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Abstract

Since first proposed, Video Instance Segmentation(VIS) task has attracted vast researchers’ focus on architecture modeling to boost
performance. Though great advances achieved in online and offline paradigms, there are still insufficient means to identify model
errors and distinguish discrepancies between methods, as well approaches that correctly reflect models’ performance in recogniz-
ing object instances of various temporal lengths remain barely available. More importantly, as the fundamental model abilities
demanded by the task, spatial segmentation and temporal association are still understudied in both evaluation and interaction mech-
anisms.

In this paper, we introduce TIVE, a Toolbox for Identifying Video instance segmentation Errors. By directly operating output
prediction files, TIVE defines isolated error types and weights each type’s damage to mAP, for the purpose of distinguishing model
characters. By decomposing localization quality in spatial-temporal dimensions, model’s potential drawbacks on spatial segmenta-
tion and temporal association can be revealed. TIVE can also report mAP over instance temporal length for real applications. We
conduct extensive experiments by the toolbox to further illustrate how spatial segmentation and temporal association affect each
other. We expect the analysis of TIVE can give the researchers more insights, guiding the community to promote more meaningful
explorations for video instance segmentation. The proposed toolbox is available at https://github.com/wenhe-jia/TIVE.
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1. Intruduction

As the indispensable technique in numerous real applica-
tions, e.g., video surveillance and editing, autonomous driving,
Video Instance Segmentation (VIS)[1, 2, 3, 4, 5] is emerging
among various vision tasks[6, 7, 8, 9, 10, 11] in recent years.
Compared to image-level instance segmentation, video instance
segmentors are required to assign unique identities to video in-
stances. Demand for both spatial segmentation and temporal
association leaves VIS at the intersection of mask-level object
recognition and sequence modeling, making it one of the most
fundamental role among video object recognition tasks(e.g.,
Multi-Object Tracking (MOT)[12], Video Object Segmentation
(VOS)[13, 14] and Video Instance Parsing (VIP)[15]). How-
ever, discussion about error sources, model abilities, and inter-
acting mechanism on the above-mentioned aspects is unavail-
able, as well proper evaluating scheme for recognizing video
instances with different attributes.

Though continuous works are proposed by leaps and bounds,
the following problems still puzzle the community: firstly, we
don’t know how false positive and negative predictions relate
to the overall metric. When optimizing mAP alone, we may
inevitably neglect the relative importance of different types of
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Figure 1: Comparison between TIVE and other error
analyzing toolboxes. UAP[16] weight error contribution in a
progressively fixing mechanism, while TIDE[17] can give
objective and isolated error analysis. But both of them cannot
distinguish spatial and temporal misslocalized false positives.

errors that vary among applications, leaving discrepancies be-
tween algorithms unclear. For example, temporal association is
crucial to recognize objects that disappear or are occluded tem-
porarily in video surveillance, and accurate spatial segmenta-
tion is required by autonomous driving systems to precisely for-
mulate obstacle avoidance operations; secondly, no appropriate
scheme to evaluate model performance over instance temporal
length. For attribute analysis, performances in different tem-
poral lengths are notably important, but the official evaluation
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scheme is not based on instance temporal length, but on the
length of videos; lastly, the relation between spatial segmenta-
tion and temporal association is not investigated. As the most
required abilities, spatial segmentation and temporal associa-
tion are expected to promote mutually, thus can leave a positive
impact on another when promoting one. Unfortunately, there is
few work to discuss the relation between them.

There are some existing error analyzing toolboxes that may
partially solve the above-mentioned problems. Several image-
level error analyzing toolboxes[18, 16, 17] try to diagnose er-
rors and observe how much they contribute to the performance
decline, but they fail to distinguish errors distributed in spatial
and temporal dimensions. Some video-level tools[19, 20, 21]
focus on diagnosing video action and relation errors, not video
objects. They pay attention to the subjective impacts brought by
annotators and task-specific object attributes(e.g., context size
for action, relation distribution, etc.), which are not applicable
for VIS, not to mention demonstrating the relation of spatial
segmentation and temporal association.

Thus we introduce TIVE, a novel Toolbox for Identify var-
ious Video instance segmentation Errors. Decomposing gen-
eral localization error in spatial and temporal dimensions, TIVE
clearly subdivides 7 isolated error types, as well as explores
model performance on different instance temporal lengths. By
weighting the error contributions to mAP damage by individu-
ally fixing oracles, we can understand how these error sources
relate to the overall metric, which is crucial for algorithm de-
velopment and model selection in deployment. The variation
of spatial segmentation and temporal association error weights
can laterally reflect the model ability change. Evaluating per-
formance over instance temporal length can help the commu-
nity to evaluate models for real scenarios. Figure.1 shows the
comparison between TIVE and other error analyzing toolboxes.

Providing comprehensive analysis of several typical algo-
rithms, clear discrepancies between methods are revealed by
error weights, we find that short video instances that live
less than 16 frames are harder to recognize for all methods.
Only one of the investigated algorithms can enable spatial
segmentation and temporal association to benefit from each
other, while others generally meet at most one aspect, this
phenomenon may demand further exploration by the com-
munity. Due to the modulated functional design, we can
easily extend TIVE to other video object recognition tasks,
e.g., MOT[12, 22], VOS[13, 14, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33] and VIP[15] task, whose metric calculation
have strong similarity with video instance segmentation, and
the principle of TIVE is also referential to identify errors in
Video Semantic Segmentation(VSS)[34, 35] and Video Panop-
tic Segmentation(VPS)[36] task.

2. Related Work

2.1. Video instance segmentation

As an extension of image-level instance segmentation
task[37, 38, 39, 40, 41, 42, 43, 44, 45], current video instance
segmentation methods can be roughly divided into online and

offline paradigms, which derive from MOT, VOS and newly
raised vision transformer techniques.

Online methods select one frame as reference and one or
several other frames as query, where ground truth labels and
masks of query frames are considered as learning targets[1, 46,
47, 48, 49]. At inference stage, they first perform frame-level
instance segmentation by object detector[50, 51, 52, 53, 54] or
instance segmentor[37, 45, 55], then conduct temporal associ-
ation with tracking modules[56, 57, 58], which is usually con-
ducted under manual-designed rules and representation com-
parison. Except for the pioneer Mask Track R-CNN[1], later
works tend to leverage more frame-level predictions to refine
results of each query frame[49], e.g., classification scores and
predicted masks, which provide rich temporal references.

Offline methods take several randomly sampled frames from
a video clip as input both in training and inference progress
and directly predict mask sequences, labels and masks from
all sampled frames are supervision signals. Maskprop[59]
and Proposereduce[60] combine mask propagation technique
from VOS tasks with frame-level instance segmentation mod-
els to segment video instances in spatial-temporal dimensions.
Specifically, they use Mask R-CNN[37] to get frame-level in-
stance categories and masks, then propagate them to the entire
video clip. Compared to the propagation-based methods that
have a complicated processing pipeline to generate sequence re-
sults for multiple video instances, the transformer-based meth-
ods dominate the state-of-the-art performance[61, 62, 63, 64,
65] recently. Thanks to the strong ability to capture global
context, this type of models directly learn to segment mask se-
quences during training and produce sequence-level predictions
in only one-time inference.

2.2. Error analyzing tools
Although previous literature provides qualitative proofs to

demonstrate their model superiorities over others, but limited
visual comparisons are incomplete and nonobjective. There ex-
ists toolboxes identifying relative vision recognition errors in
frame and video level may provide useful guidance.

Image-level toolboxes. UAP[16] tried to explain the effects
of object detection errors based on cocoapi, subjective error
types and fixing oracles are defined to explore the metric upper
bounds. But with progressive weighting scheme, it fails to iso-
late contributions of errors. TIDE[17] is the most recent image-
level object recognition error analyzing toolbox, which clearly
defines isolated errors and weighting contribution of each by
individually fixing oracles, providing meaningful observations
and suggestions to mainstream methods and algorithm design.

Video-level toolboxes. Few related works search for identi-
fying video recognition errors, they more focus on 1) exploring
challenging factors for object tracking based on self-established
dataset, whose instances distribute in no more than one chal-
lenge factor[19], thus keeping models from handling compli-
cated data distribution; 2) diagnosing detection errors for hu-
man actions and video relations, rather than focusing on video
objects. Chen et.al. [20] analyzed the subjective factors of
annotations and gave some conclusions about effects of them,
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(a) Ground truth.

`

(a)

(b)

(c)

(b) Spatial segmentation error.
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(c) Temporal association error.

Figure 2: Complicated cases of localization error for video instance segmentation. Under mask sequence IoU threshold of 0.5,
localization error of the same video instance can appear in different circumstances. (a) Ground truth. (b) and (c) are spatial
miss-segmented prediction and temporal miss-associated prediction with mask sequence IoU = 0.48 respectively.

while Alwassel et.al. [21] studied the sources of video relation
detection errors and explore the metric sensitivities to each.

Although the community has been improving the model per-
formance by the only judgment of mAP, toolbox to explore
model discrepancies remains barely available, so we introduce
TIVE to fill up this vacancy.

3. TIVE

In this section, we first discuss the limitations of the official
evaluation scheme(§3.1), then demonstrate our toolbox design
with objective errors(§3.2), at last we take further analysis on
attribute of instance temporal length(§3.3).

3.1. Revisiting evaluation metric

Calculating mAP. Since newly raised, current VIS algo-
rithms just evaluate their models on the most popular bench-
mark, YouTube-VIS, which adopts a variation of cocoapi as its
evaluation implementation1. Given a video clip with T frames
, mask sequence intersection-over-union(IoU) is calculated be-
tween a ground truth mask sequence mi

p...q and a predicted mask
sequence m̃i

p̃...q̃ by Eq.1:

IoU =
ΣT

t=1|mt ∩ m̃t |

ΣT
t=1|mt ∪ m̃t |

(1)

1https://github.com/youtubevos/cocoapi

where mt and m̃t denote annotated and predicted binary seg-
mentation mask of each frame, with p ∈ [1,T ], p̃ ∈ [1,T ] and
q ∈ [p,T ], q̃ ∈ [ p̃,T ] denote their starting and ending time re-
spectively. For instances appear in the middle of a video clip,
p, p̃ are extended to 1, q and q̃ are entented to T by padding
empty masks during evaluation.

After the matching manipulation, standard average
precision(AP) and recall(AR) are calculated by multiple
IoU thresholds same as COCO evaluation. The localization
quality of a prediction is considered as the aggregation of spa-
tial segmentation and temporal association quality, therefore
making the evaluation progress concise and elegant.

Limitation of evaluation toolkit. Following the official im-
plementation, we may get puzzled in identifying different false
positives that fail to accurately localize video instances. Look at
Figure.2(a), considering the football player in the central area
of the first frame, the miss-localized prediction with the right
category could be in various cases. Figure.2(b) suffers from
sub-optimal spatial segmentation while Figure.2(c) contains an
identity switch between two human instances. Improvements in
model ability from either aspect may fix these errors to true pos-
itives, but without a large amount of visualization, researchers
can not get a picture of their models’ potential shortness to lo-
calize instances in spatial-temporal dimensions.

The official implemented mask sequence IoU confuses the
model’s localization performance of two dimensions together,
resulting in no clear illustration of algorithm characters. With
the additional temporal dimension, recognizing instance se-
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un-matched mask/label
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GT Label: Dog
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IoU=0.75 IoU=0.80 IoU=0.65 IoU=0.55 IoU=0.95

IoU=0.05 IoU=0.8 IoU=0.05 IoU=0.00 IoU=0.95

IoU=0.90 IoU=0.90 IoU=0.85 IoU=0.95 IoU=0.95

IoU=0.90 IoU=0.20 IoU=0.15 IoU=0.90 IoU=0.00

IoU=0.01 IoU=0.30 IoU=0.00 IoU=0.05 IoU=0. 00

Figure 3: Error type definitions. We define 7 types of errors for video instance segmentation, predicted category, mask sequence
IoU, and temporal overlap of each error type are shown in the right rows of images, the missed ground truh error is not shown.

quences in videos becomes more complicated and challenging.
So an error analyzing toolbox is eagerly demanded, for the pur-
pose of distinguishing model discrepancy, as well as giving sug-
gestions on model design.

3.2. Error definition
Errors produced by models can be roughly divided into false

positives and false negatives. Still, these two error types mix
up the factors referenced during evaluation(e.g., mask category
and location). We bin all error predictions into 7 types as Fig-
ure.3(w/o. missed ground truth error, which usually represents
false negative predictions).

General recognition errors. We first use IoUmax to de-
note a false positive’s mask sequence IoU with its best-matched
ground truth of the given category, the foreground IoU thresh-
old thr f and the background threshold thrb are set to 0.5 and
0.1 unless otherwise noted. By two variables of category and
IoUmax, 6 error types come along as described in [17]: clas-
sification error(Cls), duplication error(Dup), localization er-
ror(Loc), both classification and localization error(Both), back-
ground error(Bkg) and missed ground truth error(Miss). These
general errors that derive from the AP calculation are applicable
for both image-level and video-level object recognition tasks.

Spatio-temporal localization errors. After the general er-
ror types, we delve into possibilities to distinguish general lo-
calization errors into more specific sub-categories. TIVE per-
forms a reverse analysis relative to the IoU formulation: de-
composes the localization quality into spatial and temporal sub-
assessments, representing spatial segmentation and temporal
association qualities, respectively.

Here we introduce temporal overlap overlaptemp to represent
the tracking quality of predictions. Suppose a predicted mask
sequence and a ground truth mask sequence as described in
§3.1, we first compute image-level mask IoUs {IoUt}

T
t=1 of all

frames by Eq.2:

{IoUt}
T
t=1 = {

|mt ∩ m̃t |

|mt ∪ m̃t |
}Tt=1 (2)

where IoUt represents mask IoU at each frame; then we count
the matched frame number Nmatch whose IoUt are higher than
frame mask IoU threshold thrspat(0.1 as default); finally the
overlaptemp is the ratio of Nmatch to their temporal union as Eq.3:

overlaptemp =
Nmatch

{p...q} ∪ { p̃...q̃}
(3)

where {p...q} and { p̃...q̃} ∈ [1,T ] represent frame index sets for
non-empty masks.

With IoUmax and thrtemp(0.7 as default), localization error
with mask sequence IoU between (thrb, thr f ) can be distin-
guished into novel spatial segmentation error and temporal as-
sociation error are as bellow:

• Spatial Segmentation Error(Spat): thrb ≤ IoUmax ≤

thr f for GT of the correct class (i.e., classified correctly
but localized incorrectly), meanwhile with overlaptemp ≥

thrtemp.

• Temporal Association Error(Temp): thrb ≤ IoUmax ≤

thr f for GT of the correct class (i.e., classified correctly
but localized incorrectly), meanwhile with overlaptemp ≤

thrtemp.

When calculating metrics, there are no intermediate states to
evaluate the effects of fixing errors progressively, as the fixing
oracle of a false positive or false negative prediction will change
the matching distribution. So progressive fixing scheme cannot
isolate error types, which may mismeasure their contributions
to performance decline. Motivated to eliminate confusion, the
effects of each error type are measured by observing variation
∆AP@50 after individually fixing type errors as described in
[17], note that the sum of AP and all error weights is not equal
to 100 AP, but we can get 100 AP after fixing all errors.

3.3. Analysis over temporal ranges
As the mostly used benchmark, most original videos of

YouTube-VIS 2019 and 2021 have a length of around 3 to 6 sec-
onds(15 to 30 frames), which is relatively not long enough to
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(a) Error distribution cross models.

(b) Online models. (c) Offline models.

Figure 4: Comparison cross video instance segmentation methods. Models are all trained on YouTube-VIS-2021 mini-train
subset, and error distributions are reported on mini-val subset. We report mean metrics and error weights of 5 runs for VISOLO,
IFC, and Mask2Former. The following tables and charts are the same.

Table 1: Data distribution of YouTube-VIS-2021 train subset
and our self-split mini train and validation subset.

Instances
Subset Videos

all short medium long

train 2985 6283 843 3113 2327

mini-train 2771 5804 782 2876 2146

mini-val 214 479 61 237 181

judge models’ ability for real application. In the YouTube-VIS
2022 challenge, the sponsor released an additional set of long
videos, aiming at observing the performance of models over
long temporal range. For evaluation, the metric for the orig-
inal YouTube-VIS 2021 validation and test subset are named
mAPS , and mAPL for additional long videos are evaluated with
the official toolkit separately, formulation of the final mAP is
averaged over metrics calculated on short and long videos.

There exists two irrationalities: 1.) Firstly, rather than the
length of original videos, the evaluation of model performance
over long temporal range should be based on the length of in-

stance sequences. because not all instances in the newly added
long videos retain long lifetimes, and vice versa for instances
in original videos; 2.) Secondly, averaging of mAPS and mAPL

may leave an underlying vulnerability: participants can achieve
better mAP by targeted optimizing mAPS , because YouTube-
VIS 2021 validation and test subset account for a larger propor-
tion of all the videos and instances of YouTube-VIS 2022.

Length of video instances in YouTube-VIS 2021 training
subset distribute centrally on 18∼20, 28∼31, and 34∼36 frames,
while others have much fewer samples as tail length. We define
instances of temporal length between 0 and 16 as short, 16 to
32 as medium, 32 to 72 as long, which metrics named mAPs,
mAPm, and mAPl respectively.

As the ground truth of YouTube-VIS validation and test sub-
sets are not released, so we turn to the training subset for our
study. We split the YouTube-VIS training subset into mini-train
and mini-val subsets, both of them have a relatively balance cat-
egory distribution w.r.t the whole training subset, detailed quan-
tity distribution of videos and instances is shown in Table.1.
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Table 2: Metrics and error weights cross temporal ranges for selected video instance segmentors on YouTube-VIS-2021
mini-val. All models are trained on YouTube-VIS-2021 mini-train subset with ResNet-50 as backbone, the default training frame
number is listed in the second column..

Metrics Error Weights(∆AP@50)
Method Pretrain

Training
Frames mAP mAPs mAPm mAPl Cls Dup Spat Temp Both Bkg Miss

Mask Track R-CNN MSCOCO T=2 36.30 10.44 35.87 43.43 7.50 0.00 6.98 6.36 0.24 0.94 6.08

VISOLO MSCOCO T=3 38.49 8.58 39.31 40.94 12.35 0.00 2.74 8.97 0.09 0.86 5.84

IFC MSCOCO T=5 40.27 20.44 38.98 40.98 7.03 0.02 6.93 10.99 0.38 1.20 4.72

SeqFormer MSCOCO T=5 43.37 21.69 40.43 39.20 6.95 0.25 7.69 4.00 0.00 0.97 6.20

Mask2Former MSCOCO T=2 48.07 25.05 43.85 44.37 5.23 0.42 5.54 6.52 0.06 2.51 2.94

(a) VISOLO (b) Mask2Former

Figure 5: Error distribution over different video instance temporal ranges for VILOLO and Mask2Former. Ground truth and
predicted video instances beyond the specific temporal range are not considered for error weight calculation.

4. Experimental analysis

In this section, we first use error distribution comparison
cross models to verify our toolbox design(§4.1); then, we
will investigate models’ performance over different temporal
ranges, find out what errors fail the segmentors to accurately
recognize video instances with specific temporal length(§4.2);
last, we conduct further studies on current methods to explore
the relation of spatial segmentation and temporal association
ability(§4.3) to see whether they can be promoted manually.

Models. We choose a series of open-source algirithms from
both online and offline paradigms:

• Online methods. We choose Mask Track R-CNN[1] and
VISOLO[49] as the target methods. Mask Track R-CNN
is the first algorithm developed for video instance segmen-
tation, while VISOLO performs tracking based on grid
similarity, achieving the best performance on YouTube-
VIS-2021 among all the online methods.

• Offline methods. We choose IFC[62], Seqformer[63],
and Mask2Former[64] due to their state-of-the-art per-
formance. IFC and SeqFormer separately perform
feature-level and query-level temporal aggregation, while

Mask2Former is implemented with no interaction between
temporal context during model forward.

For fair comparison, all models are trained on YouTube-VIS-
2021 mini-val subset with ResNet-50[66] as backbone. We
report mean of 5 runs as the results for VISOLO, IFC, and
Mask2Former due to their data sampling randomness.

4.1. Verify toolbox design

In this subsection, we focus on analyzing error distributions
to see whether TIVE’s errors correctly reflect methods’ charac-
ters to general intuition, summarizes as Figure.4(a).

Online methods. As the pioneer algorithm, Mask Track R-
CNN is built upon Mask R-CNN with an extra tracking branch.
While VISOLO makes improvements by making full use of in-
formation from previous frames(e.g., category scores and mask
features), under the guidance of grid similarity matching, for-
merly cues are aggregated to reweight scores and calibrate in-
stance masks at the current frame. As shown in Figure.4(b),
with mask calibration, VISOLO has a much smaller weight of
spatial segmentation error but achieves higher classification and
temporal association error weights than Mask Track R-CNN,
whose association is based on instance features within candi-
date boxes. This error distribution suggests that tracking by

6



Table 3: Performance cross models YouTube-VIS-2021 mini-val under different pretrain mode. All models are trained by
official release settings except for pretrain data and task. When pretrained with MSCOCO, stronger ability reflects in SPAT error
weight decline.

Metrics Error Weights(∆AP@50)
Method Pretrain

Training
Frames mAP mAPs mAPm mAPl Cls Spat Temp Miss

ImageNet 29.27 6.17 27.88 33.50 8.12 8.13 9.87 3.73
Mask Track R-CNN

MSCOCO
T=2

36.30 10.44 35.87 43.43 7.50 6.98 6.36 6.08

ImageNet 26.77 6.24 26.26 30.11 15.04 5.06 7.69 6.70
VISOLO

MSCOCO
T=3

38.49 8.58 39.31 40.94 12.35 2.74 8.97 5.84

ImageNet 30.77 13.84 26.63 31.12 1.74 11.42 9.55 6.42
IFC

MSCOCO
T=5

40.27 20.44 38.98 40.98 7.03 6.93 10.99 4.72

ImageNet 38.64 19.55 35.49 35.46 5.46 8.09 4.80 5.69
SeqFormer

MSCOCO
T=5

43.37 21.69 40.43 39.20 6.95 7.69 4.00 6.20

ImageNet 35.14 19.84 33.05 34.24 5.14 6.19 6.81 5.65
Mask2Former

MSCOCO
T=2

48.07 25.05 43.85 44.37 5.23 5.54 6.52 2.94

Table 4: Performance cross models YouTube-VIS-2021 mini-val under different training frame numbers. T represents the
training frame number for each video. When more frames are involved during training, stronger temporal association ability
reflected TEMP error weight decline.

Metrics Error Weights(∆AP@50)
Method Pretrain

Training
Frames mAP mAPs mAPm mAPl Cls Spat Temp Miss

T=3 38.49 8.58 39.31 40.94 12.35 2.74 8.97 5.84
VISOLO MSCOCO

T=5 36.31 6.63 39.61 39.39 13.15 3.26 8.92 5.99

T=1 36.82 19.17 35.51 35.72 7.49 7.30 12.34 4.52

T=3 40.68 22.13 38.59 40.22 6.29 6.51 11.30 4.80IFC MSCOCO

T=5 40.27 20.44 38.98 40.98 7.03 6.93 10.99 4.72

T=1 30.52 11.68 26.13 29.49 5.45 10.25 9.24 6.65

T=3 41.99 25.23 39.76 37.48 6.38 8.18 4.89 6.49SeqFormer MSCOCO

T=5 43.37 21.69 40.43 39.20 6.95 7.69 4.00 6.20

T=1 45.41 26.87 42.21 42.86 3.23 5.39 11.40 3.62

T=3 47.89 24.42 43.86 44.56 5.92 6.33 5.97 3.18Mask2Former MSCOCO

T=5 47.83 25.01 43.97 44.46 3.30 5.85 6.07 3.76

grid similarity and score reweighting are not as effective as the
authors describe in their paper.

Offline methods. First, SeqFormer localizes objects by
bounding boxes at each frame and aggregates box queries
across the video to generate queries for video instances. Lever-
aging temporal context at instance-level, SeqFormer is naturally
speculated to has a strong temporal association ability. Next,
achieving inspiring performance on several image segmenta-
tion benchmarks[67, 34, 68, 69, 70], Mask2Former is extended
to VIS task without any special modification. Its instance asso-

ciation is totally driven by the sequence loss criterion, so there
is a strong belief that Mask2Former will outshine in spatial seg-
mentation. As observed in Figure.4(a) and Figure.4(c), Seq-
Former unsurprisingly has the smallest temporal association er-
ror weight, and Mask2Former gains the least spatial segmenta-
tion errors. While IFC with global feature communication op-
eration suffers from a much lower mAP, it surpasses the other
two in both spatial and temporal localization errors.

7



M
as

k
 T

ra
ck

R
-C

N
N H

orse
C

ow
V

IS
O

L
O

P
erson

S
eq

fo
rm

er
M

as
k

2f
or

m
er

P
erson

IF
C

P
erson

Figure 6: Qualitative comparisons cross models. Visualization of predicted video instances in YouTube-VIS-2021 mini-val
subset.

4.2. Further analysis over attribute

In this subsection, we report models’ performance over dif-
ferent instance temporal lengths. As illustrated in Table.2, all
models fails to recognize over 70% of the short video instances.
While recognizing short video instances is especially difficult
for online methods, their performance on the medium and long
temporal range is on par with offline methods. We further re-
port error distributions cross temporal ranges for VISOLO and
Mask2Former for further investigation.

In Figure.5(a), VISOLO of the online inference paradigm
is vulnerable to Cls and Temp error accumulation in the pro-
cess of merging sequences when occlusion or fast motion ex-
ists, which can be even more severe in longer object sequences.
And in Figure.5(b), Mask2Former gets progressively smaller
temporal error weight as temporal length grows and results
in a more balanced error proportion. This trend presents that
Mask2Former is not good at localizing shorter video instances.

4.3. Relation of spatial & temporal localization

In this subsection, we explore how spatial segmentation and
temporal association interact with each other.

We first investigate the impact of better spatial segmenta-
tion on temporal association. We replace the MSCOCO pre-
train with ImageNet pretrain, thus should weaken the model’s
spatial segmentation ability, comparisons between the two pre-
train mode are shown in Table.3. When pretrained by instance

segmentation task on MSCOCO, all methods achieves stronger
spatial segmentation ability and much higher mAP. Mask Track
R-CNN gets the most reduction in Temp error weight, Seq-
Former and Mask2Former both have a light temporal associa-
tion ability improvement, temporal association abilities of VI-
SOLO and IFC even get harmed.

Then we change the training frame number to vary the model
ability of temporal association. As shown in Table.4, when
trained with more frames, all methods reduce their Temp error
weights. More training frames bring unremarkable reductions
in Temp error weights for VISOLO and IFC, spatial segmenta-
tion ability of IFC slightly benefits from better temporal associ-
ation, but VISOLO suffers instead. Temp error weights consid-
erably decline for SeqFormer and Mask2Former, stronger tem-
poral association of SeqFormer significantly promotes spatial
segmentation, while Mask2Former’s spatial segmentation abil-
ity stands independent of temporal association.

4.4. Summary and Visualization

As discussed in the three subsections above, offline inference
algorithms surpass their online counterparts over all evaluation
metrics. We find it is crucial for online methods to learn label
consistency and location variation as time flows. Frame-level
query aggregation can significantly help the offline model to al-
leviate temporal miss-association. Except for SeqFormer with
frame-level query aggregation, there is no other approach that
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enables spatial segmentation and temporal association to bene-
fit from each other.

Besides quantitive experiments, we select two video in-
stances and group the visualization into online and offline
paradigms, qualitative comparisons of selected algorithms are
shown in Figure.6. As observed, VISOLO miss-classifies the
horse while segments better than Mask Track R-CNN. For of-
fline methods, IFC balances the qualities between spatial seg-
mentation and temporal association, SeqFormer successfully
tracked the targeted person, but with extra pixels assigned to
its adjacent objects, Mask2Former is puzzled in distinguishing
object instances with large similarity.

5. Conclusion

In this work, we propose a novel error analyzing toolbox
for VIS, which defines meaningful error types with a focus on
spatial-temporal localization quality. By weighting errors, we
successfully indicate model discrepancies, and we report model
performance over instance temporal length. Extensive experi-
ments show that most investigated algorithms cannot leverage
the model abilities of spatial segmentation and temporal asso-
ciation. They generally aim at promoting one aspect. We ex-
pect our proposed toolbox can give a clear picture of model
characters in modeling video instances at pixel-level, and give
interpretable suggestions for algorithm design. The proposed
toolbox can be easily extended to support other video object
recognition tasks, which may be the future work of the toolbox.
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