log p(A|X, z)]−KL[q(z|A,X)||p(z)], (1)

in which z is the encoded latent embedding from GCN [10] with probability distribution q(z|A,X),
p(z) is a prior distribution of z (e.g. standard Gaussian), and p(A|X, z) is the likelihood of recon-
structing A given z through an inner-product decoder.

We can view such formulation from a regularization perspective: maximizing the variational lower
bound L is equivalent to minimizing the cross entropy loss and the KL divergence between q and p:

maxL ⇐⇒ min
{
− Eq(z|A,X)[log p(A|X, z)] + KL[q(z|A,X)||p(z)]

}
. (2)

Therefore, we can treat the KL divergence as a term that penalizes the encoded distribution q for
deviating from the specified prior distribution p.

2.2 Adversarially Regularized Graph Autoencoder

ARGA further introduces an adversarial model D that discriminates the samples of encoded latent
distribution qz by generator G from the samples of specified prior pz . Together with the generator
G, ARGA is optimized as a minimax problem, where the generator wishes to generate embeddings
that baffle the discriminator, while the latter tries to discern the “fake” embeddings. The adversarial
objective is defined as:

min
G

max
D

{
Ez∼pz [logD(z)] + Ez∼qz [log(1−D(G(A,X)))]

}
. (3)

Finally, the generator G will be iteratively updated by both adversarial objective and variational lower
bound L in Eq (1) to encode the original feature into a regularized latent embedding.

2.3 Wasserstein distance and its dual form

The 1-Wasserstein distance [19] between two distributions Pr and Pg is defined as:
W1(Pr,Pg) = inf

γ∈P(r∼Pr,z∼Pg)
E[‖r − z‖2], (4)
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where P(r ∼ Pr, z ∼ Pg) is the set of all joint distributions γ(r, g) with marginals Pr and Pg
respectively. As the above form is intractable, the expression can be reformulated by Kantorovich-
Rubinstein duality as:

W1(Pr,Pg) = sup
‖f‖L≤1

{
Er∼Pr

[f(r)]− Ez∼Pg
[f(z)]

}
, (5)

where f is any continuous function that satisfies 1-Lipschitz continuity. In Wasserstein GAN [2] the
authors show that such problem can be solved via:

max
φ∈Φ

{
Er∼Pr

[fφ(r)]− Ez∼Pg
[fφ(z)]

}
, (6)

with f parameterised by φ in a compact space Φ for fφ to satisfy 1-Lipschitz constraint. In practice,
the parameters φ can be clipped into a fixed range (e.g. Φ = [−0.01, 0.01]) after each iteration during
optimization.

3 Proposed method

The general structure of the proposed method is illustrated in Figure 1. We first use a generator G
to encode the original graph nodes into vector representations, then force the encoded embedding’s
distribution to match a target distribution by minimizing their 1-Wasserstein distance as regularization.
Finally, we reconstruct the adjacency matrix and iteratively update the generator and the regularizer
until the algorithm converges.

Figure 1: Overall structure of WARGA

3.1 Graph Autoencoder

We use a 2-layer GCN as generator Gw(A,X) to encode the original node features X ∈ RN×c with
the topological structure A into a low dimensional representation Z ∈ RN×e:

Gw(A,X) = ReLU(ĀReLU(ĀXW1)W2), (7)

where Ā := D̃−
1
2 ÃD̃−

1
2 is the new "weighted" adjacency matrix for graph G after convolution,

with D̃ii :=
∑
j Ãij

to be the degree matrix of Ã := A + I. ReLU(t) = max(0, t) is used as the
activation function in the neural networks with weights W1 ∈ Rc×d and W2 ∈ Rd×e, and the output
matrix Z contains latent embeddings zi for each node vi ∈ V as row-vectors.

We assume that the latent representation follows a standard Gaussian distribution N (0, I) denoted
by Pr, and denote the distribution of the embedding generated by Gw as Pg(z|A,X), where the
parameter w is to be learned by reconstructing the adjacency matrix using an inner-product decoder:

p(A|X,Z) =

n∏
i=1

n∏
j=1

p(Aij |zi, zj), with p(Aij = 1|zi, zj) = σ(z>i zj). (8)

Here we use sigmoid function σ(t) = 1/(1 + exp(−t)) to restrain the output into range (0,1). As
such, the objective can be defined as minimizing the cross entropy loss over the parameters w in G :

min
w
−E Pg

[log p(A|X,Z)]. (9)
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3.2 Wasserstein regularizer

To force the encoded distribution Pg(z|A,X) into the target distribution Pr = N (0, I), we introduce
a Wasserstein regularizer that helps to minimizes the 1-Wasserstein distance between Pr and Pg .

From Section 2.3 we can formulate the distance as:

W1(Pr,Pg) = max
φ∈Φ

{
Er∼Pr [fφ(r)]− Ez∼Pg [fφ(z)]

}
, (10)

where f is parameterised by a fully connected neural network with parameters φ ∈ Φ in a compact
space. Here we demonstrate fφ by a Multilayer Perceptron (MLP) with 2 hidden layers:

fφ∈Φ(z) = W5σ(W4σ(W3z + b1) + b2) + b3, (11)

in which W3 ∈ Rk×e and W4 ∈ Rl×k are weights in the hidden layers with biases b1 and b2, while
W5 ∈ R1×l and b3 are the parameters in the output layer.

The generator Gw, on the contrary, wants to minimize such distance, which leads to an adversarial-like
framework with a minimax objective:

min
w

max
φ∈Φ

{
Er∼Pr

[fφ(r)]− Ez∼Pg
[fφ(z)]

}
. (12)

Combining with the objective of reconstruction for generator Gw in Section 3.1, we arrive at the final
loss function for training:

min
w

max
φ∈Φ

{
− E Pg

[log p(A|X,Z)] + Er∼Pr
[fφ(r)]− Ez∼Pg

[fφ(z)]
}
. (13)

3.3 Learning algorithm

The algorithm for learning the generator and regularizer is demonstrated in Algorithm 1.

Algorithm 1 Wasserstein Adversarially Regularized Graph Autoencoder
Require: Graph G = (V,A); feature matrix X ∈ RN×c; Number of epochs T ;

Number of iterations for Wasserstein regularizer K
1: for epoch = 1, 2, ..., T do
2: Encode A and X into low-dimensional representation Z ∈ RN×e by Gw
3: for iteration = 1, 2, ...,K do
4: Sample {ri}mi=1 ∼ Pr a batch of priors
5: Sample {zi}mi=1 ∼ Pg a batch from the encoded embedding
6: Update fφ by computing: ∇φ 1

m

∑m
i=1

(
fφ(ri)− fφ(zi)

)
7: Clip φ back to Φ
8: end for
9: Update Gw by computing ∇w in Eq (13)

10: end for
11: return Z, Gw and fφ

The generator Gw has complexity O(Ncde) in Eq (7) as ĀX can be efficiently computed by sparse-
dense matrix multiplication [10], and the regularizer fφ parameterised by a MLP with 2 hidden layers
has complexity of O(mek + mkl) in Eq (11) if the number of samples m for prior and encoded
embedding is much greater than the number of neurons in each hidden layer (k and l).

4 Experiments

4.1 Experimental setup

We validate our proposed methods by link prediction and node clustering on three popular citation
networks: Cora, Citeseer and PubMed, with their statistics summarized in Table 1.

For both tasks, we compare our algorithms against GAE, VGAE, ARGA and ARVGA. In link
prediction, we report AUC score (the area under the curve) and AP score (average precision),
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Table 1: Dataset statistics

Dataset # Nodes # Links # Features # Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3

while for node clustering, we choose Acc (accuracy), NMI (normalized mutual information) and
ARI (adjusted random index) as metrics to compare our results to other baselines. Similar to the
experimental design in VGAE [9], we use 5% links for validation, 10% links for testing, and the rest
for training. All experiments are repeated 10 times by different random seeds, with results reported
by mean (in percentage) and standard deviation (in decimal). The experiment is conducted on an
NVIDIA GEFORCE RTX 3090 GPU, and the codes for replicating the experiment results can be
retrieved from https://anonymous.4open.science/r/WARGA-44F6/.

4.2 Link prediction

4.2.1 Hyper-parameter settings

For a fair comparison purpose, we build our encoder identical to other baselines with 32 neurons in
the first hidden layer and 16 neurons in the second embedding layer. The Wasserstein regularizer is
constructed similar to the discriminator in ARGA with 2 hidden layers (16-neuron and 64-neuron).
For Cora and Citeseer, we train our proposed model for 200 epochs via Adam optimizer [7] and
choose a 0.001 learning rate for both encoder and Wasserstein regularizer, with parameters in the
latter clamped into [-0.01, 0.01]. While for PubMed dataset, as it is relatively large (around 20k nodes
with 44k links) compared to the other graphs, we iterate 1500 epochs for sufficient optimization with
a learning rate of 0.005.

4.2.2 Link prediction results

We retain the experimental results from ARGA [13] for the four baselines together with our results,
which are summarized in Table 2. The results suggest that by incorporating a Wasserstein regularizer,
WARGA outperforms all four baselines on Cora and Citeseer with an increase in AUC score and
AP score by 0.5% on average compared to the leading baselines of similar model sizes. While on
PubMed dataset, although ARGA achieves the best performance with around 97% in both AUC score
and AP score, our WARGA still generates very competitive results compared to ARGA that are only
0.3% and 0.1% lower under AUC and AP respectively.

Table 2: Link prediction results

Method Cora Citeseer PubMed
AUC AP AUC AP AUC AP

GAE 91.0 ± 0.02 92.6 ± 0.01 89.5 ± 0.04 89.9 ± 0.05 96.4 ± 0.00 96.5 ± 0.00
VGAE 91.4 ± 0.01 92.6 ± 0.01 90.8 ± 0.02 92.0 ± 0.02 94.4 ± 0.02 94.7 ± 0.02
ARGA 92.4 ± 0.003 93.2 ± 0.003 91.9 ± 0.003 93.0 ± 0.003 96.8 ± 0.001 97.1 ± 0.001
ARVGA 92.4 ± 0.004 92.6 ± 0.004 92.4 ± 0.003 93.0 ± 0.003 96.5 ± 0.001 96.8 ± 0.001
WARGA 92.9 ± 0.003 93.8 ± 0.002 92.9 ± 0.004 93.6 ± 0.004 96.5 ± 0.001 97.0 ± 0.001

4.2.3 Hyper-parameter analysis

We further conduct a hyper-parameter analysis to explore the changes in WARGA’s performance when
given different encoding layers, and demonstrate our findings with Cora dataset. The investigated
combinations consist of the first encoding layers chosen from [ 32, 64, 128 ] neurons and the second
embedding layers chosen from [ 16, 32, 64, 128 ] neurons. The results are the means of 10 runs with
different random seeds, as illustrated in Figure 2.

The results reveal that adding neurons to the second embedding layer when given a first encoding layer
with 32 neurons will conduce to conspicuously better performance, but such benefit is diminishing
as the number of neurons in the first encoding layer increases. On the other hand, when given a 16-
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Figure 2: Hyper-parameter analysis on Cora

neuron embedding layer, the differences in performance from various encoding layers are significant.
However, these gaps also tend to shrink as we increase the embedding neurons from 16 to 128.

4.3 Node clustering

In this section, we perform node clustering using K-means algorithm based on the embedding
learned from link prediction task above to cluster similar nodes into the same groups. We retain the
experiment results for the four baselines from [12] with ours, as shown in Table 3 and Table 4.

Table 3: Node clustering results on Cora and Citeseer

Cora Acc NMI ARI
GAE 55.6 ± 0.05 41.2 ± 0.03 33.2 ± 0.05
VGAE 58.6 ± 0.05 40.1 ± 0.03 34.2 ± 0.03
ARGA 59.3 ± 0.04 42.2 ± 0.03 31.6 ± 0.05
ARVGA 63.4 ± 0.01 45.3 ± 0.00 39.2 ± 0.02
WARGA 66.0 ± 0.03 49.0 ± 0.02 43.8 ± 0.02

Citeseer Acc NMI ARI
GAE 42.5 ± 0.05 19.9 ± 0.03 13.7 ± 0.06
VGAE 50.3 ± 0.02 23.6 ± 0.02 22.1 ± 0.02
ARGA 36.6 ± 0.08 28.4 ± 0.04 16.1 ± 0.08
ARVGA 51.5 ± 0.03 26.3 ± 0.01 22.7 ± 0.02
WARGA 56.2 ± 0.03 30.1 ± 0.02 28.5 ± 0.02

Similar to link prediction results, our proposed method outperforms all baselines on Cora and Citeseer
datasets in every metric by a decent margin of around 3% to 5%. For PubMed dataset, however,
VGAE shows the best results under Acc and ARI metrics of 68.9 and 30.6 respectively, while our
WARGA achieves the best NMI score of 29.4, with slightly lower Acc and ARI scores of 67.4 and
28.5 compared to the best baseline.

Table 4: Node clustering results on PubMed

PubMed Acc NMI ARI
GAE 63.7 ± 0.01 23.3 ± 0.01 22.7 ± 0.02
VGAE 68.9 ± 0.01 28.3 ± 0.01 30.6 ± 0.01
ARGA 68.0 ± 0.00 29.4 ± 0.02 29.3 ± 0.00
ARVGA 63.4 ± 0.00 23.1 ± 0.00 22.4 ± 0.00
WARGA 67.4 ± 0.01 29.4 ± 0.02 28.5 ± 0.02

5 Limitation

Although WARGA shows competitive results in the above experiments, there is still some minor
limitation in the model design. The Kantorovich-Rubinstein dual for 1-Wasserstein distance in
Eq (5) requires supreme over all functions that satisfy 1-Lipschitz continuity. However, the practical
approach we adopted from GAN [2] of clipping parameters φ into a compact space Φ only searches
within a subspace of the defined space, hence serving as an approximation rather than strictly ensuring
the constraint.
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6 Conclusion

In this work, we introduced Wasserstein Adversarially Regularized Graph Autoencoder, which en-
forces graph node’s latent representation to follow a target distribution by measuring Wasserstein
distance between distributions. Empirical results show that the proposed method generally outper-
forms KL divergence “regularized” and typical adversarially regularized methods in link prediction
and node clustering. Potential limitation is discussed in the end and future work may explore more
on different architectures and generators for graph embedding with Wasserstein regularizer.
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