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Abstract—The growing demand for semi-autonomous human-
machine systems has led to an increased requirement for human
fatigue detection. Direct and invasive approaches for microsleep
detection include cognitive computing methods using Brain-
Computer Interfaces (BCI). The contextual integration of multi-
channel or heterogeneous signals for sleep staging remains a
formidable challenge. In addition, the cost of acquiring many
signals is significantly higher than that of acquiring a single
signal. Consequently, researchers have recently attempted to
utilize single-channel EEG over multi-channel acquisition systems
for sleep staging. The Fast Fourier Transform (FFT) has been
widely used in previous research findings for spectral analysis
of complex time-series data streams. In contrast to the FFT,
we utilize here, for the first time, the Welch Transform which
can give higher stability in noise reduction for spectral analysis.
Specifically, we provide a novel method to implement the short-
time Welch transform (STWT) as an enhanced technique for
the spectro-temporal analysis of single-electrode EEG signals.
Further, our proposed model utilizes attention-based spatial
and channel-wise inter-dependencies using a one-dimensional
causal convolutional neural network (CNN) to extract contextual
features automatically. Finally, we demonstrate an end-to-end
proof of concept for our data extraction, adaptive data resam-
pling, manual feature extraction, and deep-neural network-based
modeling architecture. Comparative simulation results using the
benchmark, maintenance of wake-fullness test (MWT) dataset
for microsleep detection during automobile transportation, show
that our proposed end-to-end system, utilizing novel STWT-based
enhanced spectro-temporal analysis, outperforms current state-
of-the-art methods, delivering 95% and 89% test accuracy for
the case of temporal and spectral data inputs, respectively.

Index Terms—Adaptive Resampling, Cognitive Microsleep De-
tection, Convolutional Encoder-Decoder, Multi-Scale Feature Ex-
traction, Short Time Fourier Transform, and Welch’s Transform.

I. INTRODUCTION
Autonomous Vehicles (AV) have evolved to support the

enlistment of a new lifestyle by assisting a variety of actions
that were not possible earlier in manually controlled vehicles.
This changed lifestyle has shifted the need for a driver
from actually ”driving” the car to just ”supervising” it. At
present, all self-driving cars are partially autonomous. All
the self-driving vehicles are in level 2 of driving automation.
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Level two driving automation is an advanced driver assistance
system (ADAS) that allows vehicles to regulate steering
and acceleration. However, there are instances when the
driver must take control of the vehicle. Recent AV research
has focused on studying drivers’ cognitive demands while
engaged in secondary activities. According to various research
articles, sleeping, observing the scenery, listening to music,
and conversing on the phone are drivers’ most common
secondary tasks [1]. However, in Level 2 Autonomy, the
driver’s inattention or drowsiness can completely redirect the
driver’s attention from the road causing menacing crashes
and accidents or, in the worst-case scenario, deaths [2]. AAA
Foundation performed analysis for traffic safety; out of all
various types of on-road accidents, 16.5% of accidents in the
US are due to microsleep [3]. Another National Highway
Traffic Safety Administration report demonstrates that 2.5%
of fatal crashes and 2% of injury crashes, which is 6,000
fatal crashes yearly, occur due to drowsy driving [4]. Truck
drivers who unexpectedly fall asleep while driving cause
30 to 50 percent of accidents in Germany [5]. Due to the
immense demands on experimenters and subjects, current
AV research has yet to examine the falling asleep situation.
American Automobile Association for Safe Driving and
a traffic investigation safety group have released several
studies [6]. Microsleep is one of the primary reasons that
causes driver inattention, causing around 16.5% of fatal car

Fig. 1: Spectograms of Alpha Wave (Wakefulness) and Theta
Wave (Deep Sleep) of the same subject. The frequency in Hz
is shown by the X-axis, while the Y-axis shows the spectral
power.
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crashes—monotonous tasks, including driving and watching.
In a 2012 study by G.Poudel and others [7], participants were
invited to play a 50-minute computer game in which they
used a joystick to follow a dot around the screen. Researchers
tracked eye movement and brain activity for indicators of
tiredness during that time. The study found that participants
had an average of 79 microsleep events, with some extending
up to six seconds.

A microsleep is a brief sleep episode lasting between one
and thirty seconds. It occurs when there are abrupt transitions
between the state of ”awakeness” and ”sleepiness”. In terms
of Electroencephalography frequency, microsleep relates to
the frequency shift in EEG signal where 4-7 Hz theta wave
(indicative of microsleep) activity substitute the 8-13 Hz
alpha wave (indicative of wakefullness) pattern [8, 9], as
shown in Fig 1. This shift of the brain waves is an indicative
of the onset of sleep in an individual. People who have
these experiences may fall asleep without even recognizing it.
Drowsiness, difficulty focusing, heavy eyelids, blank staring,
and yawning are some signs of microsleep. This odd state
of awareness is distinguished by brief bursts of sleep that
occur while a person is awake, frequently while their eyes are
open and they are either sitting upright or executing a task.
Microsleep is characterized by brain sections going offline for
a few seconds while the rest of the brain remains awake [10].
From the driver’s perspective, a micro-sleep can negatively
impact response time and outcomes comparable to or even
worse than driving with dangerous drunk and driving cases.
Such induced inattention while driving can be dangerous
to surround vehicles and pedestrians and cause significant
accidents claiming people’s lives. Those who are really
drowsy during the day frequently experience microsleeps
[11, 12]. Microsleep can cause attention gaps that make
it harder to recognise and respond to important cues and
activities. In a multi-parametric attention tracking system and
poor driving-related performance, microsleeps have also been
connected. Therefore, it is crucial to develop ways to detect
and avoid it. Sleep deprivation, narcolepsy, and sleep apnea
can cause microsleep. Still, it typically occurs when we lack
adequate sleep or perform repetitive tasks. When a person is
driving, handling construction equipment, or performing other
safety-critical tasks that are repetitive in nature, microsleep
becomes a serious problem. A study on Sleep Disorders was
provided by the National Commission [13], which indicates
the cost of Sleep-Related Accidents and the role of drowsiness
in adding to the total number of accidents. They analyzed and
identified the number of car accidents caused by sleepiness
in their research. The overall cost of sleep-related accidents
was reported to be between $ 43.15 billion and $ 56.02 billion.

This paper suggests a non-invasive and active microsleep
detection model using a single-electrode EEG signal. The pro-
posed model aims to detect microsleep episodes by analyzing
the EEG signal collected from a single electrode, without the
need for invasive methods.The suggested BCI-induced brain
plasticity replicates human cognitive neural responses by trans-
lating brain activity signals into a computerized command. Our

Dataset
Name Electrode Study Type Sample

Rate

SleepEdfX
[14] Pz-Oz Monopolar Reference

Study 100Hz

Drowsiness-
DB [15] Pz-Oz Monopolar Reference

Study 100Hz

MWT
[16]

O1-M2
and
O2-M1

Measure of posterior
activity 200Hz

HMC [17]
O1-M2
and
O2-M1

Measure of posterior
activity 256Hz

CCNL
[18]

O1-M2
and
O2-M1

Measure of posterior
activity 200Hz

CCNL
[18] C4-M1 Measure of central ac-

tivity 200Hz

HMC [17] C4-M1 Measure of central ac-
tivity 256Hz

CCNL
[18] F4-M1 Measure of frontal ac-

tivity 200Hz

HMC [17] F4-M1 Measure of frontal ac-
tivity 256Hz

TABLE I: Details of datasets

contributions in this research work are as follows:
• We present a method for automated analysis of single-

channel EEG-based microsleep detection using a Multi-
Layer Neural Network architecture.

• The proposed model utilizes Multi-filter convolutions
precisely captures and learns temporal as well as spectral
attributes of the signals in real time.

• In the proposed approach, the adaptation of Spectro-
Temporal Analysis using Short Time Welch’s Transform
shows improved outcomes.

• Finally, the paper also emphasizes an improved Sampling
Strategy to address the imbalances in the training dataset.

This paper is subdivided into the five sections listed below:
The I section represents the idea of microsleep, as well as
key concepts and the significance of this study. The essential
literature regarding previous comparable studies is included
in Section II. Section III talks about elementary data pre-
processing. Section IV represents the preliminary background.
Section V contains our proposed framework in depth. Section
VI presents the experimental results based on our proposed
framework. Section VII summarizes our results and further
analyses their demographics.

II. LITERATURE SURVEY

Our work of mimicking the brain functions and processing
them through a computing unit has been inspired by the study
in cognitive AI. With cognitive AI, machines get trained to be
able to think, reason, and make decisions much like humans
do![19–21] Although existing research work had restricted
scopes due unavailability of real-world datasets and problem-
atic experimental conditions, researchers yielded results using
indirect methods like observing subject’s typical sleep patterns
in the vehicle [22, 23, 23], or experimented with decreased
cognitive response time using alcohol [24, 25] or conducted
repetitive tasks to elicit tiredness [26, 27, 27]. When it comes
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Fig. 2: EEG electrode positions according to the 10-20 System.

to sleep, there is no such thing as a typical state of being.
Instead, sleep is divided into several stages, each of which
may be differentiated by the pattern of brain wave activity
that occurs throughout each stage [28, 29]. EEG may be used
to examine these variations in brain wave events, distinguished
by the amplitude and frequency of the brain waves [28, 30, 31].
The authors had reviewed the datasets from SleepEdfX [14],
Maintenance of Wakefulness Test (MWT) [16], Drowsiness-
DB [15], Haaglanden Medisch Centrum Data (HMC) [17] and
Computational Clinical Neurophysiology Laboratory (CCNL)
[18], the details of which have been summarized in Table I. To
uniformly review these datasets that were retrieved at different
sample frequencies, we upsampled the data using poly-phase
filter. This involves aliasing of data. After that, a low pass FIR
filter is applied and finally the data is down sampled back to
the required frequency. This method does not need the data to
be periodic, which counters the effect non-uniformity issued
due to mastoid electrode.

Detailed research conducted by Michael S. Aldrich [32]
addressed 424 subjects suffering from sleep problems such
as sleep apnea, narcolepsy, other diseases with excessive
sleepiness, and sleep disorders. This experiment indicates
that people affected by hypersomnia condition (Excessive
sleepiness) have a 3-7 % chance and Apneic & narcoleptic
patients are responsible for 71 % of all sleep-related accidents
per year. Although narcoleptics had the highest rate of sleep-
related accidents, apneic were engaged in more sleep-related
accidents because of their higher frequency. In yet another
research work on the effect of sleepiness, the Italian highway
vehicle accidents (1993 to 1997) by Garbarino [33] used
a 24-hour sleep curve to highlight the relationship between
accidents (sleep-related or not) and drowsiness. This article
also used linear regression techniques to study the relationship
between sleep-affected and non-sleep-affected accidents.
Current non-EEG-based microsleep monitoring methods em-
ploy facial recognition-based techniques involving keypoint
detection and feature extraction [34, 35] and algorithms to
track and monitor eye movement [36, 37]. However, these

approaches could be more robust, and their efficiency varies
greatly per surrounding conditions such as low light and foggy
environments. EEG signal offers various applications[38],
from stress detection [39], to various driving skills assessments
[40]. Integration of CNN and RNN-based Deep Learning
Approaches and their variants have been widely used in this
domain. Kweon et al. [41] proposed U-Net [42] based auto-
mated microsleep identification system that relies on a vehicle
driving simulation model and Night-sleep EEG. Aldrich et
al. [43] suggested a method for interpreting EEG sleep stage
scores that employs a deep convolutional neural network.
The author uses multitaper spectral analysis to create visually
recognizable representations of sleep patterns by feeding EEG
data into a network trained to perform visual identification
activities. In this method, Multiple convolutions were used to
begin the preprocessing, followed by global average pooling
and then Spcetrography. Phan Huy, et al. [44] suggested
a state-of-the-art approach that uses Hierarchical Recurrent
Neural Network for Automatic Sleep Staging. The network
has loaded a sequence of many epochs and classifies various
sequences into labels. The network is made up of a filter-
bank unit meant to perform frequency-domain filtration for
processing and an attention-based recurrent layer created for
short-term sequencing modeling at the epoch stage. Mousavi
et al. [45] presented a Deep Learning-based approach for
Automatic Sleep Stage Ranking. A single-channel EEG signal
is employed in this approach. Convolutional neural networks
(CNNs) are also utilized to obtain time-invariant properties,
frequency information, and a sequence-to-sequence model to
acquire the complex and long short-term context correlations
among sleep epochs and scores. Complicated models like [46]
involves multiple residual blocks followed by an Adaptive
Channel Fusion module (similar to U-Net - simple concatena-
tion in the z-axis). Finally, a Hidden Markov Model is utilized
to analyze the probability of occurrence of the current state,
given the previous states and the effect of current states due
to the future states and probabilities.

The idea of transfer learning is familiar in the domain
of deep learning. Many articles include the improvement of
previously trained models using transfer learning followed

Fig. 3: Magnitude of difference between the signal, before and
after passing the notch filter. (Here, X-axis denotes the time,
and Y-axis is Difference in amplitude of spectrogram signals)
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by hyper-parameter tuning and preceded by improved feature
selection methodologies. Vilamala Albert [47] used the famous
VGG neural architecture to model the last three layers be-
ing fine-tuned. Initially, the pre-processing involved multiple
convolutions, followed by global average pooling, and finally
followed by Spcetrography. This is further classified using
ANNs. Sensitivity Analysis involved summed averages of
differentiation of loss with respect to that particular input
feature. Adversarial training models also showed good per-
formance along with Discriminative Models. In the article,
[48], the authors employed adversarial training and spectral
regularisation to provide sleep-staging DNNs with strong noise
resilience. The Lipschitz constant theory is used to eliminate
network noise.

III. ELEMENTARY DATA PRE-PROCESSING

EEG electrodes can be placed at multiple positions, out
of which, the 10-12 electrode positioning scheme, as shown
in the figure 2 is most widely used scheme [49]. The ”10”
and ”20” signify that the actual distance between consecutive
electrodes is 10% or 20% of the skull’s overall front-to-back
or right-to-left distance, respectively. Occipital electrodes
are the most effective way to record the posterior dominant
rhythm, which is the dominant frequency for sleep research
and ranges from 8 to 13 Hz, according to a study by Malhotra
et al. [50]. Hence we moved forward with extracting the
single electrode signals from the MWT dataset [16] which
accurately scores based on the Bern test criteria [51] for
sleep staging and was created explicitly for classifying the
wake-sleep transition zone and incorporating different labels
for MSE (Microsleep Episodes). The research of Hertig et
al. [16] developed the first constant and high-resolution MSE
(Microsleep Episodes) grading standards, which verified with
quantitative EEG analysis.

The EDA pipeline’s approach is to execute the basic filtering
and modulation required to standardize the data into a versatile
format while keeping as much of the signal as feasible. To
tackle the issue of class imbalance, we used three different
methods:

1) Manual inspection of the plotted model showed that the
4th class had significantly fewer labels. Thus, the class
labels were re-labeled, forming three training classes:
Wake, MSE, and Sleep, and this approach improves the
class ratio.

2) Adaption of Class Adaptive Loss Gradients weights
which depends on the three classes’ ratio.

3) Employing a custom method of Adaptive Resampling as
explained in IV-B.

The original EEG data file of any subject consisting of
long-duration signals is visualized in Fig. 4. The EEG data
is stripped into 30s intervals to form the training corpus. A
50 Hz notch filter is then applied to the data because it is
the frequency of the main line noise. A High-Pass fourth-
order Butterworth Filter preceded the notching to remove long-
term non-singularities in the signal. Figure 3 shows that the
difference between signals before and after notching has higher

Fig. 4: Visualization of sample data (The x-axis denotes time
in seconds. Y-axis showcases the signal’s amplitude )

magnitudes at the beginning of the signal. An infinite impulse
response (IIR) filter was employed to extract the signal from
the 4 to 14 Hz range. An ideal FIR Filter could be a good
choice but is computationally expensive and susceptible to
noise artifacts [52]. A biquid Chebyshev II filter is employed
as the bandpass applicant. After that, the unnecessary artifacts
were removed using power spectrum density analysis. After
this, the signal was transformed into the formats needed to be
fed into the neural network models. As mentioned earlier, the
authors were interested in both temporal as well as spectral
analysis of the data, and the required data conversions are
explained in a detailed manner in IV-D and IV-C sections,
respectively. After this, the data was split into train and
test data with an 80:20 ratio. Further, the validation data
was extracted from the newly formed training set with a
70:30 ratio. The data were stratified in all steps to have a
uniform distribution of all the classes, and class weights were
accordingly kept.

IV. PRELIMINARY BACKGROUND

As our model is designed for temporal and spectral events,
it is intended on the following core principles: Robustness,
Complementarity, Generalization, and over-fitting-aware train-
ing. The following section describes the necessary theory and
proposes our methodology used in dataset creation after the
pre-processing for the deep learning model.

A. Dataset Selection Methodology
The MWT test measures a person’s ability to resist the de-

sire to sleep in sleep-inducing circumstances, a process termed
as ”wake tendency.” The MWT is the measure used in clinical
settings that most closely simulates passive real-life situations,
where MSEs (Microsleep Episodes) are crucial. Furthermore,
the success of real-world drivers is highly correlated with the
sleep identification latency in the MWT. As a consequence,
MSEs in the MWT dataset can be classified with a high degree
of temporal specificity The conditions set for the MWT test are
similar to a scenario of how a driver sits in the car while driv-
ing. The MWT dataset[16] authors decided for this research
work consists of 64 subject ( aging from 30 to 70 years). Each
file contains a MWT trial recording of a patient containing the
labels of Wake-fullness, Episodes of drowsiness, Microsleep
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Episodes and Microsleep episode candidates with labels in the
ratio of 4:2:1:0.25 respectively(we had about 5000 labels for
”Wakefullness” class). Original dataset contains the trials with
multiple electrodes but we specifically extracted the data from
one of the electrode for the analysis, details of which have
been presented in the section III.

B. Adaptive Resampling
A typical neural network with various input types often

integrates the characteristics learned from the component
streams to generate a combined representation, which
subsequently fulfills the classification function. Consequently,
there is no approach to control the rate at which separate
streams learn. Simultaneous generalization and overfitting
of the model could resolve this issue. However, this is
impossible due to the limited amount of ”microsleep”
data and excessive ”wakefulness” data. As a result of an
imbalanced input dataset, the model overfits even after
applying regularisation to its training. To tackle this issue,
we propose to adaptively oversample a number of features
of ”microsleep” and ”deep sleep” classes by the following
method: I. The average absolute difference between the data
samples II. Analyzing the co-variance and correlation and III.
Avoiding Redundancy while forming new data samples. Note
that the presented method is not very complex and involves
forming new samples by generating time-averaged signals,
yet it is effective. This is because we incorporated step II. and
step III. to account for preventing Redundancy in new samples.

Let us denote an epoch as Ec
i , where c defines the class of

the epoch ( W, M, S for Wake, Microsleep, and Sleep ) and
i denotes the serial number of the epoch from the individual
corpus. Further, the individual amplitude for a particular time
stamp can be defined as Ec

i : et. To measure class correlation,
we found the maximum possible absolute difference between

Fig. 5: Cross Power Coherence Threshold Optimization Curve
for Adaptive Resampling. The Blue contour is for Wakeful-
ness, the Red contour is for Microsleep, and Green contour is
for Deep Sleep.

any two signals of the class corpus. Let us term this as a
difference factor, denoted by Dc. For all combinations of i
and j in the corpus:

Dij = 1/N ∗
N∑
t=1

(Ec
i : et − Ec

j : et)

and Dc = max(Dij) for each class c. Note that N is the
normalization factor equal to 6000, i.e., the number of
samples in an epoch (200Hz and 30s epoch length).

For generating new signals from the class corpus, we
time averaged any pair of signals whose normalized absolute
difference strength is greater than (Dc ∗ Thc), where Th is
the class threshold necessary to regulate the number of new
samples formed. This ensures the formation of functionally
new signals that improve the testing statistics (refer section
VI-C for results). For all combinations of i and j in the corpus
we define modified Ec as:

Insert =

{
Ec

i , E
c
jand(E

c
i + Ec

j )/2, if Dij ≥ Dc ∗ Thc

Ec
i andE

c
j , otherwise

The choice of Thc is decided by plotting the Threshold
Optimization Curve, as shown in Fig. 5. The values in the
brackets are the possible threshold values for Microsleep
(ThM ) and Deep Sleep (ThS), which are used to find the
optimal values. In the figure, we can see the Blue contour
is for Wakefulness, the Red contour is for Microsleep, and
the Green contour is for Deep Sleep. Here, the Labels for
Wake fullness, Microsleep, Microsleep Episodes, and Deep
Sleep are 0, 1, 2, and 3, respectively. We take ThW as 1 and
find other thresholds in reference to it. As we can see in the
figure, all the three class contours approach each other when
ThM = ThS = 0.15. Applying this resampling improved the
overall robustness of the model as we got nearly equal(4957,
4180 and 3899 samples of each classes respectively) number
of unique samples for each classes. The original ratio from
the dataset was thus improved from 4:2:1 to 1.18:1:0.932, thus
proving our proposed resampling method’s impact.

C. Spectral Analysis

Time series data, like EEG, can be represented as time-
power-frequency images. Using Fourier-related transforms, the
Short-time Fourier transform (STFT) is used to extract the
sinusoidal frequency and phase content of short sections of a
time-varying signal [53]. Engineers use this kind of visual
extract signals resonant in the space where the signal was
recorded. Theoretically, computing STFTs entails dividing a
larger temporal signal into equal-length segments and per-
forming the Fourier transform independently on each shorter
segment. In each shorter section, the Fourier spectrum is
revealed. The spectral estimate is based on Fourier analysis,
which presupposes infinite signals, continuity, periodicity, and
stationarity in the data. However, none of these assumptions
are frequently met in EEG data; therefore, the spectrogram is
a severely biased estimate in practice. We convolve a periodic
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Algorithm 1 Proposed Algorithm to develop STWT
Φ(signal)

Require: n ≤ 6000
Require: t ≤ 30

windowSize← winSize
winSlide← winSize/2 ▷ To ensure 50% overlap
k ← maxn+ winSize ▷ Padding
iter ← 2 + 2 ∗ (maxn− winSize)//winSize
tempLim← 0

if k ≥ winSize/2 then
x(k)← signal

else
if k ≤ (maxn− winSize/2) then

x(k)← signal
else

x(k)← 0
end if

end if

while iter ̸= 0 do
f, t, Zxx ← STFT (x(tempLim : tempLim +

winSize))
power ← |Zxx|
Φ( iter)← Σpower ▷ axis = time
iter ← iter − 1
tempLim = tempLim+ winSlide

end while

Hann window taper over the raw signal, as a strategy to reduce
the spectrogram’s bias before performing spectral estimation.

ω(n) = 0.5(1− cos(2 ∗ π ∗ n/N − 1)), 0 ≤ n ≤ N − 1

Here, ω(n) is the Hann The window, with the maximum
value normalized to one and N is the number of points
in the output window. The STFT spectrogram also has the
significant flaw of producing estimates with considerable
variance across all frequencies.

1) Proposed Short Time Welch’s Transform Methodology:
Suppose we conduct an FFT over the signal in such a real
and practical situation of microsleep detection. In that case,
we are missing that it is a sample of a dynamic system;
hence, much of its content is merely unwanted noise. Welch’s
transform aims to precisely get rid of the stochastic noise
by the method of averaging. It divides the original signal
into many fragments and averages their spectra [54]. The
Welch’s PSD (Power Spectrum Density) method is a popular
non-parametric improvement on the standard periodogram
spectrum estimating methodology, which utilizes FFT to
reduce the non-stationary noise in exchange for reducing the
frequency resolution of the estimated power spectra [55].
Another major benefit of this strategy is that it reduces the
number of computations and the amount of core storage
required. This approach entails sectioning a signal, modifying

the periodograms of each segment, and averaging the changed
periodograms.

Keeping these factors in mind, we formalize an algorithm to
generate Overlapping Short-time-Welch’s transform (STWT)
that adapts to cater to the needs of biomedical signal process-
ing, which generally contains lots of random noise. The signal
is split up into overlapping segments ( say K data segments) of
length L, overlapping by O points. For our case, considering
O = L/2, we can say that we have a 50% overlap. Assuming
that

x(t : td), 0 ≤ t ≤ td ≤ 30x(n : nd), 0 ≤ n ≤ nd ≤ 6000

denotes an epoch starting from time = t to time = td, and
x(n) being the same epoch in the sampled and discrete state,
we make use of STFT to derive the formula for STWT. We
first state the formal algorithm for STFT:

X(n,w) =

∞∑
m−>−∞

x(m) ∗ w(n−m) ∗ exp (−jwn)

where x(m)w(n − m) is a short time part of the input
signal x(n). The complete algorithm for STWT is presented
in the algorithm 1, where we ensure a 50% overlap with
padding to creating these small windows of signal. These
individual windows of intervals are processed through STFT
and averaged out to mimic the Welche’s method affectively.
The spectrum thus formed is presented is a 3-D representation
of the dynamics of the time-frequency-power of the spectra. A
Hanning Window gives the data in the center of the set greater
weight than the data on the edges, resulting in information
loss. Individual data sets are frequently overlapped in time to
reduce this loss. Figure 6, clearly shows the Spectro-Temporal
Power Spectrograms for their corresponding raw signals and
establishes that STWT extracts required features to secern
easily the two classes along the entire 30s epoch.

D. Temporal Analysis

Temporal Analysis refers to the analysis done over the raw
variant of the desired signal. This analysis is practical and
explainable in terms of deep learning models, as we can
visualize the steps. However, it suffers from 2 significant
drawbacks: I. The number of parameters increases signifi-
cantly compared to Spectral Analysis, and II. Microsleep is
represented in terms of frequency. Thus, it is impractical to
use a temporal analysis for the same. However, we have
used two modes of data for temporal analysis purposes -
raw mode - which consisted of the original signal epochs
(After pre-processing), and norm mode - which consisted
of the normalized version of the raw signals. Transforming
the values of numeric columns in a dataset to the same
scale without distorting the ranges of values is referred to as
normalization. For our case, the Frobenius normalization was
preferred over standardization and normalization because these
methods had higher amplitude values and linear scaling of the
raw signals. The log Normalization method was also assessed,
but experimental results only favor Frobenius Normalization.
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Fig. 6: Comparative results of STFT and the proposed STWT
methods. The first row represents the raw images, the second
row represents the spectrogram formed using STFT and the
third row represents the spectrogram formed using STWT. The
x-axis denotes time stamps.

Different types of experimented normalization are defined
below:

ForbeniusNorm← x(t)/(Σ|x(t)|2)(0.5)

LogNorm← log x(t)

V. PROPOSED TRAINING FRAMEWORK

As the analysis involves both temporal and spectral analysis,
the model has been developed using a unique part that captures
its details, followed by specific reusable for both the respec-
tive counterparts. Figure 7 shows the overall implementation
details of the spectral and the temporal analysis, and figure 8
embarks the legend to understand the models. We are using the
last half of the model for both temporal and spectral signals.
Initially, both networks aim to make the input become 2-D
data. The Temporal Model is passed through multiple 1-D filter
banks with different convolutional parameters. Later, both
networks include a Multi-Headed Attention layer followed by
3 Multi-Fusion extractors. Finally, the model gives a softmax
output with the probabilities of different sleep modes. The
following section includes the details of the two networks: I.
The Spectrum Image passes through Spectral Model, followed
by the Multi-Headed Attention block, followed by Multi-
Fusion Extractor, and finally, the output layer. II. Raw signals
first go through Temporal Model, followed by the Multi-
Headed Attention block, followed by Multi-Fusion Extractor,
and finally, the output layer.

A. Spectral Model : Two Layered Net
When fed to this unit, the original 30-second signal epoch

has already been transformed into a power spectrum. To
improve the model’s interpretability, some prior studies [56]
recommended transforming the spectrum to a logarithm
scale and producing log-power spectrum images. The output
image is filtered using a spectral filter bank for frequency
smoothing and dimension reduction. We refrained from using
a standard upper triangular filter and preferred learning the
filter bank precisely for the task. According to previous
works [56], a discriminatively learned filter bank using an

Artificial Neural Network is more capable of automated sleep
staging than a standard one. The learned filter bank should
accentuate the sub-bands that are more critical for the job
while attenuating the sub-bands that are less significant. As
a result, for preprocessing, we employ a filter bank that has
been pre-trained using a Deep Neural Network.

A Residual Squeeze and Excitation block [57] follows a
simple 2-D Conv layer with a leaky-Relu activation, which
seeks to re-calibrate the features learned by the preceding
Conv block in order to improve its performance. This SE
block, in particular, models feature inter-dependencies and
adaptively picks the most discriminative features. It also
assists in formulating a context-aware technique to let the
network’s lower layers use additional relevant information
beyond its immediate receptive area. A global average pooling
(GAP) layer compresses a 2-dimensional data kernel to a 1-
dimensional point variable that is the average of all those
data points, squeezing the block’s global spatial information.
After then, two completely linked layers are used to utilize
the synchronized data. A ReLU activation function limits the
dimensionality in the first layer, whereas a smoothing sigmoid
activation function expands the second layer’s dimensionality.
The modality fusion component is then adjusted by multiply-
ing the output with the original input:

Ẋ = X ∗GAP (Ψ(Ψ(X))))

where, Ψ denotes the dense layers, X is the input and Ẋ is
the output and GAP is global average pooling.

Following this layer, the second network set was established,
involving multiple dilated 1-D causal convolutional blocks.
Causal convolutions can encode and capture the location
information of input data and their temporal relationships.
Compared to RNNs, these causal convolutions offer the benefit
of quick and parallel processing, considerably saving model
training time. This was necessary because the next part in-
volved a multi-headed attention unit that works with positional
encoding.

B. Temporal Model : Raw2Img
We employ two CNNs with small and large filter sizes

in the initial layers to extract time-invariant properties from
raw single-channel 30-s EEG epochs. This ensured a balanced
trade-off between temporal and spectral accuracy in their fea-
ture extraction [58]. The bigger filter captures frequency infor-
mation (i.e., frequency components), whereas the smaller filter
captures temporal information (when particular EEG patterns
arise). First, each of the two branches is smoothed in spectral
dimension using a trainable filterbank block of K filters and
reduced frequency bin count from F to K. The kernel sizes S
are chosen based on the sampling rate of the EEG signals and
the goal of exploring different frequency bands. Furthermore,
different frequency ranges are associated with distinct sleep
phases [59], making it necessary to address diverse frequency
bands to optimize the retrieved characteristics. As a result, we
employ kernel widths to capture time-step ranges and address
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Fig. 7: The overall end-to-end architecture of our proposed classification framework

characteristics from various sleep-related frequency bands. The
non-stationary nature of EEG data necessitates the exploration
of many types of characteristics, which necessitates such a
combination of features. In the network, each of the two
branches consisted of three 1-D convolutional filters, which
align closely with the clinical signal processing techniques
and uses an activation function of the Gaussian Error Linear
Unit. Multiple max-pooling layers, batch normalization layer,
and 50% dropout rates were deployed to avoid overfitting and
reduce the latency. Both the branches were concatenated along

Fig. 8: Legend to understand the overall neural network model.

the filterbank axis, i.e., the number of filters was added while
mainly reducing the overall signal length. The Gaussian Error
Linear Unit (GELU) activation function is also used. Other
activations, such as Leaky-ReLU, which transfer negative
values, may have been better than GELU since they let strong
negative activations negatively affect the overall result of
other activations feeding the subsequent layers and leading
to undesirable outcomes. GELU, on the other hand, appears
to have better control over the consequences of these negative
activations.

C. Attribute extraction unit - Common block 1
Softmax threshold is used to reduce superfluous information

from the previous blocks, following a multi-headed attention
link to filter and emphasize critical information. Such a single
attention block can be described by [60]:

Ψ(K,Q, V ) = sigmoid(K.Q′/
√
d)) ∗ V

where d is the length of the signal, and K, Q and V are
the input vectors to the attention block. In our case, we are
using self-attention, which is a slight modification of the above
definition and is defined as follows:

Ψ̇(X,X,X) = sigmoid(X.X ′/
√
d)) ∗X

A Multi-headed attention block is an outcome of the con-
catenation of multiple such units. This technique promotes
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the model’s self-awareness by increasing the model’s capacity
to focus on diverse places since each head’s encoding is
aware of the encodings of the other heads. The model’s
capacity to learn temporal dependencies is improved due to
this. Additionally, segregating the input features widens the
representation subspaces. As a result, the attention poundage
created for individual fragments reflects the relevance of each
subspace. We yield improved classification accuracy by form-
ing richer representations by grouping the above-mentioned
representations.

D. ENDEC - Common Block 2
This part of the model dealt with developing a series of

encode-decoder(ENDEC) networks acting as feature calibra-
tors whose outputs are passed through Global Average Pooling
(GAP) layers, which finally generate the output. The following
equation summarizes the architecture, considering x as the
input matrix and ACF = Encoder(x) +Decoder(x):

Output = GAP1(ACF1(x))+GAP2(ACF2(ACF1(x)))+

GAP3(ACF3(ACF2(ACF1(x))))

The individual encoders and decoders had skip connections
having a 2-D Conv Layer to incorporate attention-based fea-
ture calibration, inspired by the work by Xue Jiang [61].

Encoder = ρ(ℵ(§(ℵ(§(x)))))) + ℸ(x)

Decoder = ρ⊺(ℵ(ℸ⊺(ℵ(ℸ⊺(x)))))) + ℸ(ρ⊺(x))

where, §, ℸ, ρ and ℵ stands for Separable Convolutions,
Normal Convolution, Pooling layers and Batch Norm layers.
Their corresponding transpose layers have also been used in
the same equation.

The encoders are primarily built using Separable Convolu-
tions which minimises the amount of parameters in a standard
convolution. If the network is already tiny, the approach may
end up with only a few parameters, preventing it from training
successfully. However, as in our case, the technique tends to
improve the overall efficiency without sacrificing the efficacy,
making it the perfect choice for reducing latency. Everywhere
in this module, ReLU activation was used. GELU should
outperform ReLU because ReLU transforms any negative
weights to zeros, preventing the module from utilising them.
In out module, however, we use ReLU since it aims to reduce
exploding/vanishing gradients while simultaneously speeding
up and simplifying computations [62].

E. Output Generating Module
The final layer addresses a Dense layer followed by a soft-

max output to get the probabilistic overview of the predicted
output. Kernel Regularizers are also used, which penalize the
layer parameters during optimization.

VI. RESULTS AND DISCUSSION

In Figure 10, we show the comparative results of our model
with the state-of-the-art model [63], which is developed using
the same dataset type. These methods include the ones that

utilize window-based CNN and LSTM methods. The Cohen’s
Kappa of the expert algorithms and the inter-rater agreement
was suitable for MSEs and wakefulness ( nearly 0.7) but was
negligibly low for Deep Sleep (≤0.1). It can clearly show that
our proposed method delivers a significant improvement in the
results. Among the methods we have presented, the temporal
analysis with the raw signals has shown the best results. Our
model produced similar results without reducing MSEc and
ED performance, which is the most challenging sleep stage to
interpret. This indicates that the robustness of our method is
restrained from being skewed towards the majority of the sleep
stages. In addition, the performance of multiple models on the
validation set was evaluated using the proposed proposition to
extract individual Cohen’s Kappa values. It measures inter-
rater reliability and, thus, considerably more robust indicator
than other matrices. The cohen-Kappa value of a distribution
can be mathematically formulated as follows:

κ = (Pra − Pre)/(1− Pre)

where Pra is the relative observed agreement among raters,

Algorithm 2 Proposed method to find individual kappa scores

Require: pred←ModelPred(X)
Require: true← Y
classes← 3 ▷ We have three classes

for class in classes do
if pred == class then

predn = 1
else

predn = 0
end if
if true == class then

truen = 1
else

truen = 0
end if
κ(class)← CohenKappa(truen, predn)

end for

and Pre is the hypothetical probability of chance agreement.
Using the overall κ coefficient, it can be seen that the agree-
ment between sleep specialists and our model is very high (
93, 76, 81, 84 respectively for the raw, norm, stft and stw
based analysis). Generally, the kappa score shows the overall
performance , but to calculate the individual kappa scores for
each classes, we had to slightly modify our calculations by
vectorizing individual classes, as shown in algorithm men-
tioned in algorithm 2. A n-sized vector was created for each
prediction, and this was masked with another n-sized vector
where the nth position was the position of the class we are
interested in. Kappa scores on these vectors can be represented
as the individual kappa scores of the classes.

A. STWT vs STFT
Figure 11 clearly shows that our proposed STWT method

performs better than the traditional STFT method. The features
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Fig. 10: Bar Chart for comparing our results with the previous
state-of-the-art model using the same dataset type.

Fig. 11: Quantitative comparison between the STWT and
STFT for different testing parameter. The x-axis showcases
the configuration of different models used and the Y-axis
quantifies testing parameters used.

in the image showcase the improvement of about 1-2% in the
testing set for all different evaluation matrices. The f-1 scores
for the STFT-based models were around 88%, whereas, for

STWT-based models, the scores were between 89-90%. In the
case of training and validation datasets, the improvement was
nearly about 3% and 2%, respectively. Not only this, as shown
in figure 6, the STWT method increases the robustness of
the methodology by providing visually explainable features
and yet outputs smaller and richer images. Although we see
very less improvement in the accuracy, the proof of concept of
our method has very well been established. Further, if higher
frequency signals were to be analyzed using our method, the
results would have been much richer because most of the noise
and non-stationarities lie in the upper band of frequencies,
which our method can positively counter.

B. Parameters

All four modes were trained recursively using four
parameters: a learning rate of 0.0005 and 0.001 and optimizers
of Adagrad and RMSProp. The Spectral Models gave better
results with Adagrad Optimizers, while the Temporal models
gave much improved results with RMSProp. Moreover, the
shown statistics for the Spectral analysis are for the unsampled
method, and the ones for the temporal analysis are for the
resampled method. The reason for the same is explained in
section VI-C. Further, in all the cases, a lower initial learning
rate gave better results since the model is quite large, and
many parameters would die away if the learning rate were
large. To further improve the accuracy, we also employed an
Exponential Decay learning rate scheduler and early stopping
with a 50% patience. The two charts in figure 9 show the final
Training, Validation, and Testing Normalized Accuracy and
Cosine Similarity of the different parameters for the Spectral
and Temporal Models, respectively. One interesting trend we
observe is that Spectral analysis gives poor testing results,
whereas temporal analysis gives an overall better result
for all four models. Even though Norm 0.001 RMSProp
seems to perform poorly, its parameters are still at about 90% !

The cosine similarity is advantageous to measure testing in
our case because even if the two similar signal labels are far
apart by the Euclidean distance, they may still be oriented

Fig. 9: Accuracy and Cosine Similarity charts for the training, testing and validation sets of the Temporal and Spectral Analysis.
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Fig. 12: Table of results(rounded off) showing the statistics of different models with resampled and unsampled inputs. We have
compared 2 models with config 0.001 rmsprop and 0.0005 rmsprop learning rates respectively.

closer together. Such a case can qualitatively occur if we
re-define the region of Micrsoleep during the transition of
Deep Sleep and Wakefulness, thus having an equal positive
correlation with both classes.

C. Resampled vs Unsampled
Our employed adaptive sampling technique resulted in a

significant improvement. The dataset size increased in such a
fashion as to over-sample the under-sampled classes and yet
avoid repetition by maintaining the diversity of the dataset. As
shown in figure 12, we observe a noticeable increase in the
validation matrices of the model after sampling. The statistics
show a 4-5% increment in the cosine testing accuracy while
a 6-7% and 1-4% increment in the validation and training
accuracy. The resultant graphs for RAW (Fig - 13) and
NORM (Fig - 14) dataset configs show that the resampled
models outperformed the unsampled models in all the cases.

The Spectral Mode, however, suffered a considerable dip
in accuracy after resampling with about 2-6%, 1-5%, and 3-
10% loss in testing, validation and training matrices, with an
exception from the STFT model having a learning rate of
0.0005 and Adagrad optimizer, which showed a positive trend.
One of the possible reasons for this drop could be that our
resampling paradigm involves adaptive averaging of 2 signals
having a large difference in their average powers to produce
new signals. One can reason that the time-averaging signals
do not affect the spectral front. Thus, our method duplicated
the parent signals, thus reducing the overall efficiency of the
model. This theory was also backed by low overall Hamming
loss ( which is defined as Ṅ/(N+Ṅ), where N is the number
of correct labels ) of these models, even after resampling. This
result points us to the fact that the model is overfitting to
predict only the label having the highest occurrence in the
training set, i.e., Wakefulness.

VII. CONCLUSION

In this paper, we proposed a Welch-Transform-based
Enhanced Spectro-Temporal Analysis for Cognitive
Microsleep Detection using a Single Electrode EEG.
We formulate a spectro-temporal classification problem
and propose two distinct Neural Network techniques for
detecting microsleep during automobile transportation

utilizing maintenance of wake-fullness(MWT) test data.
We also highlight the importance of choosing the correct
dataset and the significance of appropriate data cleaning
and pre-processing as part of an end-to-end architecture. In
particular, we develop a hierarchical Convolutional Encoder-
Decoder network to address this challenge with multiple skip
connections and attention units. The network is trained from
start to finish using dynamic folding and expanding of the
input sequence at various levels of the network structure.

Fig. 13: Graphical representation of the resultant matrices for
Raw dataset processing case.

Fig. 14: Graphical representation of the resultant matrices for
Norm dataset processing case.
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Our results show that cosine similarity varies with different
parameters and demonstrate the choice of cosine similarity
as the best evaluation matrix for classifying transitional
parameters such as microsleep. Our proposed methods
surpass prior work and have strong baselines for comparison,
achieving state-of-the-art performance throughout the full
MWT dataset [16]. Our proposed adaptive resampling
methodologies are also shown to reduce the influence of
the class-imbalance problem and improve performance,
particularly for the case of our model’s performance in
predicting Deep-Sleep, which is more difficult to score than
other sleep stages. The primary goal of this study is to show
that, regardless of the complexity or kind of architecture
employed, the use of the STWT for spectral analysis and
resampled inputs for temporal analysis yield better outcomes
than traditional approaches. Our current future work aims to
optimize our end-to-end architecture for real-time processing
capability for future clinical evaluation and deployment.
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[53] E. Sejdić, I. Djurović, and J. Jiang, “Time–frequency feature
representation using energy concentration: An overview of recent
advances,” Digital Signal Processing, vol. 19, no. 1, pp. 153–183, 2009.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S105120040800002X

[54] P. Welch, “The use of fast fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified peri-
odograms,” IEEE Transactions on Audio and Electroacoustics, vol. 15,
no. 2, pp. 70–73, 1967.

[55] Wikipedia contributors, “Welch’s method — Wikipedia, the free
encyclopedia,” https://en.wikipedia.org/w/index.php?title=Welch%27s
method&oldid=1070861388, 2022.

[56] H. Phan, F. Andreotti, N. Cooray, O. Y. Chen, and M. De Vos,
“Joint classification and prediction cnn framework for automatic sleep
stage classification,” IEEE Transactions on Biomedical Engineering,
vol. 66, no. 5, p. 1285–1296, May 2019. [Online]. Available:
http://dx.doi.org/10.1109/TBME.2018.2872652

[57] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2018, pp. 7132–7141.
[58] M. X. Cohen, Analyzing neural time series data: theory and practice.

MIT press, 2014.
[59] P. Memar and F. Faradji, “A novel multi-class eeg-based sleep stage

classification system,” IEEE Transactions on Neural Systems and Reha-
bilitation Engineering, vol. PP, pp. 1–1, 11 2017.

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.
[Online]. Available: https://arxiv.org/abs/1706.03762

[61] X. Jiang, “Mrnet: a multi-scale residual network for eeg-based sleep
staging,” 2021 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, 2021.

[62] M. Khalid, J. Baber, M. K. Kasi, M. Bakhtyar, V. Devi, and N. Sheikh,
“Empirical evaluation of activation functions in deep convolution neural
network for facial expression recognition,” in 2020 43rd International
Conference on Telecommunications and Signal Processing (TSP), 2020,
pp. 204–207.

[63] A. Malafeev, A. Hertig-Godeschalk, D. Schreier, J. Skorucak, J. Mathis,
and P. Achermann, “Automatic detection of microsleep episodes with
deep learning,” 09 2020.

Jash Shah is a final year undergraduate student
pursuing his Bachelors of Engineering from the
Department of Electrical & Electronics Engineering,
BITS-Pilani, Pilani Campus, 333031, India. He also
worked as a visiting research intern at University
of Auckland, in the Engineering Science Depart-
ment. He is currently interning at NVIDIA as a
Hardware Design Engineer. He has been part of
various research collaborations in the past and has
worked as Teaching Assistant for several courses. He
shepherded the executive committee of IEEE Student

Chapter at BITS Pilani. His interests lies in the intersection of Embedded
Systems and EdgeML, Robotics, Computer Vision and Deep Learning, and
Brain Control Interfaces.

Amit Chougule is a Ph.D. Research scholar in the
Department of Electrical & Electronics Engineer-
ing, BITS-Pilani, Pilani Campus, 333031, India. He
obtained his M.Tech degrees from PES University,
Bangalore, India, in 2020. He is currently working as
a Research scholar in the Department of Electrical &
Electronics Engineering, BITS-Pilani, Pilani Cam-
pus, 333031, India. He has also worked on artificial
intelligence for healthcare in MNCs such as Philips
Healthcare and AIvolved Technologies. His research
interests include the use of computer vision and deep

learning technologies to produce artificial intelligence-based solutions for
healthcare as well as autonomous driving vehicles.

Vinay Chamola is an Associate professor in the
Electrical and Electronics Department, BITS) Pilani
and is also a part of APPCAIR, BITS-Pilani. He re-
ceived his B.E. (2010) and M.E. (2013) degrees from
BITS, Pilani, and Ph.D. (2016) from the National
University of Singapore. He has over 100 publica-
tions in high-ranked SCI journals, including more
than 75 IEEE transactions, journal, and magazine
articles. He is an Area Editor of Ad Hoc Networks,
Elsevier, and IEEE Internet of Things Magazine. He
also serves as Associate Editor of various journals,

including IEEE Networking Letters, IEEE Consumer Electronics magazine,
IET Networks, IET Quantum Communications, and so on. His research
interests include the Internet of Things, 5G network provisioning, blockchain,
and security.

https://doi.org/10.1093/sleep/zsz163
https://circuitglobe.com/difference-between-fir-filter-and-iir-filter.html
https://circuitglobe.com/difference-between-fir-filter-and-iir-filter.html
https://www.sciencedirect.com/science/article/pii/S105120040800002X
https://www.sciencedirect.com/science/article/pii/S105120040800002X
https://en.wikipedia.org/w/index.php?title=Welch%27s_method&oldid=1070861388
https://en.wikipedia.org/w/index.php?title=Welch%27s_method&oldid=1070861388
http://dx.doi.org/10.1109/TBME.2018.2872652
https://arxiv.org/abs/1706.03762


14

Amir Hussain received the B.Eng. and Ph.D. de-
grees in electronic and electrical engineering from
the University of Strathclyde, Glasgow, U.K., in
1992 and 1997, respectively. He is currently a
Professor and Director of the Centre of AI and
Robotics at Edinburgh Napier University, UK. His
research interests are cross-disciplinary and industry-
led, aimed at developing cognitive data science and
trustworthy AI technologies to engineer the smart
healthcare and industrial systems of tomorrow. He
has (co)authored around 600 research publications

(h-index: 68), including nearly 300 journal papers and 20 Books/monographs.
He has supervised over 40 Ph.D. students and led major national and
international projects. He is the founding Chief Editor of Springer’s Cognitive
Computation journal and appointed editorial board member for Elsevier’s
Information Fusion and several IEEE Transactions, including on Neural
Networks and Learning Systems; Artificial Intelligence; Systems, Man and
Cybernetics (Systems); and Emerging Topics in Computational Intelligence.
He has served as General Chair of IEEE WCCI 2020 (the world’s largest
technical event on computational intelligence, comprising the flagship IJCNN,
FUZZ-IEEE, and IEEE CEC) and the 2023 IEEE Smart World Congress
(featuring six co-located IEEE Conferences).


	INTRODUCTION
	Literature Survey
	Elementary Data Pre-processing
	Preliminary Background
	  Dataset Selection Methodology
	Adaptive Resampling
	Spectral Analysis
	Proposed Short Time Welch's Transform Methodology

	Temporal Analysis

	Proposed Training Framework
	Spectral Model : Two Layered Net
	Temporal Model : Raw2Img
	Attribute extraction unit - Common block 1
	ENDEC - Common Block 2
	Output Generating Module

	Results and Discussion
	STWT vs STFT
	Parameters
	Resampled vs Unsampled

	Conclusion
	Acknowledgement
	Biographies
	Jash Shah
	Amit Chougule
	Vinay Chamola
	Amir Hussain


