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Embracing Ambiguity: Improving Similarity-oriented Tasks with Contextual Synonym Knowl-
edge
Yangning Li,Jiaoyan Chen,Yinghui Li,Tianyu Yu,Xi Chen,Hai-Tao Zheng

• Contextual synonym knowledge is extremely effective for similarity-oriented tasks, and we are the first work to inject
contextual synonym knowledge into the Pre-trained Language Model (PLM).

• We propose PICSO, a flexible framework equipped with our designed entity-aware Adapter. PICSO supports continu-
ous injection of synonym knowledge from multiple domains, while the contextual semantic understanding capability
of the original PLM is not undermined.

• PICSO can dramatically outperform the original PLMs and the other knowledge and synonym injection models on
various similarity-oriented tasks. In addition, PICSO also benefits general natural language understanding tasks.
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ABSTRACT
Contextual synonym knowledge is crucial for those similarity-oriented tasks whose core challenge
lies in capturing semantic similarity between entities in their contexts, such as entity linking and
entity matching. However, most Pre-trained Language Models (PLMs) lack synonym knowledge due
to inherent limitations of their pre-training objectives such as masked language modeling (MLM).
Existing works which inject synonym knowledge into PLMs often suffer from two severe problems:
(i) Neglecting the ambiguity of synonyms, and (ii) Undermining semantic understanding of original
PLMs, which is caused by inconsistency between the exact semantic similarity of the synonyms and
the broad conceptual relevance learned from the original corpus. To address these issues, we propose
PICSO, a flexible framework that supports the injection of contextual synonym knowledge from
multiple domains into PLMs via a novel entity-aware Adapter which focuses on the semantics of the
entities (synonyms) in the contexts. Meanwhile, PICSO stores the synonym knowledge in additional
parameters of the Adapter structure, which prevents it from corrupting the semantic understanding of
the original PLM. Extensive experiments demonstrate that PICSO can dramatically outperform the
original PLMs and the other knowledge and synonym injection models on four different similarity-
oriented tasks. In addition, experiments on GLUE prove that PICSO also benefits general natural
language understanding tasks. Codes and data will be public.

1. Introduction
Pre-trained languagemodels (PLMs) such as BERT [17],

RoBERTa [27] and GPT [38] have achieved great success
in natural language processing (NLP) due to their semantic
understanding capabilities achieved by pre-training on large-
scale corpora. However, most PLMs only acquire statistical
word co-occurrence knowledge through their pre-training
objectives such as masked language modeling (MLM) [22],
which leads to limited capabilities in understanding syn-
onyms.

Synonym knowledge facilitates models to capture fine-
grained semantic relations and is crucial in NLP especially
for addressing similarity-oriented tasks, such as entity
linking [54] and entity resolution [49]. The core challenge
of such tasks lies in modeling the semantic similarity of
entities in complex contexts, where understanding the syn-
onymous relationship between phrases is essential. Taking
ontology alignment as an example, cross-ontology class
pairs with synonymic relationships account for 51% of the
total class mappings in the widely used benchmark FMA-
SNOMED of OAEI LargeBio Track1. In knowledge graph
(KG) canonicalization, which aims to cluster semantically
identical entities, about 30% identical entities in the Re-
verb45k dataset [43] appear in the synonym sets (synsets)
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of UMLS2. In specific domains, making sense of synonym
knowledge could become even more important and chal-
lenging. As the biomedical example in Figure 1 shows,
Elephantiasis is synonymous to Lymphatic filariasis but
non-synonymous to Elephantiasis graecorum, although the
latter has a closer surface form and would be regarded
as synonymous by a normal PLM. To better address such
similarity-oriented tasks, capturing the synonymous rela-
tionship between phrases under complex contexts is urgently
required. This motivates us to inject synonym knowledge
into PLMs.

Some pioneering works have explored injecting syn-
onym knowledge into PLMs. LIBERT [19] trains BERT
from scratch with an auxiliary task that binary classifies
whether entity pairs are synonymous pairs. SAPBERT [25]
pre-trains BERT with synsets from UMLS. A metric learn-
ing objective is used to optimize the BERT, with syn-
onymous and non-synonymous entity pairs as positive and
negative training samples, respectively. Although promising
results have been achieved, these works still suffer from the
following two problems:
Neglecting the ambiguity of synonyms. Synonyms are
naturally context-sensitive. It is intuitive that some entities
are synonyms and thus close to each other in the semantic
space, but are comparably different in some specific aspects
and thus far away from each other in the corresponding
semantic spaces. However, pre-training objectives of the
current synonym injection works completely ignore this

2Unified Medical Language System (UMLS) is a comprehensive col-
lection of biomedical terms.
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Figure 1: An example demonstrating the importance of syn-
onym knowledge for entity alignment. Some normal PLM
such as BERT tend to encode entities with common tokens
to more similar spaces ignoring synonymic semantics, such
as Elephantiasis for Elephantiasis graecorum and Lymphatic
filariasis (6.62 vs 9.17 we measured in BERT feature space),
which causes misalignment.

ambiguity and rigidly pull synonym pairs closer together
in semantic space. Take the example in the upper right of
Figure 2, it is unreasonable to always treat Washington as
synonymous to either George Washington or Washington,
D.C. since Washington has different meanings in different
contexts. The pre-training objective of closing the distance
from Washington to George Washington and Washington,
D.C. cannot be satisfied simultaneously. Therefore, Con-
text is imperative to disambiguate synonyms and should be
considered in injecting synonym knowledge. Ignoring the
synonym context will also significantly limit the generality
of the synonym injected PLM, i.e., the PLM is hard to
be applied to tasks out of the domain where the training
synonyms are extracted.
Undermining semantic understanding of original PLMs.
The exact semantic similarity expressed by synonyms and
the broad conceptual relevance implied by MLM are often
contradictory [19]. This is because PLMs that adopt MLM
for pre-training (e.g., BERT) acquire semantic understand-
ing capabilities based on word co-occurrence statistics. The
neighboring words in the feature space of such PLMs are
related words rather than synonyms, e.g., the top 10 nearest
neighbors of good in BERT contain antonyms like bad. The
existing methods directly inject synonym knowledge on top
of the parameters of the PLMs that have established semantic
understanding. This will inevitably result in semantic con-
flicts and weakens the PLM’s original semantic understand-
ing capabilities. We refer to this phenomenon as semantic
forgetting, analogous to the catastrophic forgetting [16, 18]
of old samples in continual learning community. In another
word, we argue that existing work utilizing synonyms for
pre-training is task-specific pre-training at the expense of
semantic understanding. SAPBERT, for example, is a further
pre-training of PLM with context-free synonym knowledge
for context-free entity linking, which sacrifices the ability to

understand semantics (as evidenced by the general degrada-
tion of performance for various downstream tasks in Section
4) and thus is not generalized.

To address these issues, we propose a Pre-trained lan-
guagemodel InjectedwithContextual Synonyms knOwledge
(PICSO), whose input for pre-training is sentences with
marked synonyms rather than synonyms without contexts.
In order for PICSO to not only capture the semantics of
the entire sentence, but also to focus on the semantics of
the entity (synonym) in the context, we develop a new
entity-aware Adapter structure with a novel masked self-
attention mechanism. Equipped with Adapters of such a
structure, PICSO supports continuous injection of synonym
knowledge from multiple domains, while the contextual
semantic understanding capability of the original PLM is
not undermined. In the evaluation, we consider a general
domain with 12.8 million synonym pairs extracted from
Wikidata and a biomedical domain with 3.7 million syn-
onym pairs extracted from UMLS. Extensive experiments
on four similarity-oriented tasks have demonstrated that
PICSO can dramatically outperform the original PLMs
and the other knowledge and synonym injection methods
including LIBERT and SAPBERT. In addition, experiments
on GLUE have proven that PICSO also benefits general
Natural Language Understanding (NLU) tasks.

2. Related Work
2.1. Injecting Structure Knowledge into PLMs

Despite great success in many NLP tasks, some works
[15, 35, 36] expose that PLMs such as BERT struggle to
acquire rich knowledge during pre-training. Some efforts
have been made to inject structure knowledge into PLMs,
which can be divided into three main categories. The first
category is KG Injection. With the emergence of plenty
of general and domain-specific KGs, they have become
one of the most important knowledge sources. A body of
mainstream research [34, 41, 47] is devoted to inject KG
triples (facts) in form of (subject, relation, object) into
PLMs. ERNIE-THU [55] encodes the entities and relations
in Wikidata by the KG embedding model TransE, then
integrates entity representations based on the alignments
between entity mentions and KG entities. K-Adapter [46]
leaves the original parameters of the PLM unchanged and
exports representations for structure knowledge of the KG.
This is achieved via an additional compact neural model
termed Adapter. Note that we also use Adapter, but our work
differs from K-Adapter in two fundamental ways: (1) We fo-
cus on the gain of clean and efficient synonym knowledge for
similarity-oriented tasks. (2) To inject contextual synonym
knowledge more precisely, we specially designed entity-
aware Adapter, which proved to be particularly effective
in Section 4.4.1. The second category is Rule Injection.
Rules exist as informal constraints or logical expressions,
which can import sound explanatory [9] or precise reasoning
capabilities [1] for PLMs. The last category is Syntax-tree
Injection. Syntactic knowledge guides PLMs to understand
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Table 1
Taxonomy of entity-level similarity-oriented tasks.

Source Entity Target Entity Typical Tasks Examples

Unstructured Text Unstructured Text
Entity Resolution

Lexical Simplification

Entity  Resolution

Entity 1: sony playstation 2 dualshock 2 
analog controller emerald.

Entity 2: ps2 dualshock analog controller green.

Same or Not Same?

Unstructured Text Structured KG
Entity Linking

Coreference Resolution

Entity  Linking

A New Mexico native music band called Beirut, will 
hold its performance in Washington on Thursday.

Beirut 
(band)

Beirut 
(Lebanon’s capital)

New Mexico 
(U.S. state)

Washington 
(U.S. state)

Washington, D.C.KG

Structured KG Structured KG

KG Canonicalization
Entity Alignment

Ontology Alignment

Entity Alignment

Washington 
(U.S. state)

KG1

U.S.

Barack 
Obama

KG2

Barack Hussein 
Obama II

WA

America

the core constituents in sentences. Some studies [2, 56] have
considered syntax-trees.

Structure knowledge may benefit similarity-oriented
tasks to some extent but the synonym knowledge they
contain are implicit and only take a small ratio. Meanwhile,
existing works [26, 53] demonstrate the presence of redun-
dant and irrelevant structure knowledge injected, which may
instead lead to negative impact in solving downstream tasks.
Compared to pure synonym knowledge, structure knowledge
is inefficient and prone to introduce noisy knowledge.
2.2. Injecting Synonym Knowledge into PLMs

The injection of semantic constraints from synonyms
into static word representations has been extensively studied
before PLMs become popular. Numerous works [11, 30]
demonstrated that synonyms can help models clearly dis-
tinguish between exact semantic similarity and broader
conceptual relatedness. These works mainly fall into two
categories: (1) Joint Optimization Models [31, 32] which
introduce auxiliary objectives in pre-training to constrain
the embeddings, and (2) Post-optimization Models [10, 44]
which tune the pre-trained embeddings by adapting the
pairwise distances to the semantic constraints of synonyms.

Following the popularity of PLMs, injecting synonym
knowledge into PLMs has attracted wide attention. Some
earlier works [7, 42] injected task/domain-specific synonym
knowledge into PLMs during fine-tuning. For example,
BERTMap [13] collects synonyms in ontologies to construct
corpora which are used to fine-tune BERT for predicting
class mappings between ontologies. Some previous works
inject synonym knowledge into PLMs during pre-training.
LIBERT [19] trains BERT from scratch with an auxiliary
binary classification task that predicts whether entity pairs
are synonymous or not. SAPBERT [25] further pre-trains
BERTwith massive synsets extracted fromUMLS. Ametric

learning objective is used to optimize the BERT, where syn-
onymic and non-synonymic pairs are extracted as positive
and negative samples, respectively. Aswe have stated before,
these methods suffer from ambiguity of synonyms and
the semantic forgetting problem. Besides, LIBERT has to
combine the synonym corpus and the text corpus to pre-train
a PLM from scratch, which brings a huge computational
overhead, while our PICSO overcomes this weakness and
supports flexible continual learning. SAPBERT is evaluated
with biomedical entity linking solely with the synsets from
UMLS, while PICSO is evaluated by four different tasks
with synonym knowledge of both general domain and the
medical domain.
2.3. Similarity-oriented Tasks

Similarity-oriented tasks refer to tasks whose core chal-
lenge is to capture entity-level or sentence-level semantic
similarity, which covers an extensive range of natural lan-
guage processing tasks. Modeling entity-level and sentence-
level semantic similarity play a significant role for almost
all AI applications, such as machine translation[48], di-
alogue systems [29], and recommendation systems [39].
As shown in Table 1, entity-level similarity-oriented tasks
can be roughly categorized according to the source of two
entities (source and target entity) in the entity pairs: (1) Both
source and target entities are derived from unstructured text.
Typical tasks include entity resolution [33], lexical simpli-
fication [37]. For example, the task set for entity resolution
is to determine whether both entities are identical given two
entities and their contextual descriptions (e.g. text, table).
(2) Source and target entities are derived from unstructured
text and structured KGs, respectively. Representative tasks
include entity linking [54], coreference resolution [21], etc.
For instance, the goal of entity linking is to link entities in
sentences to the corresponding entity entries in KG. (3) Both
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Figure 2: Frameworks of injecting synonym knowledge into PLMs. Top: the previous methods LIBERT and SAPBERT. Bottom:
our method PICSO.

source and target entities come from structured knowledge
graphs, and representative tasks consist of KG canonicaliza-
tion [8], entity alignment [42], and ontology alignment [13].
Entity alignment associates entities in different knowledge
graphs if they are semantically same. The core challenge of
all the above tasks is to model semantic similarity based on
entities as well as their contexts. Sentence-level similarity-
oriented tasks are likewise an essential branch of general
NLU tasks, including paraphrase identification [51], seman-
tic textual similarity [5], and numerous others. For example,
semantic textual similarity measures the meaning similarity
of sentences, which is also included in the General Language
Understanding Evaluation (GLUE) benchmark [45].

3. Methodology
3.1. Overall Framework

As shown in the top of Figure 2, the framework of the
previous methods LIBERT and SAPBERT take the context-
missing synonyms as input and directly update the param-
eters of the PLM in pre-training. Such a framework cannot
handle ambiguous or context-sensitive synonyms, and will
inevitably disrupt the original semantic understanding capa-
bilities of the PLM learned from the text corpus. To address
these issues, as shown in the bottom of Figure 2, our method
PICSO uses sentences with marked synonyms rather than
individual synonyms as input. In pre-training, the internal
parameters of the PLM are frozen, while some entity-aware
Adapters are attached with each one trained by synonym
knowledge of one domain. We will next introduce some key
data annotations and the framework modules.

We assume a collection of synsets {S1, ..., Sm} are ex-
tracted from synonym knowledge sources. Each synset is a
collection of synonyms (i.e., words or phrases that have the
same meaning), denoted as Si = {UIDi, e1i , ..., e

n
i }, where

UIDi denotes the unique identifier3 of the synset Si. The
3UID is determined by the synonym knowledge source. For example,

in Wikidata, a UID is by the letter Q and a number (e.g., Q61); in UMLS,
UID is by the letter C and a number.

pre-training corpus C is composed of instances, and each
instance is denoted as x = {UID, w, ps, pe}, where w is a
sequence of tokens with a marked synonym. We define two
special markers ⟨e⟩ and ⟨∕e⟩ to locate the synonym, and use
ps and pe to represent the indexes of ⟨e⟩ and ⟨∕e⟩ in the
sequence, respectively. An instance example is as follows:
x = {Q61, [..., ⟨e⟩,W asℎington,DC, ⟨∕e⟩, ...], 26, 29}.

PICSO mainly includes three modules. The first module
is a Frozen PLM. We select BERTbase as the backbone. Itoutputs hidden features denoted as Hp ∈ ℝl×d , in which l
and d represent the length of the input word sequence and the
dimension of the last hidden features of BERT, respectively.
The second module is Entity-aware Adapter. The input
is the hidden features output by Transformer layers of the
BERT. Each Adapter is plugged into the PLM as a separate
module and pre-trained independently for learning synonym
knowledge of a specific domain. It learns the semantics
of the entities with their contexts and the entire sentence
semantics via a combination of two masked self-attention
mechanisms, and eventually outputs features Ha ∈ ℝl×d .
The third module is an Aggregator. It fuses Hp and Hato obtain the final feature v where two different strategies
are proposed. The modules are pre-trained with a contrastive
learning objective, using the pre-training corpus. It is worth
mentioning that the Adapters can be continuously learned
with one domain by another, and can be either used together
or independently in Aggregator for a downstream task.
3.2. Entity-Aware Adapter

Our Adapters are expect to capture the entity-centric
semantics from multiple different domains. Each Adapter
contains K layers, while each layer is a stack of one down
projection layer,N Transformer layers and one up projection
layer, as shown in Figure 3. The output of the intermediate
Transformer layer of the frozen PLM and the output of the
previous Adapter layer are summed up as the input of the
current Adapter layer, where a residual connection is applied
between the input and the output. To enable the Adapter
to perceive the semantics of entities with their contexts, a
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Figure 3: Structure of one layer of our entity-aware Adapter.

new extension of the masked self-attention mechanism is
proposed:

ql+1i , kl+1i , vl+1i = ℎliWq , ℎ
l
iWk, ℎ

l
iWv

ℎl+1i = Attention
(

ql+1i , K l+1, V l+1)

=
l
∑

j=1

1
Z

exp

⎛

⎜

⎜

⎜

⎝

⟨

ql+1i , kl+1j

⟩

+M l+1
ij

√

dk

⎞

⎟

⎟

⎟

⎠

vl+1j

(1)

where ℎli ∈ ℝd represents the hidden feature corresponding
to the i-th token of the l-th Transformer layer.Wq ,Wk,Wv
are trainable parameters. Z and √

dk refer to the normal-
ization factor and scale factor, respectively.M l is the mask
matrix of the l-th Transformer layer. Note that when M l

ijtends to −∞, the value of exp (∗) tends to 0, that is, the
token wi is not concerned with the semantics of the token
wj .WhenM l

ij = 0, the computation degenerates to a regular
self-attention mechanism. Formally, the mask matrix M is
defined as:

M l
ij =

⎧

⎪

⎨

⎪

⎩

−∞ l = N ∧ ps ≤ i ≤ pe ∧ j < ps
−∞ l = N ∧ ps ≤ i ≤ pe ∧ j > pe
0 Otℎerwise

(2)

This means that for the first N-1 Transformer layers, we
emmploy the conventional self-attention mechanism such
that the hidden features model the semantic features of the
whole sentence. For the last Transformer layer, the new
masked self-attention mechanism is adopted to make each
token of entity between ⟨e⟩ and ⟨∕e⟩ focus on its own entity
sense, achieving a trade-off between sentence sense and
entity sense.
3.3. Aggregator

The output features of the frozen PLM and the Adapter
are fed to the aggregator to obtain the final features v. During
pre-training, the aggregator concatenates Hp and Ha and

takes out the vectors at indexes ps and pe to be concatenatedagain: H = Hp ⊕ Ha, ℎ = H[ps] ⊕ H[pe]. Then, the
resulting intermediate feature ℎ ∈ ℝ4d is passed into a fully-
connected layer followed by a normalization layer. When
applied in downstream tasks, if fine-tuning is performed, we
send the concatenated featuresH into the task-specific layer.
The Adapter can be used individually. If multiple Adapters
are used,Hp and multipleHa can be concatenated together.If PICSO is directly used as a feature extractor without fine-
tuning, we sumHp and the l2-normalizedHa as the semantic
features for the downstream task.
3.4. Pre-training Objective

We apply a contrastive objective which pulls synony-
mous pairs closer and non-synonymous pairs away to train
the Adapters and the aggregator. To do this we first generate
positive and negative instance pairs from each batch of the
pre-training corpus. For an arbitrary instance xi in the batch,it is combined with each of the instances that have the same
UID as xi (i.e., pos(xi) =

{

xj ∣ xi[UID] = xj[UID]
})

for positive instance pairs, and combined with the other
instances in the batch for negative instance pairs. Inspired
by [23, 24, 40], we design the contrastive objective, which
concerns more on the hard negative instance pairs, i.e.,
non-synonymous pairs that are difficult to distinguish. Con-
cretely, the contrast loss is calculated as follows:

cl = −
B
∑

i=1
log

S+
i

S+
i + S−

i
,

S+
i =

|pos(xi)|
∑

j=1
ev

⊤
i ⋅vj∕t,

S−
i = max

(

−(B − 1 − |

|

pos(xi)||) ⋅ �+ ⋅ S+
i + S̃−

i
1 − �+

, e
−1
t

)

,

S̃−
i =

(B − 1 − |

|

pos(xi)||)
∑

k∶k≠i≠pos(xi) e
(1+�)v⊤i ⋅vk∕t

∑

k∶k≠i≠pos(xi) e
�v⊤i ⋅vk∕t

.

(3)
where S+

i (resp. S−
i ) reflects the similarity between training

pairs from the positive (resp. negative) pairs, B is the size of
a batch, �+ is the class-prior probability that can be estimated
from data or treated as a hyper-parameter, � is the hyper-
parameter controlling the level of concentration on negative
samples, t is the temperature scaling factor which we set
as 0.5 in all our experiments. The S̃−

i term awards higher
weights to negative instance pairs whose instances have
high similarity (i.e., hard negative samples) by reweighting.
We assign a greater penalty to these hard negative samples
instead of mining hard negative samples by modifying the
sampling strategy as in LIBERT and SAPBERT. Hence, our
proposed contrastive objective is easier to use and achieves
better results, as also demonstrated in Section 4.4.2.
3.5. Construct Pre-training Corpus
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Table 2
Statistics for pre-training corpus

Domain # UID # Synonym Pairs
# Synonym
Pairs per UID

Average
Sentence Len

Avgerage
Edit Distance

General 0.65M 3.75M 5.8 117.9 18.4
Biomedical 2.10M 12.79M 6.1 107.3 27.7

One entity-aware Adapter learns independently from
the corpus of one domain. We consider a general domain
with the corpus extracted from Wikidata and a biomedical
domain with the corpus extracted fromUMLS. The concrete
corpus construction procedure has the following two steps:
Gathering sentences and synonyms. We get the synsets
from the two knowledge bases, Wikidata and UMLS, which
already have a massive collection of high-quality synonyms
(i.e., entities with identical meanings). To construct the
corpus, we further collect sentences that contain entity men-
tions linked to knowledge base entities. For the general
domain, we crawl Wikipedia articles that contain abundant
entity mentions with human-annotated hyperlinks to Wiki-
data entities. For the biomedical domain, we use the off-
the-shelf high-precision entity linking tool Medlinker [28]
to link entity mentions of article abstracts from PubMed4
to UMLS. In addition, we include the definitions of entities
from UMLS as a supplementary corpus. We also remove
simple pairs with edit distances less than 10 and limit the
generation of up to 50 synonym pairs per UID.
Balancing low-frequency entities.To ensure the proportion
of low-frequency synonyms in the corpus, we replaced enti-
ties in some sentences with their low-frequency synonyms.
For example, California in a sentence would be replaced by
The Golden State.

In the end, we constructed over 3.7 million and over
12.8 million context-equipped synonym pairs for the general
domain and the biomedical domain, respectively. The statis-
tics of the pre-training corpus for each domain are shown in
Table 2.

4. Experiments
4.1. Experiment Setup
4.1.1. Downstream Tasks.

We chose four extensively studied similarity-oriented
downstream tasks, i.e., entity resolution, entity linking, KG
canonicalization, and lexical simplification, covering the
assessment of tasks consuming both structured data and
unstructured text. For entity resolution and entity linking,
PICSO is further fine-tuned by their samples; while for the
other two tasks, PICSO is not fine-tuned, which evaluates
PICSO in a zero-shot or unsupervised setting. To verify that
PICSO also benefits general NLU tasks, we also conducted
experiments on GLUE which has 9 NLU tasks. Each task
will be separately introduced in detail bellow.

4https://pubmed.ncbi.nlm.nih.gov/

4.1.2. Baselines.
We comprehensively compare PICSO with three types

of baselines. Basic PLMs: (1) BERT [17] is an important
baseline since PICSO is based on it; (2) Roberta [27] is
the the advanced version of BERT, which removes the next
sentence prediction task and employs a larger pre-trained
corpus. PLMs with KG knowledge injected: (3) ERNIE-
THU [55] is the most classic KG knowledge-enhanced PLM
model, which incorporates entity representations learned
through TransE into BERT; (4) K-Adapter [46] injects KG
structured knowledge by an Adapter via relational classifica-
tion. Note that our entity-aware Adapter is an enhancement
of the original Adapter. The original K-Adapter is based on
Robertalarge. For a fair comparison, we re-implemented K-
Adapter withRobertabase. PLMs with synonym knowledge
injected: (5) LIBERT [19] trains BERT from scratch by
predicting synonymous entity pairs; (6) SAPBERT [25]
continues the pre-training of a BERT with massive synony-
mous and non-synonymous entity pairs from UMLS. Since
LIBERT and SAPBERT are the most relevant methods to
this study, they will get more attention in the following result
analysis. Note that PICSO is compatible for the methods
designed for specific tasks, sowe don’t compare task-specific
SOTA methods, as in much of the PLM works.
4.1.3. PICSO Setup

We use BERTbase which contains 12 Transformer layers
and 433M parameters. The dimension of the hidden fea-
ture corresponding to each token is 768. Each entity-aware
Adapter contains 3 Adapter layers plugged at layers 0, 5, 11
of BERT. TwoTransformer layers identical to those in BERT
are set in each Adapter layer, i.e.,N=2.We tally the parame-
ters for each entity-aware Adapter to be approximately 46M.
Compared with LIBERT and SAPBERT, which require pre-
training the entire BERT, we have fewer parameters to tune.
We pre-train the PICSO for 3 epochs on 8 Tesla V100s with
a batch size of 256. The time to train the general domain
Adapter and the medical domain Adapter is about 0.46 h
and 1.58 h per epoch, respectively. The full model using two
Adapters is abbreviated as PICSO(W+U). The model using
one Adapter trained on Wikidata (resp. UMLS) is denoted
as PICSO(W) (resp. PICSO(U)). PICSO(w/o k) represents
BERT with a randomly initialized Adapter, i.e., an Adapter
without synonym knowledge injection.
4.2. Experiments on Similarity-oriented Tasks
4.2.1. Entity Linking
Datasets and Fine-tuning. Entity linking aims to match
an entity mention in a textual context with an entity in the
target KG. SAPBERT is also tested on the entity linking
task, but the datasets used such as BC5CDR, lack the entity
mentions’ contexts and are less ambiguous. Hence, we adopt
a more challenging and widely used dataset named AIDA
CoNLL-YAGO [14], and conduct cross-domain experiments
following the same setting as in [20, 50, 52]. Namely, models
are trained on a training subset of AIDA (AIDA-train) and
evaluated on a test subset of AIDA as well as five popular
public datasets: AQUAINT, MSNBC, ACE2004, CWEB

Li et al.: Preprint submitted to Elsevier Page 6 of 13



Embracing Ambiguity: Improving Similarity-oriented Tasks with Contextual Synonym Knowledge

Table 3
Results (%) on entity linking

Model AIDA ACE2004 AQUAINT CWEB MSNBC WIKI
Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

BERT 72.35 86.64 70.81 82.87 60.24 80.74 47.84 68.59 56.40 78.04 58.68 79.15

Roberta 74.89 87.32 67.91 79.64 58.28 78.93 45.22 65.54 55.25 75.54 55.27 76.13

ERNIE-THU 69.12 86.48 69.26 80.93 51.71 73.03 44.49 65.39 56.25 77.28 55.97 76.98

K-Adapter 73.72 85.72 69.84 80.41 60.27 79.86 45.49 65.37 53.11 72.93 53.56 75.70

LIBERT 69.69 83.75 66.92 78.21 63.68 80.05 48.51 66.71 53.35 74.84 57.70 76.78

SAPBERT 54.21 73.64 49.02 70.03 52.26 77.02 37.97 60.99 41.31 66.46 47.15 66.68

PICSO(W+U) 78.26 88.63 75.87 84.26 69.32 82.46 52.25 70.17 62.50 81.47 61.04 80.69

PICSO(W) 76.79 88.25 73.64 83.87 66.71 81.70 49.49 69.52 60.04 80.62 60.33 80.28

PICSO(U) 75.91 88.05 72.84 83.65 63.54 81.15 48.62 69.39 59.06 79.47 58.93 79.34

PICSO(w/o k) 73.10 87.10 71.98 83.20 63.13 80.90 48.35 68.21 52.28 72.56 57.15 76.60

and WIKI, which cover a wide range of domains such as
medicine and technology & science. To fine-tune the PLMs
for entity linking, as with SAPBERT, we use the multi-
similarity loss, a metric learning objective that adjusts the
pairwise distances of positive and negative pairs. Each posi-
tive pair consists of an entity mention and its corresponding
entity in KG, and negative pairs are generated by randomly
corrupting positive pairs. Acc@k is employed to evaluate the
a model with the ranking of KG entities, which means the
percentage of the top-k predictions that contain the ground
truth KG entity. To ensure fairness, for all downstream tasks,
we set their key hyperparameters (e.g., learning rate, number
of training rounds), the same, and no complex tuning of
hyperparameters is performed.
Results. The results for entity linking are shown in Ta-
ble 3, through which we can have the following observa-
tions. (1) PICSO(W+U) achieves the best results on all
six datasets, and the absolute improvement of Acc@1 on
some datasets even exceeds 5%. Except for LIBERT on
AQUAINT, LIBERT and SAPBERT show general perfor-
mance decreasements, which confirms that their pre-training
negatively impacts the original semantic understanding ca-
pabilities of PLMs. (2) Injecting KG knowledge does not
necessarily benefits entity linking. K-Adapter outperforms
its base PLM Roberta in some cross-domain cases, while
ERNIE-THU generally shows a light degradation compared
to its base PLM BERT. (3) PICSO (W) has a higher gain
on performance than PICSO (U). Although these testing
datasets contain medical data, medical data only take a small
ratio, and the general synonym knowledge from Wikidata
contributes more. (4) PICSO (w/o k) has an overall gain
compared with the base PLM BERT. This is due to the fine-
tuning and a larger model of PICSO.
4.2.2. Entity Resolution
Datasets and Fine-tuning. Entity resolution (a.k.a entity
matching) is to find records that refer to the same real-
world entity across different data sources. Following [33],

we compare the methods using three datasets: WDC LSPC,
DBLP-Scholar and Company. The WDC LSPC dataset is
built by product offers from e-shop, containing four cate-
gories of products: computer, camera, shoe and watch. For
each product category, there are one test set and four training
sets with different sizes. In other words WDC LSPC has
4×4 sub-datasets. We pick two training sets of medium (M)
and large (L) sizes for each category in our experiments.
For WDC LSPC, the entities in the test set all appear in the
training set, while for Company and DBLP-Scholar, there is
no overlap between the entities of the test set and those of the
training sets. Thus, WDC LSP enables the evaluation with
seen entities, while the other two enable the evaluation with
unseen entities. Following [33], a linear layer and a sigmod
function are attached after each pre-trained model (on top
of the hidden feature of the [CLS] token) to predict whether
two entities match or not, and a binary cross-entropy loss is
used to fine-tune the model. Precision (P), Recall (R) and F1
Score are adopted as the metrics.
Results. The results for entity resolution are shown in Table
4, from which we can have similar observations as in entity
linking. We note that in the seen case, i.e., in the WDC
LSPC, PICSO is insensitive to the size of the training set
compared to other PLMs, suggesting that the synonyms
contain partial knowledge that entity resolution desires. The
testing set sizes of Company and DBLP-Scholar are 20 and
5 times larger than that of WDC LSPC, respectively. Thus
the improvement by PICSO in the unseen case is actually
more significant compared to the seen case, demonstrating
the sound learning potential of PICSO. Compared to PICSO,
LIBERT and SAPBERT have competitive recall but much
worse precision. This indicates that LIBRT and SAPBERT
confusingly treat some non-synonymous pairs as synony-
mous, which could be caused by the lack of contextual
constraints in pre-training.
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Table 4
Results (%) on entity resolution

Model Computers-M Computers-L Shoes-M Shoes-L Watches-M Watches-L Cameras-M Cameras-L Company DBLP-Scholar
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

BERT - - 89.31 - - 92.11 - - 79.82 - - 87.37 - - 89 - - 95.23 - - 87.02 - - 91.02 - - 91.7 - - 95.27

RoBERTa - - 91.9 - - 94.68 - - 81.12 - - 86.6 - - 92.28 - - 93.93 - - 90.2 - - 93.91 - - 91.81 - - 95.29

ERNIE-THU 80.00 93.33 86.15 90.9 93.33 92.1 78.41 82.6 80.45 90.23 87.33 88.75 77.59 92.33 84.32 93.53 91.66 92.59 76.98 90.33 83.12 87.61 92.00 89.75 89.29 93.81 91.5 95.14 95.32 95.23

K-Adapter 91.55 91.55 91.55 94.95 94.33 94.63 87.45 86.28 86.86 95.10 90.96 92.99 90.28 96.00 93.05 97.50 91.33 94.32 92.00 92.00 92.00 93.85 91.66 92.74 93.27 92.09 92.67 94.69 96.82 95.74

LIBERT 79.41 90.00 84.37 86.29 92.33 89.21 77.23 83.94 80.44 86.97 82.60 84.73 84.37 90.00 87.09 94.82 91.66 93.22 79.68 83.66 81.62 87.91 87.33 87.62 76.9 92.76 84.09 93.21 94.95 94.07

SAPBERT 53.61 81.66 64.72 52.60 87.66 65.75 76.87 82.27 79.48 87.01 82.94 84.93 87.37 90.00 88.66 94.36 89.33 91.78 87.26 91.33 89.25 86.16 91.33 88.67 90.74 89.89 90.31 94.10 96.91 95.48

PICSO(W+U) 93.62 93.00 93.31 94.50 95.66 95.07 91.17 92.62 92.62 94.88 92.97 93.91 93.77 94.00 93.88 98.57 95.00 96.75 94.68 93.42 94.04 95.84 92.33 94.05 92.94 92.91 92.92 94.26 97.87 96.03

PICSO(W) 90.70 94.33 92.48 94.96 94.33 94.64 91.97 91.97 91.97 95.12 91.3 93.17 93.64 93.33 93.48 97.93 94.66 96.27 93.19 91.33 92.25 94.33 94.33 94.33 92.63 92.3 92.46 94.32 97.56 95.91

PICSO(U) 92.35 92.66 92.51 93.66 93.66 93.66 91.08 92.3 91.69 94.03 89.63 91.78 92.66 92.66 92.66 98.58 93.00 95.71 93.11 94.66 93.88 94.86 92.33 93.58 92.87 92.42 92.65 94.09 97.34 95.69

PICSO(w/o k) 91.14 92.66 91.90 91.65 94.03 92.82 84.51 87.62 86.04 93.07 89.30 91.00 91.64 92.33 91.98 96.91 96.91 95.60 91.88 89.66 90.75 94.16 90.00 92.03 91.02 93.61 92.29 94.49 95.74 95.11

4.2.3. Lexical Simplification
Datasets and Task Method. Lexical simplification seeks
to replace target words in contextual sentences with simpler
substitutes without altering the meanings. It is an impor-
tant evaluation task in LIBERT. Three public datasets —
LexMTurk, BenchLS, and NNSeval are used for evaluation
where LexMTurk is collected fromWikipedia, and BenchLS
and NNSeval are expanded versions of LexMTurk. As the
evaluation of LIBERT, an unsupervised pre-trained PLM-
based method [37], which first generates a set of candidate
substitutes and then ranks these substitutes, is adopted. We
report scores of Precision, Recall and F1 score for candidate
generation, as well as the scores of Accuracy for the final
result, so as to compare different pre-trained PLMs that are
adopted.
Results. The results of lexical simplification are presented
in Table 5. We can observe that PICSO obtains the highest
final accuracy on all three datasets. Surprisingly, SAPBERT
scores almost 0 on all three datasets. On the one hand, SAP-
BERT severely loses its semantic understanding capability
of textual context, and on the other hand, the unsupervised
setting prevents it from reconstructing the semantic space by
fine-tuning. Regarding LIBERT, it has a lead in precision for
substitute generation on BenchLS and LexMTurk. However,
this is achieved at the expense of recall, which is undesirable
in the first stage of substitute generation. Meanwhile, al-
though LIBERT authors claim that it outperforms their own
implementation of BERTwith a smaller pre-training corpus,
it has no advantage over the original BERT implemented by
Google.
4.2.4. KG Canonicalization
Datasets and Task Method. KGs constructed from un-
structured data usually store redundant entities. KG canoni-
calization aims to identifying the equivalent entities in a KG.
It is an inherently unsupervised task since we usually are not
given any annotated data. As in [8], we used four datasets —
Rever-base, Reverb45k, Reverb-ambiguous, and CANON-
ICNELL for evaluation. The first three are homogeneous,
while CANONICNELL is heterogeneous, constructed based
on NELL [4]. A simple PLM-based method [8, 43] is often
adopted for comparing the performance of PLMs. Briefly it
first uses a PLM to build text embeddings for entities and

then uses a Hierarchical Agglomerative Clustering (HAC)
algorithm for clustering. We use the macro and micro F1
scores as evaluation metrics.
Results. The results for KG canonicalization are shown
in Table 6. Since KG canonicalization is an intra-KG task
and excludes textual context, models injected with both
synonym knowledge and KG knowledge obtain performance
boosts versus their base PLMs. PICSO achieves the best
result, followed by SAPBERT, which strongly confirms
the superiority of synonym knowledge over generic KG
knowledge for this similarity-oriented task. Meanwhile, ac-
cording to our statistics, medical-related entities in the Re-
verb* datasets occupy 20% to 30%, which is consistent with
that PICSO(U) has higher performance than PICSO(W).
As expected, PICSO(w/o k) shows a serious performance
decline due to feature space corruption.
4.3. Experiments on General NLU Tasks

TheGeneral LanguageUnderstanding Evaluation (GLUE)
benchmark [45] covers diverse NLU tasks, which is the main
benchmark used in PLMs. To explore whether synonym
knowledge deteriorates performance on general NLU tasks,
we evaluate PICSO on eight datasets of GLUE, and the
results are shown in Table 7.

In summary, PICSO achieves competitive results on
GLUE, and some interesting phenomena can be observed.
(1) PICSO has the highest average score on all the 8 tasks,
which proves that the synonym knowledge is beneficial.
SAPBERT, on the other hand, struggles to handle the
context-involved tasks, achieving the worst result. (2) These
GLUE tasks mainly have two categories. The first category
involves similarity prediction, which includes MRPC, STS-
B and QQP. They require the model to infer whether two
sentences have paraphrase/semantic equivalence. PICSO
and LIBERT achieved the best results as synonym knowl-
edge is particularly valuable. (3) The second category is
natural language inference tasks includingMNLI, QNLI and
RTE. The goal of these tasks is to determine whether two
sentences have implicative relations (i.e., whether the hy-
pothesis can be inferred from the premises), which requires
factual knowledge. PLMs with KG knowledge injected, i.e.,
K-Adapter, achieve better performance.
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Table 5
Results (%) on lexical simplification

Model BenchLS LexMTurk NNSeval

P R F1 Acc P R F1 Acc P R F1 Acc

BERT 24.81 32.08 27.98 57.03 32.04 23.43 27.06 71.24 18.32 23.78 20.69 37.65

Roberta 20.08 27.25 23.12 52.41 25.66 19.95 22.45 64.00 18.87 25.18 21.57 41.84

ERNIE-THU 24.19 32.83 27.86 55.97 31.60 24.57 27.64 70.00 18.66 24.90 21.33 33.05

K-Adapter 19.93 27.05 22.95 55.40 25.28 19.66 22.11 69.32 16.23 21.66 18.56 41.09

LIBERT 27.66 22.52 24.83 47.57 37.00 17.27 23.54 63.2 15.39 20.54 17.60 27.19

SAPBERT 0.05 0.07 0.06 0.10 0.06 0.04 0.05 0.2 0.04 0.05 0.05 0

PICSO(W+U) 25.18 34.18 29.00 59.63 33.08 25.72 28.94 73.20 20.15 26.38 22.84 42.76

PICSO(W) 25.15 34.13 28.96 58.66 32.58 25.33 28.50 73.59 19.03 25.40 21.76 42.65

PICSO(U) 25.10 34.06 28.90 57.91 32.60 25.35 28.52 73.0 18.99 25.34 21.71 42.10

PICSO(w/o k) 20.97 28.46 24.15 47.68 28.56 22.21 24.98 63.60 15.48 20.65 17.69 29.70

Table 6
Results (%) on KG canonicalization

Model Reverb-base Reverb45k Reverb-ambiguous CANONICNELL

Macro Micro Macro Micro Macro Micro Macro Micro

BERT 69.83 92.35 16.92 75.35 60.10 81.62 63.19 66.93

Roberta 75.75 92.71 26.48 76.83 61.55 87.97 70.63 76.01

ERNIE-THU 72.49 92.57 19.54 76.09 61.78 87.95 65.50 69.56

K-Adapter 75.17 91.28 28.10 76.58 59.13 80.83 71.48 77.62

LIBERT 66.93 91.97 16.18 75.58 61.22 86.12 62.09 68.37

SAPBERT 82.41 93.10 41.18 79.59 61.92 87.98 74.57 80.54

PICSO(W+U) 89.21 93.56 44.69 80.67 62.67 88.11 76.39 81.98

PICSO(W) 85.31 93.21 42.62 79.97 62.51 88.10 75.81 81.69

PICSO(U) 87.14 93.26 43.97 79.79 62.41 88.09 76.22 81.85

PICSO(w/o k) 63.10 90.84 15.70 70.74 57.54 72.44 60.43 64.83

Table 7
Results on eight GLUE tasks.

Model CoLA SST-2 MRPC STS-B QQP MNLI-(m/mm) QNLI RTE Avg

BERT 56.53 92.32 88.85 88.48 87.49 83.81/84.1 90.66 65.7 81.99

Roberta 50.19 94.15 81.83 84.88 87.48 87.36/87.34 92.17 56.32 80.19

ERNIE 44.28 90.6 82.15 85.03 86.75 83.10/83.51 89.99 58.48 78.21

K-Adapter 54.70 93.69 85.62 87.62 86.72 87.29/87.02 92.7 68.95 82.70

SAPBERT 4.38 88.53 81.21 82.57 85.86 81.81/82.54 89.38 54.87 72.35

LIBERT 37.2 89.3 88.7 - 90.0 79.6/80.0 87.7 66.4 77.36

PICSO(W+U) 58.04 93.89 89.41 89.43 88.58 84.66/84.92 91.63 64.62 82.80

PICSO(W) 57.78 92.89 89.83 89.12 88.07 84.61/84.95 91.12 64.98 82.59

PICSO(U) 58.29 92.32 89.61 89.09 87.82 84.63/85.31 91.27 63.90 82.47

PICSO(w/o k) 57.78 93.00 88.93 88.98 86.92 81.85/82.27 90.74 63.18 81.51
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Table 8
Ablation study on entity-aware Adapter. w/o EA means
without entity-aware mechanism.

Model
Entity Linking Lexical Simplification GLUE

AIDA BenchLS STS-B QQP

Acc@1 Acc@5 P R F1 Acc Pearson F1

BERT 72.35 86.64 24.81 32.08 27.98 57.03 88.48 87.49

PICSO 78.26 88.63 25.18 34.18 29.00 59.63 89.43 88.58

w/o EA 73.23 87.08 24.80 32.89 28.27 57.68 88.96 87.54

4.4. Additional Experiments
4.4.1. Ablation Study on Entity-Aware Adapter

In the ablation experiments, for the similarity-oriented
tasks, we selected entity linking and lexical simplification as
representatives of the fine-tuned and unsupervised methods,
respectively. For the NLU tasks, STS-B and QQP are picked.

We conducted ablation experiment for the entity-aware
mechanism to demonstrate its effectiveness and necessity
for injecting contextual synonym knowledge. The results in
Table 8 show that although PICSO w/o EA does not show
the same negative gain as the SAPBERT and LIBERT, the
magnitude of the gain is much smaller compared to PICSO,
especially for the unsupervised lexical simplification. We
argue that with entity-aware Adapter, the model can focus
more on the semantics represented by the entities and thus
more accurately draw the corresponding synonyms closer
without introducing noise.
4.4.2. Comparison of Pre-training Loss Functions

As illustrated in Table 9, we compare the effects of three
pre-training objectives on the pre-training effect. Triplet
Margin Loss [3] was designed for computer vision tasks
such as image classification and can be formulated as L =
[

dap − dan + m
]

+, where dap and dan denote the distance
from the anchor to the positive and negative samples, re-
spectively. InfoNCE Loss is a classic contrastive loss and
has been widely used in self-supervision papers [6, 12]. It
can be equated as L = − log exp(q⋅k+∕�)

∑K
i=0 exp(q⋅ki∕�)

, in which q, k+,
ki represent anchor, positive and negative samples respec-
tively. Note that online hard negatives mining is available
for both pre-training objectives. In contrast, our designed
pre-training objective does not require cumbersome online
mining, but only re-weights the penalty for negative samples
based on similarity, thus allowing the model to focus more
on non-synonymous entity pairs that are elusive to distin-
guish. Our proposed pre-training objective is more efficient
and effective.
4.4.3. Comparison of PLM backbones

In themain experiments we adopt BERT as the backbone
of PICSO. Roberta differs fromBERT in that it discards next
sentence prediction (NSP) as the pre-training task. In Table
10, we compare the performances of PICSO with BERT
and Roberta as the backbone, and their average gains on

Table 9
Comparison of different pre-training loss functions.

Loss
Entity Linking Lexical Simplification GLUE

AIDA BenchLS STS-B QQP

Acc@1 Acc@5 P R F1 Acc Pearson F1

Triplet Margin Loss 77.23 87.12 23.69 32.18 27.29 54.76 87.28 85.73

InfoNCE 77.32 87.32 23.46 32.10 27.11 54.27 88.05 85.71

Ours 78.26 88.63 25.18 34.18 29.00 59.63 89.43 88.58

Table 10
Comparison of different PLM backbones.

Model
Entity Linking Lexical Simplification GLUE

AIDA BenchLS STS-B QQP

Acc@1 Acc@5 P R F1 Acc Pearson F1

BERT 72.35 86.64 24.81 32.08 27.98 57.03 88.48 87.49

Roberta 74.89 87.32 20.08 27.25 23.12 52.41 84.88 87.48

PICSO 78.26 88.63 25.18 34.18 29.00 59.63 89.43 88.58

Roberta-based 78.34 89.10 21.38 28.91 24.58 54.84 87.13 88.89

downstream tasks are 2.24 and 2.14, respectively. Benefit-
ing from the favorable performance of Roberta on the en-
tity linking task, Roberta-based PICSO outperforms BERT-
based PICSO on the entity linking task. We can conclude
that the enhancement of contextual synonym knowledge for
downstream tasks is model-agnostic and universal.
4.4.4. Case Study

Case study is conducted on four similarity-oriented
tasks. From Table 11, we can observe that: (1) The example
on the entity linking task illustrates that BERT struggles
to resolve the ambiguity caused by multiple meanings of a
word, while benefiting from the introduction of contextual
information about synonyms, PICSO can clearly distinguish
non-synonymous entity pairs with the same surface name.
This is more obviously illustrated by the example on the
lexical simplification task, where tender has the meaning
of gentle in some contexts, and painful when describing
a body part. Compared to BERT, PICSO can distinguish
more explicitly between the two semantics. (2) The case on
entity resolution and KG canonicalization demonstrates that
BERT lacks the ability to capture synonym information. For
example, Sky Caption Blue and Blue are synonyms in some
sense. Whereas on the KG canonicalization task, BERT
fails to infer the exact synonym pair and tended to consider
Virginia wesleyan college and Rider college as synonyms,
which contain the common token college, or consider Palm
casino and Flamingo hotel as synonyms, which are both
buildings in Las Vegas.

5. Conclusion and Future Work
The paper presents PICSO that can inject contextual

synonym knowledge from multiple domains into the PLM
without disrupting its original semantic understanding ca-
pabilities. PICSO are equipped with entity-aware Adapters,
each of which constrains the visible range of the tokens of
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Table 11
Case study for similarity-oriented tasks.

Task Output of Ground Truth
PICSO BERT

Entity Linking Mention: “or 10 continues west into
beaverton, where it interchanges with
oregon route 217, a freeway.”
Ranked Candidate: [“beaverton, ore-
gon”, “beaverton”, “beaverton, on-
tario”]

Mention: “or 10 continues west into
beaverton, where it interchanges
with oregon route 217, a freeway.”
Ranked Candidate: [“beaverton”,
“beaverton, oregon”, “beaverton,
ontario”]

beaverton, oregon

Entity Resolution Entity 1: “TomTom Runner 2 Car-
dio+Music DBL/LBL (Large) - Sky
Captain Blue/Scuba Blue TomTom
Running Accessories Blue”
Entity 2: “TomTom Runner 2 Cardio
GPS Watch with Music Large Strap
- Blue Blue ”
Prediction: Same

Entity 1: “TomTom Runner 2 Car-
dio+Music DBL/LBL (Large) - Sky
Captain Blue/Scuba Blue TomTom
Running Accessories Blue”
Entity 2: “TomTom Runner 2 Cardio
GPS Watch with Music Large Strap
- Blue Blue ”
Prediction: Not Same

Same

Lexical Simplification Sentence: Women usually notice lit-
tle change in their breasts, but if you
are a man, your breasts may become
slightly larger and may be tender.
Candidate: [strong, gentle, serious,
sensitive, weak, painful]

Sentence: Women usually notice lit-
tle change in their breasts, but if you
are a man, your breasts may become
slightly larger and may be tender.
Candidate: [strong, gentle, soft, spe-
cial, weak, sweet]

[sore, sensitive, painful]

KG Canonicalization {Virginia wesleyan, Virginia wesleyan
college }

{Virginia wesleyan college, Columbus
college, Rider college }

{Virginia wesleyan, Virginia
wesleyan college }

{Flamingo hotel, Flamingo la vega } {Palm casino, Flamingo hotel } {Flamingo hotel, Flamingo la
vega}

the synonyms through a masked self-attention mechanism
for learning the semantics of the entity and its context. With
the contextual synonym knowledge from Wikidata (gen-
eral domain) and UMLS (medical domain), PICSO often
dramatically outperforms the original PLMs and the other
knowledge and synonym injection PLMs on four different
similarity-oriented tasks, and can also benefit general NLU
tasks in GLUE. In the future, we will investigate a multi-
task pre-training paradigm for synonym knowledge injection
to better exploit the synonyms widely available in both
unstructured text and structured KGs, and will evaluate our
methods on more similarity-oriented tasks, e.g. ontology
alignment.
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