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A B S T R A C T

Electroencephalogram (EEG) based motor imagery (MI) brain computer interfaces (BCI) are widely
used in applications related to rehabilitation and external device control. However, due to the non-
stationary and low signal-to-noise ratio characteristics of EEG, classifying motor imagery tasks of the
same participant from different recording sessions is generally challenging. Whether the classification
accuracy of cross-session MI can be improved from the perspective of domain adaptation is a question
worth verifying. In this paper, we propose a Siamese deep domain adaptation (SDDA) framework
for cross-session MI classification based on mathematical models in domain adaptation theory. The
SDDA framework primarily consists of three components: a novel preprocessing method based on
domain-invariant features, a maximum mean discrepancy (MMD) loss for aligning source and target
domain embedding features, and an improved cosine-based center loss designed to suppress the
influence of noise and outliers on the neural network. The SDDA framework has been validated with
two classic and popular convolutional neural networks (EEGNet and ConvNet) from BCI research
field in two MI EEG public datasets (BCI Competition IV IIA, IIB). Compared with the vanilla
EEGNet and ConvNet, the SDDA framework improves the MI classification accuracy by 10.49%,
7.60% respectively in IIA dataset, and 4.59%, 3.35% in IIB dataset. The SDDA not only significantly
improves the classification performance of the vanilla networks but also surpasses state-of-the-art
transfer learning methods, making it a superior and user-friendly approach for MI classification.

1. Introduction
Brain-computer interfaces (BCIs) are communication

systems between the brain and external devices that do
not rely on peripheral nervous and muscular systems (Wol-
paw (2007)). BCIs are usually used to assist, enhance, re-
pair, or partially replace human cognitive or sensorimo-
tor functions (Wolpaw et al. (2000)). Motor imagery (MI)
is a widely used paradigm in EEG-based BCIs. Results
from neuroscience studies suggest that MI induces event-
related synchronization/desynchronizations (ERD/ERS) in
the Mu band, which are the key discriminant features that
are used in MI-BCIs (Pfurtscheller et al. (2006)). Feature
extraction algorithms, such as common spatial pattern (CSP)
(Pfurtscheller and Neuper (2001)) and filter bank common
spatial pattern (FBCSP) (Ang et al. (2008)) have been suc-
cessfully used in conjunction with classifiers, such as lin-
ear discriminant analysis (LDA) or support vector machine
(SVM), in the literature for MI-BCIs applications.

With the development of artificial neural network (ANN)
in computer vision and natural language processing, ANNs
and their applications in the research field of BCIs are at-
tracting more and more attention (Schwemmer et al. (2018)),
Al-Saegh et al. (2021), Craik et al. (2019)). Compared
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with traditional decoding methods that manually extract
features, ANNs are able to extract complex features of EEG
without prior feature assumption. For example, ConvNet
(Schirrmeister et al. (2017)) has played a significant role in
the decoding of motor imagery by setting appropriate con-
volutional layers and adjusting network parameters. Results
suggest that the performance of shallow convolutional neural
networks (hereinafter referred to ConvNet) is comparative to
classical methods utilizing FBCSP features and LDA classi-
fiers. Another successful ANN architecture, EEGNet (Lawh-
ern et al. (2018)), has shown high robustness in various
BCI paradigms includingerror-related negativity responses
(ERN), P300 visual-evoked potentials, movement-related
cortical potentials (MRCP), and sensory motor rhythms
(SMR). Both ANN decoding methods work with the premise
that the training data and the test data are sampled from
the same distribution. However, EEG signals are character-
ized by their non-stationary nature and low signal-to-noise
ratio (Sanei and Chambers (2013)). Even when recorded
from the same participant, the distribution of EEG features
may exhibit discrepancies across different recording ses-
sions (Shenoy et al. (2006)). In practical applications, cross-
session EEG data collection is very common, participants
are instructed to collect data of two (or more) sessions with
time intervals. The data of several earlier sessions are used
for training the model, and the data of the later sessions are
used to evaluate the model performance.
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In the research field of machine learning, domain adap-
tation technologies are exploited to tackle the data non-
stationary problem. Domain adaptation is a subcategory of
transfer learning to solve the problem where source domain
and target domain share the same feature space with dif-
ferent feature distribution. It helps transfer knowledge from
source domain to target domain by learning domain invari-
ants (Zhang et al. (2020a,b)). The application of transfer
learning techniques in MI-BCI research has been shown to
enhance BCI performance in some studies. For example,
He and Wu (2019) proposed a pre-processing method for
CSP filter, in which a spatial covariance matrix was used
as a domain invariant to achieve trial-level EEG align-
ment in Euclidean space among different participants. Zhao
et al. (2020) proposed a GAN-based network to improve
the classification performance in the target participant by
using data of other participants in the same dataset. Zhang
et al. (2021) proposed a variety of adaptive schemes by
pre-training convolutional neural networks (CNN) models
using EEG data from other participants and fine-tuning the
model for one targeted participant. These studies utilized
transfer learning techniques to enhance the classification per-
formance of target participants by leveraging EEG data from
other participants. However, considering the fact that a non-
neglectable portion (15%-30%) (Vidaurre et al. (2011)) of
the population is BCI illiterate (Allison and Neuper (2010)),
the data distribution of different participants and different
sessions are quite different. Cross-participant domain adap-
tation methods on cross-session EEG data may introduce
negative transfer (Smith-Jentsch et al. (2001)) and compro-
mise the performance of MI classification.

In this study, we approached the problem of cross-
session variability in motor imagery data from the same
participant by leveraging domain adaptation techniques to
reduce the generalization error of artificial neural networks.
A Siamese deep domain adaptation framework (SDDA)
was proposed, with a universal configuration that can be
easily attached to most existing neural networks. The manual
domain invariants construction method was used as data
preprocessing and integrated in SDDA as the first step to
preliminarily reduce the distribution discrepancy between
source domain and target domain. After the feature extrac-
tion layers, a maximum mean discrepancy (MMD) (Long
et al. (2015)) loss was integrated into the training loss
function as regularization to further reduce the distribution
difference in the Reproducing Kernel Hilbert Space (RKHS)
(Rosipal and Trejo (2001)). A cosine-based center loss
was introduced to reduce the adverse effects of noise and
outliers on artificial neural networks. The SDDA framework
was investigated using two commonly employed vanilla
networks in EEG processing applications, EEGNet and
ConvNet. Performance of the proposed SDDA was vali-
dated through experiments on public MI datasets from BCI
competition IV (IIA and IIB) (Tangermann et al. (2012)).
The proposed SDDA framework can significantly enhance
the performance of vanilla networks, leading to superior
classification accuracy both on IIA and IIB datasets.

The main contributions of this paper are:
1. To the best of our knowledge, this research is the first

deep domain adaptation work in the field of MI that
does not require the assistance of other participants’
data for training. This study explores whether and how
deep domain adaptation can address the drift of EEG
data over time in motor imagery.

2. A transferable SDDA framework for MI classification
is proposed, which consists of a preprocessing method
for constructing domain-invariant features, an MMD
loss for reducing domain-wise high-dimensional fea-
ture distribution discrepancies, and a cosine metric
center loss for suppressing outliers and noises.

3. We evaluate the classification performance of two
high-impact vanilla networks in the SDDA framework
on two real MI datasets. The experimental results
demonstrate that the SDDA framework not only sig-
nificantly improves the classification performance of
the vanilla networks but also surpasses state-of-the-art
domain adaptation methods. Furthermore, the experi-
mental results highlight the significance of addressing
the problem of cross-session variability in MI from the
perspective of domain adaptation.

The rest of this paper is organized in seven sections. In
Section 2, we mainly review the relevant studies on deep
learning and how domain adaptation technologies are used
in MI EEG classification. In Section 3, we explain the pro-
posed SDDA framework in detail. The experiments and their
results are presented and discussed in Section4. In-depth
analysis and discussion are presented in Section 5. Section 6
discusses the benefits and limitations of the proposed SDDA
framework. Finally, conclusions are summarized in Section
7.

2. Related Works
Classical MI EEG classification process is generally

composed of manual feature extraction and classification
(Baig et al. (2020)). Common spatial pattern (CSP) and
its variants, such as filter bank CSP (FBCSP) (Ang et al.
(2008)), Composite CSP (CCSP) (Kang et al. (2009)) and
Stationary Subspace CSP (SSCSP) (Samek et al. (2013))
have played a vital role in feature extraction of motor im-
agery signals. The foundational CSP algorithm is a spa-
tial filter construction method tailored for two-class clas-
sification tasks, aiming to maximize inter-class variance
through the development of a common spatial filter. FBCSP
overcomes the single-frequency band limitation inherent in
CSP, while CCSP and SSCSP integrate transfer learning
techniques with CSP to enhance its feature extraction capa-
bilities for MI signals. In the literature, linear discriminant
analysis (LDA) and support vector machines (SVM) are the
most prevalent classifiers employed in tandem with spatially
filtered features to form a comprehensive MI-BCI decoding
system.

Since ConvNet (Schirrmeister et al. (2017)) proved that
the end-to-end neural network can achieve the similar results
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as FBCSP in decoding MI, some researchers have focused
MI decoding on the neural network (Lawhern et al. (2018),
Zhao et al. (2020), Craik et al. (2019)). Although researches
of computer vision and natural language processing provide
a solid foundation for MI decoding, the intrinsic properties
of EEG are fundamentally different from those of images and
texts. Research on ANN-based decoding methods for MI-
EEG can be broadly classified into two distinct directions.

1) CNNs
Finetuning CNN hyperparameters: Research in the field

of computer vision has demonstrated that convolution kernel
size and the number of convolution layers play crucial roles
in determining model performance. In the context of MI-BCI
applications, EEGNet (Lawhern et al. (2018)) and ConvNet
(Schirrmeister et al. (2017)) have been specifically designed
with time-spatial convolutional layers and fine-tuned net-
work hyperparameters to achieve optimal performance. The
architectures of both ConvNet and EEGNet are relatively
simple, eliminating the need for morphological conversion
or data augmentation of EEG signals. This streamlined
design contributes to the effectiveness and efficiency of these
networks in decoding EEG signals for various applications.

Fusion prior knowledge with CNN: Some studies suggest
that incorporating prior knowledge in the form of vari-
ous features, such as time-space or time-frequency char-
acteristics, from EEG signals might assist CNNs in cap-
turing higher-level EEG representations more effectively.
For example, Sakhavi et al. (2018) converted MI data into
a temporal representation inspired by FBCSP algorithm,
and designed specific neural network parameters for each
participant for further feature extraction and classification.
Mammone et al. (2020) transformed MI data into a series of
time-frequency maps using wavelet decomposition, and then
fed the data into a CNN network to classify motor intention.

Complex ANN network architecture: Some studies at-
tempt to extend the architecture of the basic convolutional
layers to enhance the performance of the network. For exam-
ple, Sun et al. (2020) proposed squeeze-and-excitation (SE)
blocks to adaptively recalibrate the channel-wise features,
enhancing the performance of CNN network in EEG clas-
sification. Amin et al. (2019) proposed a multi-scale CNN
algorithm which could improve the accuracy of EEG MI
classification by fusing the features extracted from different
layers of CNN with convolution kernel.

2) GANs
Generative adversarial networks (GANs) are able to

learn joint data distributions, which has revolutionized the
computer vision research field(Ganin et al. (2016), Salimans
et al. (2016), Arjovsky et al. (2017)). In MI classification,
Zhao et al. (2020) proposed an end-to-end network model
based on GAN, which successfully improved the classifica-
tion performance by using data from other participants in
the same dataset. Fahimi et al. (2020) proposed a generative
model based on deep convolutional generative adversarial
network (DCGAN), which generated artificial EEG signals

to increase the number of training data and subsequently
improved the performance of MI-EEG classification.

Deep domain adaptation is also a hot spot of com-
puter vision research. Deep features in CNN are generally
considered to be transitioning from general to specific in
the last layers of the network (Yosinski et al. (2014)), and
the classification layers which are tailored to specific tasks
are hard to transfer from the source domain to the target
domain directly. To keep features consistent between source
domain and target domain, Tzeng et al. (2014) introduced
MMD loss as the domain confusion loss to learn a domain
invariant representation. Long et al. (2017) introduced a
joint maximum mean discrepancy (JMMD) loss to align the
joint distributions of multiple domain-specific layers across
domains. Rozantsev et al. (2018) proposed a two-stream
architecture and the weights of the streams were related by
introducing the MMD loss.

ASeveral studies have been reported in the literature
concerning MI-EEG classification based on transfer learning
techniques. For example, Zhao et al. (2020) and Zhang et al.
(2021) both took the information from other participants into
the consideration to improve the classification performance
on a target participant. However, the distributions of MI-
EEG data can vary significantly across different partici-
pants (Allison and Neuper (2010)). In this reason, Zhao
et al. (2020) and Zhang et al. (2021) essentially solved
the problem of multi-source domain adaptation(Sun et al.
(2015)). Furthermore, EEG data is often scarce, while neural
network models typically require large amounts of data.
Consequently, increasing the volume of training data can
enhance the learning capabilities of these models. How-
ever, it remains unclear whether the improvements in model
performance are attributable to the increased amount of
data or the application of domain adaptation methods. In
addition, due to the ethical concerns surrounding EEG data,
leveraging data from other participants to assist in training
may be limited in applications that are particularly sensitive
to privacy issues.

In practical application scenarios, training data and test
data from the same participant are always acquired with
certain time intervals. Although there is evidence indirectly
pointing out that data distributions of the same participant
sampled with time intervals (cross-session) are not consis-
tent (Shenoy et al. (2006)), whether cross-session variability
in MI can be treated as a domain adaptation is still unclear.
In addition, clear technical implementation for achieving
domain adaptation in cross session MI EEG based BCI is
also missing.

3. Method
In this section, the mathematical notations and defini-

tions used in this paper are firstly introduced. Then the
domain adaptation theory and mathematical models are ap-
plied to the cross-session MI-EEG classification. The SDDA
framework is introduced from the perspective of reducing
the domain distribution bias and reduce generalization error
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of the source domain classifiers. Finally, from the perspec-
tive of backpropagation, the rationale analysis of the loss
function is presented.

3.1. Notations and Definitions
In this paper, the data recorded from training sessions are

noted as the source domain, 𝑠 = {𝐗𝑠,𝐘𝑠} =
{(

𝐱𝑠𝑖 , 𝑦
𝑠
𝑖
)}𝑛𝑠

𝑖=1
and the unlabeled test sessions are regarded as target domain,
𝑡 =

{

𝐗𝑡} =
{

𝐱𝑡𝑖
}𝑛𝑡
𝑖=1 , where 𝐱𝑠𝑖 ∈ ℝ𝐸×𝑇 denotes the

𝑖𝑡ℎ source trial data in total 𝑛𝑠 source data sampled from 𝐸
electrode channels and 𝑇 time samples during the available
MI duration in a trial and 𝑦𝑠𝑖 ∈ ℝ𝑐 denotes the corresponding
class of 𝐱𝑠𝑖 in total 𝐶 classes. Parallel notations are used for
unlabeled target data 𝐱𝑡𝑖.

Since we hypothesis cross-session MI classification as
a domain adaptation problem, the mathematical representa-
tion of generalization error is firstly derived under domain
adaptation theory.

Theorem 1. For a hypothesis h,

𝜖𝑡(ℎ) ≤ 𝜖𝑠(ℎ) + 𝑑1
(

𝑠,𝑡)+
min

{

E𝐷𝑠
[

|

|

𝑓 𝑠(𝐱) − 𝑓 𝑡(𝐱)|
|

]

,E𝐷𝑡
[

|

|

𝑓 𝑠(𝐱) − 𝑓 𝑡(𝐱)|
|

]}

where superscript ‘s’ and ‘t’ indicate the items from the
source domain and target domain, 𝜖𝑠(ℎ) is the source error,
that a model training in the labeled source domain might
seek to minimize. 𝑑1

(

𝑠,𝑡) is the 𝐿1 divergence between
𝑠 and 𝑡. 𝑓 (𝐱) is the labeling function of input 𝐱 . (Ben-
David et al. (2010))

It can be seen from Theorem 1 that the target error
depends on the source error, 𝐿1 divergence between the
source domain and target domain, as well as the performance
difference of labeling functions between the source domain
and target domain. However, Theorem 1 is cannot be di-
rectly used in practical scenarios, as 𝑑1

(

𝑠,𝑡) is too strict
and cannot be accurately estimated from finite samples of
domain distributions (Batu et al. (2000)). Due to the non-
stationarity and low signal-to-noise ratio characteristics of
EEG data, accurately measuring its distribution poses a great
challenge. Fortunately, domain adaptation can be performed
in feature representations under the framework of Vapnik-
Chervonenkis (VC) dimension (Vapnik et al. (1994)), even
with finite samples.

Theorem 2. Let  be a fixed representation function from
 to  and  be a hypothesis space of VC-dimension 𝑑. If
a random labeled sample of size 𝑚 is generated by applying
𝑅 to a 𝑠 𝑖.𝑖.𝑑 sample labeled according to 𝑓 , then with
probability at least 1 − 𝛿 , for every ℎ ∈ :

𝜖𝑡(ℎ) ≤ 𝜖𝑠(ℎ) +
√

4
𝑚

(

𝑑 log 2𝑒𝑚
𝑑

+ log 4
𝛿

)

+ 𝑑
(

̃𝑠, ̃𝑡) + 𝜆

where 𝑒 is the base of the natural logarithm, 𝜆 is a param-
eter which indicates the complexity of the labeling function
under the -distance. In other words, a small 𝜆 indicates

our induced labeling function performs well on both do-
mains.(Ben-David et al. (2007))

Noticed that, in the case of arbitrarily distribution of
finite data, it is difficult to accurately measure 𝑑 . Ben-
David et al. (2007) used -distance to measure the differ-
ence between the ̃𝑠 and ̃𝑡 , but it is still a NP-hard problem
even to approximate the error of the optimal hyperplane
classifier for arbitrary distributions (Kifer et al. (2004)).
For non-stationary EEG signals with low signal-to-noise
ratio, it is even more difficult to accurately express 𝑑 .
However, combining Theorem 1 and Theorem 2, domain
adaptation can be achieved by minimizing either the original
data distributions or the representation discrepancy. With a
pre-defined dataset, to reduce the error in target domain, the
error in source domain and the difference between the source
domain and the target domain should be minimized jointly.

In the context of MI decoding, most existing studies
assume that the data from the source and target domains
have the same distribution, overlooking the data distribution
differences caused by cross-session variability. Therefore,
these methods only focused on minimizing 𝜖𝑠(ℎ) or 𝜖𝑠(ℎ). To
this end, we fully considered the factors that affect 𝜖𝑡(ℎ), and
further investigated the impact of the distribution differences
in both the raw data and high-dimensional feature represen-
tations of the source and target domains on the cross-session
variability problem, while attempting to reduce 𝜖𝑠(ℎ).

The proposed SDDA framework is presented in Fig. 1,
which consists of two main branches with shared parameters,
one for each domain. Let𝚯 denote the parameters in Siamese
network, 𝚯1 denote the shared parameters of feature extrac-
tion layers. 𝐇𝑠 ∈ ℝ𝑏×𝐿 and 𝐇𝑡 ∈ ℝ𝑏×𝐿 denote embedding
features outputting from the feature extraction layers from
the source domain and target domain in a mini-batch. Here,
𝑏 indicates the mini-batch size, and 𝐿 is the length of the
embedding features, which also represents the size of inputs
to the classification layers.

The overall framework can be trained by minimizing the
following loss function.


(

𝚯 ∣ 𝐗𝑠,𝐘𝑠,𝐗𝑡) = s + 𝜆1𝑐 + 𝜆2𝑑 (1)
𝑠 = 𝑠 (𝚯 ∣ 𝐗𝑠,𝐘𝑠) (2)
𝑐 = 𝑐

(

𝚯1 ∣ 𝐗𝑠,𝐘𝑠) (3)
𝑑 = 𝑑

(

𝚯1 ∣ 𝐗𝑠,𝐗𝑡) (4)

where 𝑠, 𝑐 and 𝑑 represent the cross entropy loss,
cosine-based center loss and MMD loss, respectively. 𝜆1 and
𝜆2 are trade-off parameters to balance the contribution of 𝑐
and 𝑑 , respectively.

3.2. Domain discrepancy minimization
Given the low signal-to-noise ratio characteristic of EEG

data, preprocessing of source and target domain data is
essential before inputting it into an artificial neural network
for feature extraction and classification. To address this, we
propose an EEG data preprocessing method tailored for arti-
ficial neural networks, aiming to reduce domain distribution
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EEG

Domain
Invariants

Construction

Figure 1: Framework of the proposed Siamese deep domain adaptation (SDDA) network. The purple arrow indicates the training
process and the blue arrow indicates the testing process. SDDA is an universal framework, which is compatible to any neural
network with feature extraction layers and classification layers. Feature extraction layers and classification layers of ConvNet
(Schirrmeister et al. (2017)) can be embedded into the corresponding dotted line box in the figure to get ConvNet-based SDDA
framework, named DA-ConvNet below. "Preprocessing" in the figure includes channel normalization and Euclidean alignment in
3.2.1. MMD loss and cosine-based center loss are implemented by the method in 3.2.2 and 3.3, respectively. The cross entropy
loss is used for classification in equation (11).

differences. The proposed method initially normalizes the
data of trials in different domains using [-1, 1] normalization.
Subsequently, the average covariance matrix of the source
and target domains is adjusted through Euclidean alignment
(He and Wu (2019)).

3.2.1. Preprocessing
1) Trial normalization
Let 𝐱𝑖 denote the 𝑖-th EEG trial, and each trial’s amplitude is
normalized to the range [-1, 1] using the following equation:

𝐱𝑖 =
𝐱𝑖

max
(

|

|

𝐱𝑖||
) (5)

where 𝐱𝑖 denotes the 𝑖th trial of 𝐗 for both source domain
and target domain, |⋅| denotes taking the absolute value of
the matrix.

2) Euclidean Alignment
Following trial-wise normalization, Euclidean alignment
(He and Wu (2019)) was applied by calculating the mean
covariance matrix for each domain. Originally employed
in a cross-participant motor imagery classification scenario
to obtain more robust CSP filters, the Euclidean alignment
method has been adapted in this work as an integral com-
ponent of the SDDA framework for MI-EEG cross-session
classification. Assuming a domain consists of 𝑛 trials, the
arithmetic means of all covariance matrices, calculated using
EEG data from the same domain, are determined as follows:

�̄� = 1
𝑛

𝑛
∑

𝑖=1
𝐱𝑖𝐱𝑇𝑖 (6)

Therefore, Euclidean alignment can be performed as:

�̃�𝑖 = �̄�− 1
2 𝐱𝑖 (7)

It should be noted that the domain adaptive EEG data
pre-processing method proposed in this study is not limited
by decoding methods and can be integrated into any manual
feature extraction or artificial neural network methods.

3.2.2. Reproducing Kernel Hilbert Space Alignment
Since some studies (Gretton et al. (2012), Long et al.

(2017), Tzeng et al. (2014)) had demonstrated the effective-
ness of MMD in adjusting domain distributions, MMD loss
was also used as a regularization term to reduce the high-
dimensional feature discrepancies between source and target
domains in SDDA framework.

Assuming the mapping function in MMD is a unit ball
in Reproducing Kernel Hilbert space (RKHS) 𝑘 (Rosipal
and Trejo (2001)), the MMD loss is defined as:

𝑑2𝑘(𝑝, 𝑞) ≜
‖

‖

‖

𝐄𝑝
[

𝜙 (𝐗𝑠)
]

− 𝐄𝑞
[

𝜙
(

𝐗𝑡)]‖
‖

‖

2

𝑘
(8)

where 𝐄𝑝 and 𝐄𝑞 represent the mean embedding of probabil-
ity distribution 𝑝 and 𝑞. 𝜙 (𝐗) represents the feature mapping
of a domain. The most important property for MMD loss is
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that 𝑝 = 𝑞 if 𝑑2𝑘(𝑝, 𝑞) = 0, which is exactly the property we
expect in Theorem 2.

In this paper, Gaussian kernel was used to map the
features into a unit ball in a universal RKHS.

3.3. Learning Discriminative features
Based on previous literature (Wen et al. (2016)), it has

been shown that the center loss can effectively reduce the
Euclidean distance between learned features and their cor-
responding class centers, thereby encouraging samples from
the same class to cluster closely in the embedding feature
space. However, Euclidean distance methods are generally
considered vulnerable to noises and outlier samples (Wang
et al. (2018)), which are very common in EEG due to its non-
stationary and low signal-to-noise ratio character. To solve
this issue, cosine-based center loss was proposed, which
transformed the Euclidean distance measure into cosine
based distance. The cosine-based center loss is calculated
as:

𝑐 =
1
2𝑏

𝑏
∑

𝑖=1

‖

‖

‖

�̄�𝑠𝑖 − �̄�𝑦𝑗
‖

‖

‖

2

2
,

where, �̄�𝑠𝑖 =
𝐡𝑠𝑖

‖

‖

‖

𝐡𝑠𝑖
‖

‖

‖2

�̄�𝑦𝑗 =
𝐜𝑦𝑗

‖

‖

‖

𝐜𝑦𝑗
‖

‖

‖2

(9)

In equation 9, 𝐡𝑠𝑖 denotes the embedding features of the
𝑖𝑡ℎ sample in the source domain, 𝐜𝑦𝑗 denotes the center
of the 𝑗𝑡ℎ label of the embedding features in the source
domain, 𝑏 denotes the mini-batch size, and ‖⋅‖2 represents
the Euclidean norm.

By adding the constraints, equation (9) can be expressed
as follows:
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(10)

According to Equation (10), the distance between the em-
bedding features and their corresponding center is measured
by a cosine function. 𝑐 is inherently bounded between [0,
2]. That means if the embedding features are close to the
corresponding center, the cosine value will be close to 1,
making𝑐 close to 0. However, if the embedding features are
far from the corresponding center, 𝑐 demonstrates a limited
response, which restricts the maximum impact of the outlier
data.

3.4. Training
Cross entropy loss (Zhang and Sabuncu (2018)) was

used for classification:

𝑠 = −
𝑏
∑

𝑖=1
log 𝑒𝑊

𝑇
𝑦𝑖
𝐡𝑖+𝑏𝑦𝑖

∑𝑛
𝑗=1 𝑒

𝑊 𝑇
𝑗 𝐡𝑖+𝑏𝑗

(11)

where 𝑛 represents the number of motor imagery classes.
Then the network can be trained by minimizing the

Equation (1). 𝑠, 𝑐 and 𝑑 in equation (1) are all differen-
tiable𝑤.𝑟.𝑡. the inputs of the network. Therefore, the network
parameters can be updated by the standard backpropagation.

𝚯𝑙+1 = 𝚯𝑙 − 𝜂
𝜕
(

𝑠 + 𝜆1𝑐 + 𝜆2𝑑
)

𝜕𝐱𝐢
(12)

where 𝜂 is the learning rate to update the network parameters
and 𝑙 is the number of epochs during training iterations. All
three losses above are implemented via the mini-batch strat-
egy.The global class center has its own parameters which
update simultaneously with the network parameters in each
training step.

𝐜𝑙+1𝑗 = 𝐜𝑙𝑗 − 𝛾 ⋅ Δ𝐜𝑙𝑗 𝑗 = 1, 2,⋯ , 𝑐 (13)

where 𝛾 is the learning rate to update the parameters of center
loss.

4. Experiments
In the following section, we evaluate the performance of

the proposed framework through experiments conducted on
two publicly available MI EEG datasets: dataset IIA (four-
class MI) and dataset IIB (binary class MI with sparse chan-
nels) from BCI Competition IV (Tangermann et al., 2012).
We selected two popular CNN architectures for EEG appli-
cations, namely EEGNet (Lawhern et al. (2018)) and Con-
vNet (Schirrmeister et al. (2017)), to verify the performance
of the proposed framework. Furthermore, we compare the
performance of the proposed domain adaptation framework
(SDDA) with that of the tested baseline CNN models and
several representative methods to provide a comprehensive
assessment of its efficacy.

4.1. Datasets
4.1.1. BCI Competition IV Dataset IIA

In IIA dataset1, EEG was collected from a twenty-two
channel EEG with 10-20 configuration at a sampling rate
of 250 Hz from nine healthy participants (ID A01-A09) in
two different sessions with multiple days’ interval. Each par-
ticipant participated in four motor imagery tasks, including
imagining the movement of left hand, right hand, both feet
and tongue. Each session contained 288 trials of EEG data
and all data collected in the first acquisition session were
used for training (source domain) and those acquired in the
second session were used for testing (target domain). Ac-
cording to ConvNet (Schirrmeister et al. (2017)), temporal
segmentation of [1.5, 6] seconds after each MI cue was
extracted as one trial of EEG data.

1http://www.bbci.de/competition/iv/#dataset2a
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4.1.2. BCI Competition IV Dataset IIB
In IIB dataset2, EEG was collected with a three EEG

electrode channels sampled at 250 Hz from nine healthy par-
ticipants (ID B01-B09) in five separate acquisition sessions
with multiple days’ interval. Each participant participated in
two motor imagery tasks, including imagining the movement
of left hand and right hand. The first two sessions contained
120 trials per session without feedback and the last three
sessions contained 160 trials per session with a smiley face
on the screen as feedback. As described in Zhao et al. (2020),
all data in the first three sessions were used for training
(source domain) and the last two sessions were used for test
(target domain). Temporal segmentation of [2, 5] seconds
after MI cue was extracted as one trial of EEG data in our
experiment.

4.2. Filtering and Network hyperparameters
In this paper, a 200-order Blackman window bandpass

FIR filter with a [4, 38] Hz range was employed to fil-
ter the EEG data. Given that EEGNet and ConvNet have
been extensively researched in this area, both models were
selected as the baseline networks, with their classification
performance on datasets IIA and IIB serving as the bench-
marks for this study. The detailed network architecture and
parameters of ConvNet and EEGNet are presented in Table
1 and Table 2, respectively. Subsequently, EEGNet and
ConvNet were trained in conjunction with the proposed
SDDA framework, and their classification performance was
reported to illustrate the rationale and feasibility of domain
adaptation in cross-session MI EEG classification. To ensure
a fair comparison, preprocessing, network hyperparameters,
and training strategies were maintained consistent with the
original baseline networks. The optimal performance of
different networks was recorded to minimize the influence
of random factors. Moreover, we conducted all experiments
five times and reported the mean accuracy to further reduce
randomness. Our baseline classification results for vanilla
ConvNet on the two datasets were consistent with those
reported by Zhao et al. (2020). However, our results for
vanilla EEGNet varied significantly, which may be attributed
to changes in the EEGNet architecture across different pub-
lication versions. In this paper, we adopted the network
architecture of EEGNet as published by its authors on Github
3.

The detailed network configuration and hyperparameters
are shown in Table 1 and Table 2. To the left of the slashes
in the tables are the amount of parameters of the network in
the IIA dataset, and to the right are the amount in the IIB
dataset.

4.3. Experiment Settings
All the experiments were conducted under the Pytorch

framework on a PC with an Intel(R) Xeon(R) Gold 5117
CPU @ 2.00 GHz and Nvidia Tesla V100 GPU. For the

2http://www.bbci.de/competition/iv/#dataset2b
3https://github.com/vlawhern/arl-eegmodels

Table 1
Model Parameters of ConvNet

Modules Layers Parameters Num of param

Feature

Extractor

Temporal Conv (1, 25), 40 1040
Spatial Conv (E, 1), 40 35200/4800
BatchNorm - 80

Square - -
Average Pooling (1, 75),15 -

Logarithm - -
Dropout p=0.5 -

Classifier Conv2d (1, N), C 11044/4162
Total - - 47364/10082

Table 2
Model Parameters of EEGNet

Modules Layers Parameters Num of Param

Feature

Extractor

Temporal Conv (1, 64), 8 512
BatchNorm - 16

Depthwise Conv (E, 1), 8 176/24
BatchNorm - 16/
ELU Action - -

Average Pooling (1, 4) -
Dropout p=0.5 -

Separable Conv (1, 16), 16 272/128
BatchNorm - 32
ELU Action - -

Average Pooling (1, 8) -
Dropout p=0.5 -

Classifier Fully Connected C 1988/738
Total - - 3012/1610

above two datasets, all EEG channels were used for classifi-
cation, and the three electrooculography channels were not
included in the analysis.

AdamW (Loshchilov and Hutter (2018)) was used as
the optimizer to train the proposed SDDA framework. The
learning rates were set to 0.0001 for ConvNet and 0.001 for
EEGNet. The networks were trained with mini-batches with
size of 16. The trade-off parameters were grid-searched with
𝜆1 from {0, 0.2, 1, 2, 10, 15} and 𝜆2 from {0, 0.02, 0.05,
0.1, 0.2, 0.5} for each participant. The training strategies
were the same with those in ConvNet (Schirrmeister et al.
(2017)). In the first training stage, the data in the source
domain were randomly sampled 20% as validation data to
monitor the training process to avoid overfitting. And in the
second training stage, all the data in the source domain were
used for training.

In addition to the vanilla EEGNet and vanilla ConvNet,
the SDDA framework were also compared with a variety
of successful methods in the literature. FBCSP (Ang et al.
(2008)), CCSP (Kang et al. (2009)) and SSCSP (Samek et al.
(2013)) are considered as traditional feature extraction meth-
ods based on spatial patterns. DRDA (Zhao et al. (2020)) is
a GAN-based ANN method. The Kappa value (𝜅) (Cohen
(1960)) was used as accuracy measure in this study, which
is calculated as:

𝜅 =
𝑎𝑐𝑐 − 𝑝0
1 − 𝑝0

(14)
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Table 3
Classification Accuracy (%) of Different Algorithms on Dataset IIA of BCI Competition IV

Participant IDMethod A01 A02 A03 A04 A05 A06 A07 A08 A09
Average acc

(kappa)
FBCSP 76.00 56.50 81.25 61.00 55.00 45.25 82.75 81.25 70.75 67.75(0.570)
#CCSP 84.72 52.78 80.90 59.38 54.51 49.31 88.54 71.88 56.60 66.51(0.553)
#SSCSP 76.74 58.68 81.25 57.64 38.54 48.26 76.39 79.17 78.82 66.17(0.548)

VA-EEGNet 75.34 51.04 88.54 57.29 46.52 50.34 83.68 80.55 87.15 68.94(0.585)
VA-ConvNet 82.29 57.63 92.70 81.94 55.2 44.44 89.93 83.33 82.29 74.41(0.633)

#DRDA 83.19 55.14 87.43 75.28 62.29 57.15 86.18 83.61 82.00 74.75(0.663)
*DA-ConvNet(ours) 90.62 62.84 93.40 84.02 68.05 61.80 97.20 90.97 89.23 82.01(0.760)
*DA-EEGNet(ours) 88.54 69.09 97.22 72.20 57.98 59.72 93.06 86.80 90.27 79.43(0.725)

White, light grey and dark shade indicate CSP-based methods, ConvNet-based method and EEGNet-based method, respectively.
Methods with ”#” adjust the data distribution among participants. Methods with “*” adjust the data distribution within the
same participants

Table 4
Classification Accuracy (%) of Different Algorithms on Dataset IIB of BCI Competition IV

Participant IDMethod B01 B02 B03 B04 B05 B06 B07 B08 B09
Average acc

(kappa)
FBCSP 70.00 60.36 60.94 97.50 93.12 80.63 78.13 92.50 87.88 80.00(0.600)
#CCSP 63.75 56.79 50.00 93.44 65.63 81.25 72.81 87.81 82.81 72.70(0.454)
#SSCSP 65.00 56.79 54.06 95.63 74.69 79.06 80.00 87.81 82.81 75.09(0.501)

VA-EEGNet 77.50 61.07 63.12 98.43 96.56 83.75 84.37 92.81 88.43 82.93(0.658)
VA-ConvNet 74.37 56.07 57.5 97.5 95.31 82.18 79.68 87.5 86.56 79.63(0.592)

#DRDA 81.37 62.86 63.63 95.94 93.56 88.19 85.00 95.25 90.00 83.98(0.679)
*DA-ConvNet(ours) 82.18 60.00 59.68 98.12 92.81 89.68 84.06 91.87 88.43 82.98(0.659)
*DA-EEGNet(ours) 85.00 66.78 73.43 98.75 95.93 90.62 88.75 96.25 92.18 87.52(0.750)
White, light grey and dark shade indicate CSP-based methods, ConvNet-based method and EEGNet-based method, respectively.
Methods with ”#” adjust the data distribution among participants. Methods with “*” adjust the data distribution within the
same participants

where 𝑎𝑐𝑐 is the standard accuracy, and 𝑝0 is the random
level accuracy.

4.4. Experiment Results Analyses
We conducted experiments on the aforementioned two

datasets and compared our methods with several representa-
tive methods, particularly those based on transfer learning
techniques. The performance of different algorithms was
first evaluated in the IIA dataset. The accuracy of each par-
ticipant and the average accuracy of all participants (Kappa
value) are shown in Table 3. The EEGNet and ConvNet
architectures with the SDDA framework were referred to
as DA-EEGNet and DA-ConvNet, respectively. The two
highest accuracy rates of each participant were displayed
in bold to highlight experimental results. The items with
white background in Table 3 were results from CSP-based
algorithms. Light gray background rows were results from
ConvNet which were generated using the same feature ex-
tractor and classifier network architecture as presented in
Schirrmeister et al. (2017). Results from EEGNet and its
corresponding domain adaptation method were marked with
the dark gray background and referred to as EEGNet-based
algorithms in the context. Algorithms with “#” used EEG
data from other participants in the dataset to help MI EEG
classification of the target participant. And algorithms with
“*” only exploited EEG data from the same participant

recorded in different data acquisition sessions. Specifically,
DRDA adjusted the distribution by generative adversarial
network.

FBCSP is a classic MI-EEG decoding algorithm , and
it was the winner of the competition for this dataset. Since
the classification accuracy (average accuracy <60%) of the
CSP algorithm in this dataset is far lower than FBCSP,
by adjusting the data distribution of different participants,
CCSP and SSCSP achieve decoding capability similar to
FBCSP. ConvNet and EEGNet related algorithms outper-
form FBCSP in classification accuracy at the expense of high
computation cost. It is clear that compared to the vanilla
network, DA-ConvNet and DA-EEGNet greatly improve
accuracy in all participants, and DA-ConvNet achieveds the
highest average accuracy. DADR is a representative work in
the same training and testing semantics, which improved the
classification performance by utilizing the useful informa-
tion from other participants. The classification performance
of DADR in this dataset exceeds a series of algorithms,
such as C2CM(Sakhavi et al. (2018)), MI-CNN(Dose et al.
(2018)), SSMM(Zheng et al. (2018)). As can be seen from
Table 3, DA-EEGNet and DA-ConvNet surpass DADR in
classification accuracy in most participants. We found that
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feature extraction layers for VA-ConvNet, DADR and DA-
ConvNet had a high degree of similarity. However, DA-
ConvNet has more advantages in classification performance
than VA-ConvNet and DADR, demonstrating the effective-
ness of SDDA framework in MI-EEG classification. Com-
pared with VA-ConvNet, DADR has limited improvement
in classification performance, which may be due to the large
difference in data distribution among different participants,
so that the feature extraction process is limited. By compar-
ing the results from VA-EEGNet and DA-EEGNet in Table
3, the SDDA framework greatly improves EEGNet’s classi-
fication performance, indicating that the SDDA framework
has no dependence on the network architecture.

To further investigate the effectiveness of the proposed
SDDA framework, we evaluated the performance of the
proposed algorithms in the IIB dataset. We used the same
algorithms in Table 3 to demonstrate the generalization of
different algorithms. The experimental results are shown
in Table 4. The decoding algorithms of manually extracted
features FBCSP, SSCSP, and SSCSP show a relatively stable
decoding ability in IIB dataset. Among them, the classifica-
tion performance of FBCSP even surpasses VA-ConvNet.
This shows that the classification performance of VA-
ConvNet is limited with only three EEG channels. However,
DADR, which has the similar feature extraction layers to VA-
ConvNet, has better classification performance in IIB dataset
than VA-ConvNet due to the introduction of information
from other participants. By employing domain adaptation
techniques, DA-ConvNet can enhance the classification
performance of VA-ConvNet. However, given the limited
spatial representation capacity of EEG signals captured by
merely three channels, discriminating EEG signals poses
a significant challenge. Consequently, incorporating EEG
data from other participants with shared hidden information
proves advantageous in augmenting the model generation
process. However, comparing VA-ConvNet, DADR, DA-
ConvNet, VA-EEGNet and DA-EEGNet, we find that the
architecture of the feature extraction network has a great
influence on the classification accuracy. This is consistent
with the conclusion in IIA. EEGNet related algorithms
obtains better classification performance than ConvNet re-
lated algorithms in IIB, while the opposite performance is
observed in IIA. As illustrated in Table 1, the number of
parameters in the ConvNet-based network is considerably
greater than that in the EEGNet-based network. Given that
only three recording channels capture a limited amount of
essential motor imagery information, training a network with
more parameters becomes challenging. However, despite
the differences in network architecture, the classification
performance is enhanced for nearly all participants with the
assistance of the SDDA framework, which underscores its
effectiveness.

5. Analysis
In this section, we firstly performed effectiveness anal-

ysis on the main components from the proposed SDDA
method to quantitively evaluate the contributions from each

part of the framework. Then the convergence analysis based
on the test results generated from the model training pro-
cess was also presented to further investigate the robustness
of the SDDA framework. Preliminary investigation on the
distribution of high-dimensional features extracted by VA-
EEGNet and DA-EEGNet in the two tested datasets were
presented through feature visualization. At the end of this
section, the sensitivity and generalizability were discussed
by investigating the optimal trade-off hyperparameters for
different participants to discuss the generalizability and sta-
bility of the proposed framework.

5.1. Effectiveness Analysis
Detailed analysis of the proposed SDDA framework was

conducted to further investigate the influence of the pre-
processing method, MMD loss, and cosine-based center loss
on different participants in detail. All the experiments in this
section were repeated five times and the average values were
reported to minimize the influence from random results. In
this sub-section, an accretion analysis of the pre-processing
method, cosine-based center loss on vanilla networks were
firstly conducted to evaluate the individual effect of the main
components of the SDDA network. Then, ablation analysis
of the SDDA framework was conducted by removing these
components individually from the framework to evaluate the
contribution of each component in the complete framework.

5.1.1. Accretion Analysis on Vanilla Network

In this subsection, we examined the impact of the three
main components of the proposed SDDA by sequentially in-
corporating the designated preprocessing method, the center
loss component, and the RHKS MMD loss into the vanilla
network.

Preprocessing method for vanilla networks
We replaced the original pre-processing method in vanilla

networks with the processing method in the SDDA frame-
work, which was referred to as VA c. Pre in Fig. 2. By intro-
ducing the proposed pre-processing method to the vanilla
network, the average accuracy of ConvNet (VA-ConvNet
c. Pre) reached 77.39% in IIA dataset and 80.92% in IIB
dataset, with 2.98% and 1.29% increase in the accuracy
compared to the VA-ConvNet, respectively. The average
accuracy of EEGNet (VA-EEGNet c. Pre) reached 72.10% in
IIA and 85.1% in IIB datasets with 3.16% and 2.17% increase
in the accuracy compared to the VA-EEGNet, respectively.

It can be seen from Fig. 2 that compared with the
original pre-processing methods in the vanilla network, the
pre-processing methods mentioned in this paper show better
results in both datasets on most participants. The improve-
ments are more prominent in participants with BCI illiteracy
(A05, A06, B02). The pre-processing methods in the SDDA
manage to effectively suppress noise and artifacts, and sub-
sequently improve the signal quality, which is more effective
for participants with poor BCI performance.

Cosine-based center loss for vanilla networks
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Figure 2: Summary of effective analysis results. VA c. Pre means vanilla network with proposed pre-processing methods. VA w.
Center means vanilla network with cosine-based center loss. DA w.o. Center means SDDA framework without MMD loss. DA
w.o. Center means SDDA framework without cosine-based center loss.

The effect of cosine-based center loss in vanilla networks
(referred to as VA w. center in Fig. 2) was quantitively
analyzed in this sub-section. For a fair comparison, the trade-
off hyperparameter lambda in the cosine-based center loss
was also searched from {0, 0.2, 1, 2, 10, 15} and the best
classification results were reported for each participant.

By including the cosine-base center loss into the loss
function of the vanilla networks, the average accuracy of
ConvNet(VA-ConvNet w. center) reached 75.46% in IIA
dataset and 80.86% in IIB dataset with 1.05% and 1.23%
increase in the accuracy compared to the VA-ConvNet,
respectively, while the average accuracy of EEGNet (VA-
EEGNet w. center) reached 74.30% and 83.84% in IIA and
IIB datasets with 5.36% and 0.91% increase in the accuracy
compared to the VA-EEGNet, respectively.

As shown in Fig.2, the cosine-based center loss is able
to improve the performance of both vanilla networks. For
participants with good results using the vanilla network
(A01, A07, A08, A09, B06, B09), the improvement of these
participants with cosine-based center loss is more effec-
tive. Differently from the pre-processing method, cosine-
based center loss works effectively as a strong regulariza-
tion method, which constrains the impact of the intra-class
feature discrepancies in a limited range, and thus suppresses

the outliers in both domains. Such characteristic of cosine-
based center loss can work complementarily with the pre-
processing method in the previous section.

It is worth noticing that, when using Euclidean distance
as center loss instead of the cosine-based center loss, the
model convergence and classification performance are sig-
nificantly lower compared to the vanilla model according to
our preliminary results (>20% decrease in accuracy, some
models even failed to converge). Therefore, results with
center loss using Euclidean distance are not included in
this paper. This further illustrates the superiority of the
cosine-based center loss proposed in this paper. A proper
representation is really important for MI-EEG classification
when using domain adaptation technics.

MMD loss for vanilla networks
By adopting Siamese structure in the vanilla network,

the features were mapped into the RHKS and regularized
with a MMD loss, which was referred as VA w. MMD in
the Fig. 2. The average accuracy of ConvNet (VA-ConvNet
w. MMD) reached 78.04% in IIA and 80.95% in IIB, with
3.63% and 1.32% increase in the accuracy compared to the
VA-ConvNet, respectively. The average accuracy of EEGNet
(VA-EEGNet w. MMD) reached 73.98% in IIA and 83.32%
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in IIB with 5.04% and 0.38% increase in the accuracy
compared to the VA-EEGNet, respectively.

The results are summarized in Fig. 2, which suggest
the improvements are more prominent in participants with
BCI illiteracy (A05, A06, B02). Combining the results from
VA w. MMD and VA c. Pre, it is interesting to see that,
despite the alignment on different level (raw data distribution
vs embedding features distribution), participants with poor
BCI performance can always benefit from the alignment
process. These results strongly demonstrate that the domain
adaptation methods for MI EEG classification are effective.

5.1.2. Ablation Analysis on SDDA Framework
Ablation analysis was performed for further investiga-

tion of the three main components in the SDDA framework.
The pre-processing method, cosine-based center loss and the
RHKS MMD loss were removed in turn to quantitatively
investigate the contribution of each main component in the
proposed SDDA framework.

Preprocessing method in SDDA
In this part of the ablation analysis, the pre-processing

method in SDDA framework was substituted by the pre-
processing method mentioned in ConvNet (Schirrmeister
et al. (2017)) (referred to as DA w.o. Pre in Fig 2). The aver-
age accuracy of ConvNet in IIA dataset reached 80.86% and
81.44% in the IIB dataset, with 1.22% and 1.54% decrease
in the accuracy compared to the ConvNet-based SDDA. The
average accuracy of EEGNet in IIA reached 76.08% and
85.06% in IIB dataset, with 3.54% and 2.46% decrease in
the accuracy compared to the EEGNet-based SDDA.

As shown in Fig. 2, pre-processing method in SDDA
poses a more prominent impact in models generated from
IIB dataset than that from IIA. Given that there are only three
recording channels in the IIB dataset, the signal-to-noise
ratio of the data in IIB is remarkably lower than the data in
IIA. The results demonstrate the pre-processing method in
SDDA indeed constructs useful features which improve MI
classification.

Cosine-based center loss in SDDA
To quantify the effect of cosine-based center loss in

SDDA, we set 𝜆1 in Equation (1) to zero and searched
𝜆2 from {0, 0.02, 0.05, 0.1, 0.2, 0.5}. The best classifica-
tion results were presented for each participant in Fig. 2,
which were referred to as DA w.o. center. By removing
the cosine-based center loss in the SDDA framework, the
average accuracy of ConvNet reached 80.55% in IIA and
82.45% in IIB dataset, with 1.51% and 0.53% decrease in
the accuracy compared to the complete SDDA framework.
The average accuracy of EEGNet reached 76.30% in IIA and
85.94% in IIB, respectively, which decreased by 3.36% in
IIA and 1.58% in IIB compared to the EEGNet-based SSDA
framework in the accuracy.

It can be seen from Fig. 2 that after removing the cosine-
based center loss, the accuracy of almost every participant is
lower than that of SDDA, which shows that it is reasonable

to use the cosine-based center loss as a regularization term
in the training process.

MMD loss in SDDA
In this part of the ablation analysis, MMD loss was

removed from the SDDA framework, 𝜆2 in Equation (1) was
set to 0 and 𝜆1 was searched from {0, 0.2, 1, 2, 10, 15}.
The highest classification results were presented for each
participant in Fig. 2, which were noted as DA w.o. MMD.
As shown in Fig. 2, the average accuracy of ConvNet (VA-
ConvNet Pre+center) in the IIA dataset reached 79.16% and
82.28% in the IIB dataset, with 2.84% and 0.70% decrease in
the accuracy, compared to the complete SDDA framework
respectively. While the average accuracy of EEGNet (VA-
EEGNet Pre+center) reached 77.27% in IIA and 86.66% in
IIB dataset, with 2.39% and 0.86% decrease in the accuracy,
compared to the the complete SDDA framework respec-
tively. Different from the results generated by only adding
cosine-based center loss in Section 5.1.1, the accuracy of
VA Pre+center in most participants in both datasets gained
major improvements, especially for the participants in IIB
dataset. The classification accuracy for all participants in
these two datasets was improved with such configuration,
which demonstrated the validity of domain adaptation for
adjusting MI cross-session classification

In summary, the complete SDDA exhibited great effi-
cacy and integrity as a universal plug-and play framework
compatible for various artificial neural networks. The exper-
imental results in this section were consistent with Theorem
2, which demonstrated the necessity of minimizing error
in the source domain as well as distribution discrepancy
between source and target domain, in order to achieve good
classification performance in both source and target domain.
This is also consistent with the architecture and effective
analysis results of SDDA framework, which further supports
the rationale of integrating domain adaptation technologies
to solve the cross-session MI-EEG classification problem.

5.2. Model training profile
In this subsection, we recorded the fluctuation of various

neural network models during the training process, using
testing accuracy as the metric. Two participants, A07 and
B01, one from each dataset, were selected to showcase
the difference in the training process between the SDDA
framework and vanilla networks, as they demonstrated the
most significant improvement in classification performance
compared to the vanilla networks. All models were set to run
500 epochs in the first training stage and 300 epochs in the
second training stage.

The training profiles of the proposed SDDA frame-
work are depicted in Fig. 3 to illustrate the stability of the
proposed method during training. As seen in Fig. 3, the
SDDA framework displays reduced fluctuations in test accu-
racy as training epochs increase compared to vanilla neural
networks throughout the model generation process. These
findings align with the earlier results from the effectiveness
analysis, which suggest that our proposed SDDA framework
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Figure 3: Relationship between training epochs and testing
accuracy of different models of IIA and IIB datasets. DA refers
to networks which were trained with SDDA framework. VA
refers to networks which were trained with vanilla network.

has less training fluctuation and enhance the vanilla net-
works’ resilience against noise and outliers, even during the
model generation process. Interestingly, when incorporating
additional training data into the last 300 epochs, the test
accuracy increases immediately. DA-ConvNet appears to
benefit significantly from this process, while DA-EEGNet
is less sensitive to the extra data. This observation is also
consistent with our results from the effectiveness analysis,
where ConvNet, with a higher number of parameters, was
more "data-hungry" compared to EEGNet. SDDA intro-
duces appropriate regularization during training, compelling
the vanilla network to learn more valuable information with
the same number of training samples. Furthermore, as seen
in Fig. 3, the convergence curve of SDDA exhibits fewer
fluctuations than the vanilla network, indicating enhanced
robustness against noise.

5.3. Feature Visualization
T-SNE (Van der Maaten and Hinton (2008)) was further

utilized to investigate the embedding features of both vanilla
networks and the proposed SDDA framework. Embedding
features from DA-EEGNet were visualized from two dif-
ferent participants (A03, B06), whose model performance
improved the most under EEGNet-based SDDA framework.

The visualization results are shown in Fig. 4. According
to the visualization results, the feature distribution from
SDDA is more discriminative than that of the vanilla net-
work, which is consistent with the results presented in Table
3 and Table 4. Generally, higher classification accuracy is
associated with more separable feature distributions after t-
SNE dimensionality reduction.

5.4. Trade-off Parameters Sensitivity
The loss function of the proposed SDDA framework

in equation (1) consists of three terms, 𝑠 , 𝑐 , and 𝑑 .
Different weights of different losses will influence the classi-
fication results. As stated in equation (1), larger 𝜆1 indicates
a greater contribution of the cosine-based center loss to the
total loss, while the larger 𝜆2 indicates greater contribution
of MMD loss to the total loss, and vice versa. For example,
when all participants use 𝜆1 = 10, 𝜆2 = 0.01 as trade-off

Figure 4: Visualization of embedding feature by t-SNE. (a)
Left column shows the feature distribution of vanilla EEGNet.
(b) Right column shows the feature distribution of SDDA with
EEGNet.

parameters, the optimal average accuracy of DA-ConvNet
and DA-EEGNet in IIA reached 79.55% and 74.84%, re-
spectively. When 𝜆1 = 15, 𝜆2 = 0.01 the optimal average
accuracy of DA-ConvNet and DA-EEGNet in IIB reach
81.78% and 86.11%. The weight of cosine-based center loss
is not as sensitive as that of the MMD loss, as the cosine
function constrained the function outputs between [0, 1].
These results also confirm that the cosine-based center loss
itself has very good robustness in MI EEG classification.

A relatively small list of trade-off parameters (6 × 6
matrix) was grid-searched and optimal trade-off parameters
of different participants from both datasets were presented.

As shown in Fig. 5, optimal trade-off parameters are
slightly different. Among them, the trade-off parameters in
the IIB dataset show less centralized distribution compared
to that of IIA, which indirectly indicates that the data distri-
bution of different participants in this dataset is quite differ-
ent. In addition, it is interesting to see that participants with
high MI-EEG performance share similar trade-off parame-
ters (especially 𝜆1 = 0.01, 𝜆2 = 0.2 or 1 or 10 or 15). These
results are clear evidence for our prior hypothesis about
negative transfer on the cross-participant MI classification
that use all participants’ data in the model generation. Par-
ticipants with large data distribution discrepancy (far away
from the clusters in Fig. 5.) will cause negative transfer and
pose negative effects on model performance. This might also
be the reason why our SDDA framework demonstrates better
performance than the GAN-based methods in the literature,
even though our SDDA framework uses much less data in
the model training process.
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DA-EEGNet IIB
DA-EEGNet IIA

DA-ConvNet IIB
DA-ConvNet IIA

Figure 5: Best Trade-off parameters of SDDA for different
participants. 𝜆1 and 𝜆2 represent the weight of the cosine-based
center loss and MMD loss, respectively. Each block indicates
one set of optimal trade-off parameter for one participant in
the corresponding dataset.

6. Benefits and limitations
6.1. Benefits

The proposed SDDA framework offers three advantages,
including:

1. The SDDA framework is a transferable deep domain
adaptation framework that can be applied to any con-
volutional neural network suitable for decoding motor
imagery, thereby enhancing the classification perfor-
mance of the vanilla network.

2. By preprocessing and constructing loss functions, the
SDDA framework addresses the problem of motor
imagery signal drifting over time. It accomplishes this
without introducing additional parameters, making it
friendly to EEG signals with a small amount of data.

3. The SDDA framework improves the decoding accu-
racy of the target participant without relying on the
data of other participants, safeguarding the rights of
EEG participants.

6.2. limitations
It is noted that the proposed SDDA framework has the

following limitations.

1. The SDDA framework is a generic network architec-
ture that only enhances the performance of the vanilla
network, and the classification results depend on the
design of the vanilla network.

2. In a real online system, the EEG data of the target
domain may be generated sequentially, which presents
a challenge to the measurement of the target domain
distribution.

3. The hyperparameters 𝜆1 and 𝜆2 may need to be read-
justed when decoding data from other MI datasets.

7. Conclusion
In this paper, we presented an SDDA framework for

cross-session MI classification, designed to seamlessly inte-
grate with most existing ANNs without necessitating alter-
ations to the original network architecture. We incorporated
a novel pre-processing method aimed at constructing domain
invariants based on prior knowledge. Embedding features for
both source and target domains were aligned in the RKHS
using MMD loss. Additionally, a cosine-based center loss
was included in the framework to enhance the generaliz-
ability and robustness of the classifiers. The proposed deep
domain adaptation framework was rigorously validated on
two publicly available MI-EEG datasets using two classic
and widely-employed EEG classification CNN architectures.
Our SDDA framework not only substantially improved the
performance of the vanilla network but also surpassed rep-
resentative transfer learning-based methods.

Furthermore, the SDDA framework lays the groundwork
for addressing cross-session MI classification challenges
by offering practical neural network solutions that harness
domain adaptation technologies. As cross-session variability
is a pervasive issue in motor imagery, the SDDA framework
can be applied to any motor imagery scenario that requires
participant pretraining. Moreover, the SDDA framework
plays a vital role in enhancing the motor imagery accuracy
of specific participants. By setting and adjusting individual-
specific trade-off parameters, 𝜆1 and 𝜆2, the SDDA frame-
work can improve the motor imagery classification accuracy
of specific participants without modifying the vanilla net-
work structure. This demonstrates the potential of the SDDA
framework to play a significant role in brain-computer inter-
face applications tailored to individual training.

Appendix
The SDDA framework employs Siamese networks, which

consume more computational resources compared to vanilla
networks. To further investigate the impact of computa-
tional resources on the experimental results, we ensured
a fair comparison between computational resource effects
and the SDDA framework by consistently adopting the
preprocessing method proposed in this paper. This main-
tains the consistency of EEG data when inputting into the
neural network model. Table 5 displays the classification
performance of EEGNet-based models on the BCIIV-IIB
dataset under different batch sizes. The results indicate
that varying batch sizes do indeed have an impact on the
experimental outcomes. However, as shown in Table 5, the
classification performance of the DA-EEGNet surpasses that
of all VA-EEGNet models in the majority of participants.
This suggests that although the SDDA framework increases
computational resources to some extent, the additional
computational overhead is justifiable, as the improvement
in classification performance is significant.
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Table 5
Impact of Computational Resources on the Results of BCIIV-IIB Dataset: An Illustration with EEGNet

Method Paiticipant ID Average acc
(kappa)B01 B02 B03 B04 B05 B06 B07 B08 B09

VA-EEGNet c.Pre(all) 83.12 65.71 71.87 97.81 94.06 86.25 87.50 95.00 88.75 85.56(0.711)
VA-EEGNet c.Pre(128) 82.50 64.28 71.56 98.12 94.68 89.68 87.18 92.81 91.25 85.78(0.716)
VA-EEGNet c.Pre(64) 80.93 66.78 74.06 97.81 94.37 86.87 88.12 94.06 90.62 85.96(0.719)
VA-EEGNet c.Pre(32) 82.50 65.00 75.31 97.81 94.06 85.00 85.93 94.37 91.25 85.69(0.714)
VA-EEGNet c.Pre(16) 81.56 62.50 68.75 98.12 94.68 90.62 85.62 93.12 90.93 85.10(0.702)

DA-EEGNet(16) 85.00 66.78 73.43 98.75 95.93 90.62 88.75 96.25 92.18 87.52(0.750)
In the "Method" column, the number in parentheses represents the batch size, "all" means the batch size is the number of
trials in the training set.
"VA-EEGNet c.Pre" denotes the vanilla EEGNet model with the preprocessing method proposed in this paper.
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