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Abstract

Federated learning (FL) facilitates multiple clients to jointly train a machine

learning model without sharing their private data. However, Non-IID data of

clients presents a tough challenge for FL. Existing personalized FL approaches

rely heavily on the default treatment of one complete model as a basic unit and

ignore the significance of different layers on Non-IID data of clients. In this

work, we propose a new framework, federated model components self-attention

(FedMCSA), to handle Non-IID data in FL, which employs model components

self-attention mechanism to granularly promote cooperation between different

clients. This mechanism facilitates collaboration between similar model com-

ponents while reducing interference between model components with large dif-

ferences. We conduct extensive experiments to demonstrate that FedMCSA

outperforms the previous methods on four benchmark datasets. Furthermore,

we empirically show the effectiveness of the model components self-attention

mechanism, which is complementary to existing personalized FL and can sig-

nificantly improve the performance of FL.
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1. Introduction

Federated learning (FL) has attracted widespread attention as a paradigm of

distributed learning with privacy protection [1, 2, 3]. The standard FL follows

three steps: (i) at each iteration, the server distributes the global model to

clients; (ii) the client trains the local model on its local private data based on

the global model; (iii) the server aggregates local models updated by clients to

achieve a new global model, repeated until convergence [1, 4]. FL can ensure

effective collaboration between different clients when the data distributions are

independent and identically distributed (IID), i.e., private data distributions

of clients are similar to each other. However, in many application scenarios,

private data of clients may be different in size and class distribution, that is,

the data distributions are not independent and identically distributed (Non-

IID). In this case, FL may not achieve effective collaboration on different clients

due to difference of individual private data [5].

Various algorithms have been proposed to handle the Non-IID data in FL,

which can be divided into two categories: average aggregation methods and

model-based aggregation methods. As shown in Figure 1(a), average aggrega-

tion methods average all local models to generate a global model and distribute

it to all clients, where an additional fine-tuning step is performed to train the

personalized model in the clients [6, 7, 8, 9]. However, using one global model

is difficult to fit different clients with Non-IID data. As a result, as illustrated

in Figure 1(b), model-based aggregation methods weight different local mod-

els to generate a personalized global model for each client, which treats the

entire model as a basic unit to calculate the weighting coefficient of the local

model [10, 11, 12]. Nevertheless, these methods ignore significance of different

layers within the model and cause the curse of dimensionality when computing

the similarity of high-dimensional models [13].

We argue each layer’s significance should be considered for handling Non-IID

data of clients. It is inappropriate to disregard significance of layers and treat all

layers equally by model-based aggregation methods on the server. As illustrated

2



Average

Aggregation

⋯

Server

Client 1 Client N

A global Model

(a) Average

Model-based

Aggregation

⋯

Server

Client 1 Client N

(b) Model-based

Component-based 

Aggregation

⋯

Server

Client 1 Client N

(c) Component-based (Our)

Figure 1: The illustrations of different FL methods.

in Figure 1(c), we regard each layer in a model as a basic unit, i.e., a model

component, and present a component-based aggregation method to granularly

facilitate collaboration between different clients.

In this work, we propose a novel framework, federated model components self-

attention (FedMCSA), to handle Non-IID data in FL. The core of FedMCSA

is a model components self-attention mechanism, which utilizes the component-

based aggregation method to adaptively update model components on the server.

This mechanism facilitates collaboration between similar model components

while reducing interference between model components with large differences.

Specifically, FedMCSA first decomposes the local models from clients to obtain

model components on the server, then lets the model components perform paral-

lel self-attention operations, and finally, generates complete personalized models

to send them to the clients. In this way, FedMCSA achieves a complete per-

sonalized FL and promotes purposeful and efficient collaboration among clients.

The experimental results not only show that FedMCSA outperforms FedAvg [1],

Fedprox [14], Per-FedAvg [8], pFedMe [9], and HeurFedAMP [11] in different

settings, but also empirically demonstrate the effectiveness of the model com-

ponents self-attention mechanism.

Our contributions and novelty can be summarized as follows:

• We propose a novel framework, federated model components self-attention

(FedMCSA), to handle Non-IID data in FL, which can achieve a complete
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personalized FL to adaptively update models.

• We devise a new model components self-attention mechanism to granularly

address Non-IID data from the perspective of the internal layers of the

model, which can be seamlessly integrated into FL.

• Extensive experiments on four datasets are conducted to compare the

proposed FedMCSA with state-of-the-art methods as well as its ablation

variants. The results suggest that FedMCSA achieves a significant im-

provement in performance for personalized FL.

2. Related Works

FL The first FL algorithm is FedAvg [1], which is an iterative algorithm

of client-server architecture. The current techniques aim to train a global

model through cooperation between clients without leaking their private data

to other clients, which can achieve better performance than working alone.

Various challenges in FL have been investigated and addressed, including pri-

vacy protection [15, 16, 17, 18] and communication complexity [19, 20, 21]. A

main challenge of FL is statistical diversity, which means that data distribu-

tions among clients are Non-IID with affecting its performance and convergence

rate [8, 22, 23, 24, 25].

Personalized FL Diverse methods have been proposed to address the prob-

lem of personalized FL. Fedprox [14] adds a proximal term to the objective to

address the challenges of heterogeneity. The goal of Per-FedAvg [8] is to get

a global model as initialization, and then one more step of gradient update in

each client is performed to obtain the personalized model. pFedMe [9] uses

the Moreau envelope as the clients’ regularized loss function to achieve the de-

coupling of personalized model optimization and global model learning, which

formulates a bi-level optimization problem in the client for personalized FL. The

method for training a mixture of local and global models is considered as a per-

sonalized solution for each client [26, 27]. Under the assumption that the private
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model of a client is provided to other clients in addition to the server, the optimal

weight combination based on the mutual benefits between the models is calcu-

lated for each client to achieve personalization [10], which can work better than

computing a single model average with constant weights for the entire federation

as in traditional FL. For the cross-silo scenario, FedAMP and HeurFedAMP [11]

design a federated attentive message passing method to conduct personalized

FL with preserving privacy. However, FedAMP and HeurFedAMP both need

to understand the clients’ data distribution to set constant weight hyperparam-

eters, which is difficult in actual applications. Meta-learning can also be used

for personalization [8, 28]. The objective of the work [8] is to investigate a

personalized variant of FL, whose purpose is to develop an initial shared model

that existing or prospective clients can easily modify to fit their local datasets

by performing one or several steps of gradient descent on their own data. The

authors propose a federated multi-task framework called MOCHA [29] using

multi-task learning to address data heterogeneity and communication efficiency.

For more details about FL and personalized FL, we recommend referring to

these comprehensive surveys [3, 30], which not only investigate the problem

of heterogeneity for personalized FL, but also discuss the unique characteris-

tics and challenges of FL, provide a broad overview of current approaches, and

present an extensive collection of future work.

Self-Attention The attention mechanism is widely used in many fields,

which fully demonstrates the effectiveness of attention [31, 32]. The self-attention

mechanism is a variant of the attention mechanism, which reduces the depen-

dence on external information and is better at capturing the internal correlation

of data or features [33, 34].

Different from existing works, we have deeply explored the potential of the

interaction between personalized models from the perspective of the internal

components of the model, and then achieve the adaptive update of different

personalized models by using our specially designed FedMCSA.
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3. Problem Definition of Personalized Federated Learning

The conventional formulation of FL aims to find a global model Θ by mini-

mizing the overall population loss

min
Θ∈Rd

{
f(Θ) :=

1

N

N∑
i=1

fi(Θ)

}
, (1)

where the function fi : Rd → R, i = 1, . . . , N , denotes the expected loss of the

client i that only depends on her/his own data distribution of ξi.

Instead of solving the conventional FL problem (1), we aim to adaptively

solve personalized FL with the Non-IID private data from the perspective of in-

ternal model components. Motivated by [10, 11, 12], we allow each client to own

a personalized model on the server, which does not depend on the single global

model. Consider that N clients C1, ..., CN corresponding to N datasets D1,

..., DN have their own personalized models Θ1, ..., ΘN under the same model

structure. For a neural network typically consisting of L layers, the model pa-

rameter of l-th layer of Θi is denoted as θi,l. The purpose of the personalized

FL problem is to use the private training data and the component-based aggre-

gation method to train the personalized model Θi to make it close to the best

performance that can be achieved on the distribution of ξi. We want to allow

similar model components collaborate more and reduce interference between

model components with large differences. Accordingly, each personalized model

could learn useful knowledge from other models as much as possible to improve

the performance of FL. Therefore, the personalized FL problem is formulated

as

min
U=[Θ1,...,ΘN ]


F (U) :=

1

N

N∑
i=1

fi (Θi)︸ ︷︷ ︸
:=f(U)

+γ
1

2N

L∑
l=1

N∑
i 6=j

d
(
‖θi,l − θj,l‖2

)
︸ ︷︷ ︸

:=φ(U)


, (2)

where U = [Θ1, ...,ΘN ] is a personalized model set, fi is the expected loss of the

client i corresponding to the data distribution ξi, γ is a regularization parameter,

and d
(
‖θi,l − θj,l‖2

)
is the difference measurement function between model
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component θi,l and θj,l. According to the work [11], here we naturally assume

that d : [0,∞) → R is a non-linear function with the properties that d is

increasing and concave on [0,∞), continuously differentiable on (0,∞), and

limt→0+ d′(t) is finite by d(0) = 0.

As to be illustrated in the next section, our novel use of model components

self-attention mechanism facilitates adaptively collaboration between clients by

promoting similar model components to collaborate more with each other. Fur-

thermore, the model components self-attention mechanism is agnostic to the

clients’ private data distribution, which allows each client to perform on arbi-

trary target distributions according to requirements. The model components

self-attention mechanism not only boosts the performance of personalized FL

dramatically but also can be easily integrated to further improve the perfor-

mance of existing personalized FL with average aggregation method.

4. Methodology

In this section, to tackle the optimization problem in (2), we first give a

general method without considering privacy preservation. Then, we implement

the process of the general method by proposing a new personalized FL frame-

work, federated model components self-attention (FedMCSA), which adaptively

conducts personalized FL from the perspective of the internal components of

the model using parallel self-attention while protecting clients’ private data.

4.1. The General Method

Considering that f(U) = 1
N

N∑
i=1

fi (Θi) and φ(U) = 1
2N

L∑
l=1

N∑
i 6=j

d
(
‖θi,l − θj,l‖2

)
,

we can rewrite the optimization problem in (2) to

min
U
{F (U) := f(U) + γφ(U)} . (3)

A natural way to tackle the optimization problem in (3) is to adopt the frame-

work of incremental-type optimization [35, 11], which can be realized by iter-

atively optimize F (U) by alternatively optimizing f(U) and φ(U) until con-

vergence. Specifically, the general method first optimize φ(U) by applying a
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Figure 2: The workflow of federated model components self-attention for personalized feder-

ated learning. (At each iteration, the clients perform gradient descent based on the distributed

personalized models to generate the updated models, which are then sent to the server. Af-

ter receiving latest models from clients, the server update personalized models by the model

components self-attention mechanism, and distributes the new personalized models to the

corresponding clients.)

gradient descent step, and then optimize f(U) by applying a proximal point

step. In the t-th iteration, the update is formulated as

V t = U t−1 − τt∇φ(U t−1), (4)

U t = arg min
U

{
f(U) +

γ

2τt

∥∥U − V t∥∥2
}
, (5)

where V t denotes the prox-center, and τt > 0 is the step size of gradient descent.

The general method has been proven in prior work [11] to converge to the

optimal solution when F (U) is convex and to a stationary point when F (U) is

nonconvex.

4.2. Federated Model Components Self-Attention

The general method can be easy to deploy by gathering all clinets’ data

together. In this subsection, we propose FedMCSA to optimize the personal-

ized FL problem while protecting the data privacy of each client. Specifically,

FedMCSA maintains a personalized cloud model for each client on a cloud server

to implement the optimization step (4) of the general method and deploys the

optimization step (5) privately in each client. The workflow of FedMCSA is

illustrated in Figure 2.
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Following the optimization steps of the general method, FedMCSA firstly

aims to optimizes φ(U) and implements the optimization step in (4) by com-

puting matrix V t on the cloud server. Let V t = [W t
1 , ...,W

t
N ] and W t

i =

[wti,1 ‖ wti,2 ‖ ... ‖ wti,L], where W t
1 ,W

t
2 , ...,W

t
N are the columns of V t and

wti,1, w
t
i,2, ..., w

t
i,L are the layers of W t

i , the update of the i-th column and l-th

layer wti,l of V t computed in (4) can be rewritten into a linear combination of

the model parameter sets θt−1
1,l , . . . , θ

t−1
N,l as follows

wti,l =

1− τt
N

N∑
j 6=i

d′
(∥∥∥θt−1

i,l − θ
t−1
j,l

∥∥∥2
) · θt−1

i,l +
τt
N

N∑
j 6=i

d′
(∥∥∥θt−1

i,l − θ
t−1
j,l

∥∥∥2
)
· θt−1
j,l

=ψti,l,1θ
t−1
1,l + · · ·+ ψti,l,Nθ

t−1
N,l ,

(6)

where d′
(∥∥∥θt−1

i,l − θ
t−1
j,l

∥∥∥2
)

is the derivative of d

(∥∥∥θt−1
i,l − θ

t−1
j,l

∥∥∥2
)

and ψti,l,1, . . . , ψ
t
i,l,N

are the linear combination weights of the model parameter θt−1
1,l , . . . , θ

t−1
N,l , re-

spectively. Since ψti,l,1+. . .+ψti,l,N = 1, wti,l is actually a convex combination [11]

of the model parameter θt−1
1,l , . . . , θ

t−1
N,l .

We have argued for finding a linear combination of the model components to

update the model component. The main question that follows is how to compute

the effective weight coefficients in such a way that FedMCSA can seamlessly be

incorporated into any existing FL paradigm. It is vital to determine how to

calculate each model component’s weight coefficient as it has a crucial effect on

the output of each model component and the performance of personalized FL.

A native method is to refer to HeurFedAMP to fix the weight coefficient

for the model component that needs to be updated currently, set it as a hyper-

parameter, and then assign the remaining weights to other model components

according to the similarity between the current model component and other

model components. The setting of this hyperparameter needs to consider the

clients’ data distribution, for example, it is set to 1/(Mi + 1), where Mi is

the number of same distribution clients for client i. Unfortunately, in practice,

it is often difficult to provide this knowledge about the clients’ data distribu-

tion. Moreover, in the actual model components update process, the interaction
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between different model components is dynamic, therefore fixing the weight co-

efficient limits the dynamic change in the weight coefficients, which artificially

damages the performance of the personalized models.

To avoid the requirement for clients’ data distribution and inappropriate

restrictions on the weight coefficients of model components, FedMCSA intro-

duces self-attention into the update of model components, which performs L

self-attention processes in parallel to produce the updated personalized model

for each client. FedMCSA makes no assumptions about the knowledge of under-

lying data distributions or client similarities to provide greater flexibility in per-

sonalization. Specifically, for each self-attention process, N model components

[θt−1
1,l , . . . , θ

t−1
N,l ] corresponding to l-th layer from clients are used as input, and

the output is the updated N model components [wt1,l, . . . , w
t
N,l] for l-th layer.

The query vector, key vector, and value vector are denoted by [θt−1
1,l , . . . , θ

t−1
N,l ]

for l-th layer in each model components self-attention process.

Meanwhile, FedMCSA adopts the simple but very efficient cosine similar-

ity function sim(query, key) = σ cos(query, key) with a scale hyperparame-

ter σ as the metric function between different model components. Therefore,

ψti,l,1, . . . , ψ
t
i,l,N in (6) can be expressed as the following

ψti,l,k =
eσ cos(θt−1

i,l ,θt−1
k,l )∑N

h=1 e
σ cos(θt−1

k,l ,θ
t−1
h,l )

, k ∈ [1, N ]. (7)

For simplicity, we denote the operation of FedMCSA on the server as the

function FMCSA, where U t−1 and V t are the input and output of FMCSA, re-

spectively. Therefore, (4) can be reformulated as the following

V t = FMCSA

(
U t−1

)
. (8)

After optimizing φ(U) using the model components self-attention mechanism

on the server, we further implement the optimization of f(U) in the client. Let

U t = [Θt
1, ...,Θ

t
N ], where Θt

1, ...,Θ
t
N are the columns of U t, the update of the

i-th column Θt
i of U t computed in (5) can be rewritten as the following

Θt
i = arg min

Θi∈Rd

{
fi(Θi) +

λ

2

∥∥Θi −W t
i

∥∥2
}
, (9)

10



where λ = γ
τt

. We optimize φ(U) by (8) on the server and f(U) by (9) in

the client, which together constitute the complete personalized FL framework

FedMCSA. In the continuous iterative process of personalized FL, the entire

process can be considered as a continuous federated model components self-

attention network, as shown in Figure 2.

The complete algorithm description of FedMCSA is presented in Algorithm

1. FedMCSA implements a client-server personalized FL framework to boost

the performance of personalized FL dramatically, which alternately optimizes

φ(U) and f(U) through the model components self-attention mechanism on the

server and the proximal gradient descent method in the client until a maximum

number T of iterations is reached.
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Algorithm 1: FedMCSA

Input: N clients with private training data, T , R, S, λ, η, σ,

U0 = [Θ0
1, . . . ,Θ

0
N ]

Output: The personalized models UT = [ΘT
1 , . . . ,Θ

T
N ]

1 for t = 1 to T do

// Server

2 Server uniformly samples a subset of clients St with size S, and each

of the sampled client sends the local model Θt−1
i ,∀i ∈ St, to the

server;

3 Server using the model components self-attention mechanism

computes V t = FMCSA(U t−1) in (8) by U t−1 = {Θt−1
i ,∀i ∈ St};

4 Server sends W t
i ,∀i ∈ St to the clients, respectively;

// Client

5 for all i = 1 to N do

6 if The client receives the updated personalized model sent by the

server then

7 Θi = W t
i ;

8 W t
local = W t

i ;

9 end

10 for r = 0 to R− 1 do

11 Sample a fresh mini-batch Di with size |D| to compute

Θt,r
i = arg min

Θi∈Rd

{
fi(Θi) + λ

2 ‖Θi −W t
local‖

2
}

defined in (9);

12 Θi = Θt,r
i ;

13 end

14 Θt
i = Θt,r

i .

15 end

16 end

12



5. Experimental Results and Discussion

In this section, we evaluate the performance of FedMCSA and demonstrate

the effectiveness of the model components self-attention mechanism when the

distributions of clients’ private data are Non-IID. First, we compare FedMCSA

with the existing personalized FL algorithms under various datasets with dif-

ferent network models. Then we demonstrate the the effectiveness by ablation

and integration studies. Finally, the impact of important hyperparameter σ is

analyzed on the convergence of FedMCSA.

5.1. Experimental Settings

5.1.1. Datasets

We use four public benchmark datasets that are widely used in FL.

• Synthetic [9]: The Synthetic dataset is applied to a 10-class classifier,

where each data point is composed of 60-dimensional real-valued data.

The data size of each client is in the range of [250, 25810]. The data gener-

ation and distribution procedure is adopted from the previous works [9, 14]

to generate Non-IID data, which uses two parameters α and β to control

the difference of the dataset and the local model of each client. Specif-

ically, a synthetic dataset with α = 0.5 and β = 0.5 is generated and

distributed according to the power law to N = 100 clients [9].

• Mnist [36]: The Mnist dataset that is a handwritten digit dataset con-

tains 70,000 instances with 10 labels. We adopt the Non-IID setup and

data generation procedure in the work [9], where the complete dataset is

distributed to N = 20 clients owing to the limitation on MNIST’s data

size. Each client’s data size is different in the range of [1165, 3834] with

only 2 classes of the 10 classes.

• FMnist (Fashion-Mnist) [37]: The FMNIST dataset includes 70,000 fash-

ion products across ten categories, with 7,000 images per category. We use

a same generation method as the Mnist dataset to produce the Non-IID

data of FMnist.
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• Cifar10 [38]: The Cifar10 dataset contains 60000 32x32 color images, each

of which is categorized into one of ten mutually exclusive labels. We use

a same generation method as the Mnist dataset to produce the Non-IID

data of Cifar10.

5.1.2. Network Models

To demonstrate the generality and effectiveness of our proposed FedMCSA,

we consider two different models simultaneously following the work [9] in the ex-

periments. First, a l2-regularized multinomial logistic regression model (MLR)

is implemented with the softmax activation and cross-entropy loss functions.

Meanwhile, we consider a two-layer deep neural network (DNN) with a hidden

layer of size 20 for Synthetic and 100 for MNIST, FMnist, and Cifar10 using

ReLU activation and a softmax layer at the end.

5.1.3. Baselines

We compare FedMCSA against five methods broadly falling under three

categories. (i) Only train a single global model for all clients: FedAvg [1] and

Fedprox [14]. (ii) Train more than one model but based on a global model:

Per-FedAvg [8] and pFedMe [9]. (iii) Train a separate model for each client

without considering a single global model: HeurFedAMP [11]. The details of

the baselines are presented as follows.

• FedAvg [1]: As the most popular FL baseline, it directly averages all local

models on the server to obtain a new global model.

• Fedprox [14]: A proximal term is added to the objective to address the

challenges of the Non-IID data.

• Per-FedAvg [8]: After getting a global model as initialization, each client

performs one more step of gradient update to obtain the personalized

model.

• pFedMe [9]: The Moreau envelope is used as the clients’ regularized loss

function to achieve the decoupling of personalized model optimization and
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global model learning. For the comparison with pFedMe, we use both its

personalized model pFedMe(PM) and global model pFedMe(GM).

• HeurFedAMP [11]: A federated attentive message passing method is de-

signed to conduct personalized FL with preserving privacy.

5.1.4. Implementation Details

We utilize the SGD optimizer and use PyTorch to implement our method.

We randomly split all datasets into 75% and 25% for training and testing,

respectively. The learning rates are set to η = 0.02 by default for all four

benchmark datasetrs. Meanwhile, the batch size is set to |D| = 20, and the

local training epoch is set to R = 20. The value of hyperparameter σ is set

to the default value of 50, and the value of hyperparameter λ is set to the

default value of 5. The subset of all clients is set to S = 20 for Synthetic,

S = 10 for Mnist, FMnist, and Cifar10. The maximum number T of iterations

is set to 800 for all four benchmark datasetrs. The performance of all the

methods is evaluated by considering the best mean testing accuracy (BMTA)

in percentages, where BMTA is the highest mean testing accuracy achieved by

a method during all communication rounds of training, and the mean testing

accuracy is defined as the average of the testing accuracy on all clients. All

experiments are implemented in PyTorch 1.7 running on Intel(R) Xeon(R) CPU,

64G memory, NVIDIA 1080Ti, and Ubuntu 16.04.

5.2. Performance Comparison

To demonstrate the empirical superiority of FedMCSA, several comparisons

between FedMCSA, HeurFedAMP, pFedMe, Per-FedAvg, Fedprox, and FedAvg

are conducted. First of all, the same hyperparameters for all algorithms are

used as a basic comparison. Considering that the performance of algorithms

will behave differently when the hyperparameters change, we further perform a

grid search of hyperparameters to find the highest performance of combination

fine-tuning hyperparameters.
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Figure 3: Performance comparisons of FedAvg, Fedprox, Per-FedAvg, pFedMe(GM),

pFedMe(PM), HeurFedAMP, and FedMCSA using MLR model on Synthetic and Mnist

datasets.

5.2.1. The comparisons for the same hyperparameters.

The comparisons for the same hyperparameters are shown in Figure 3 and

Figure 4. According to Figure 3 and Figure 4, we can observe that FedMCSA

achieves the best performance compared to other algorithms in different set-

tings. Specifically, for the MLR model, FedMCSA is about 16.86%, 16.66%,

9.55%, 17.57%, 10.53%and 9.64% more accurate than FedAvg, Fedprox, Per-

FedAvg, pFedMe(GM), pFedMe(PM), and HeurFedAMP on Synthetic dataset,

and 6.47%, 6.42%, 5.60%, 6.53%, 2.75%, and 0.50% more accurate than those

on Mnist dataset. For the DNN model, FedMCSA is about 11.39%, 11.69%,

7.52%, 13.42%, 9.07%, and 11.61% more accurate than FedAvg, Fedprox, Per-
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Figure 4: Performance comparisons of FedAvg, Fedprox, Per-FedAvg, pFedMe(GM),

pFedMe(PM), HeurFedAMP, and FedMCSA using DNN model on Synthetic and Mnist

datasets.

FedAvg, pFedMe(GM), pFedMe(PM), and HeurFedAMP on Synthetic dataset,

and 2.94%, 2.96%, 1.81%, 3.06%, 1.50%, and 1.07% more accurate than those

on Mnist dataset.

It can be observed that the performance of FedAvg, Fedprox, and pFedMe(GM)

is similar and significantly lower. The performance of Per-FedAvg, pFedMe(PM)

and HeurFedAMP is similar and have advantages over FedAvg, Fedprox, and

pFedMe(GM). Additionally, our proposed FedMCSA clearly surpasses PerFe-

dAvg, pFedMe(PM), and HeurFedAMP, demonstrating its superiority. Al-

though the optimization method of FedMCSA in the client is generally universal,

with being similar to HeurFedAMP, FedMCSA is superior to FedAvg, Fedprox,
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Table 1: Performance comparisons using fine-tuned hyperparameters. |D| = 20, R = 20, and

T = 800 are fixed for all experiments and all results are averaged over 3 runs. (The best result

is marked in bold).

Algorithm
Synthetic Mnist FMnist Cifar10

MLR DNN MLR DNN MLR DNN MLR DNN

FedAvg [1] 78.04±0.21 84.30±0.03 92.39±0.02 96.86±0.01 84.56±0.01 85.80±0.04 38.43±0.25 46.10±0.14

Fedprox [14] 77.51±0.22 84.01±0.06 92.42±0.03 96.89±0.02 84.45±0.01 85.68±0.10 38.35±0.41 45.92±0.16

Per-FedAvg [8] 85.15±0.06 88.50±0.07 94.18±0.05 98.15±0.01 98.82±0.04 99.31±0.01 57.79±0.08 81.64±0.09

pFedMe(GM) [9] 76.37±0.18 82.70±0.28 92.08±0.01 96.81±0.03 83.55±0.11 84.30±0.12 36.21±0.11 46.89±0.39

pFedMe(PM) [9] 84.97±0.08 87.01±0.08 97.24±0.01 98.93±0.01 99.20±0.01 99.30±0.01 66.70±0.09 84.05±0.13

HeurFedAMP [11] 84.42±0.05 84.00±0.06 98.33±0.03 98.42±0.01 99.19±0.01 99.13±0.02 72.18±0.03 82.41±0.03

FedMCSA(Our) 95.27±0.01 96.26±0.02 98.87±0.01 99.58±0.01 99.33±0.01 99.39±0.01 75.91±0.02 84.40±0.05

pFedMe(GM), Per-FedAvg, pFedMe(PM), and HeurFedAMP in different set-

tings. This is due to the fact that FedMCSA adopts the model components

self-attention mechanism on the server side, which considers the significance

of the internal components of the model from a novel perspective, and further

implements an adaptive update of model components through parallel model

components self-attention mechanisms. FedMCSA realizes the adaptive update

of the entire model through the continuous adaptive update of model com-

ponents. Consequently, the performance of FedMCSA is superior to FedAvg,

Fedprox, Per-FedAvg, pFedMe, and HeurFedAMP under different models and

datasets when the same hyperparameters are used.

5.2.2. The comparisons for fine-tuned hyperparameters.

The highest accuracy comparison results achieved by fine-tuning the hyper-

parameters of all algorithms are shown in Table 1. In all settings, FedMCSA sur-

passes other algorithms to achieve the highest accuracy. Specifically, FedMCSA

achieves 95.27%, 99.87%, 99.33%, and 75.91% on Synthetic, FMnist, Mnist, and

Cifar10 datasets when using the MLR model. And FedMCSA achieves 96.26%,

99.58%, 99.39%, and 84.40% on Synthetic, FMnist, Mnist, and Cifar10 datasets

when using the DNN model.

As for the MLR model, among all the baseline algorithms, the best perfor-

mances achieved on Synthetic, Mnist, FMnist, and Cifar10 datasets are 85.15%

of Per-FedAvg, 98.33% of HeurFedAMP, and 99.20% of pFedMe(PM), and
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72.18% of HeurFedAMP, respectively. As for the DNN model, among all the

baseline algorithms, the best performances achieved on Synthetic, Mnist, FM-

nist, and Cifar10 datasets are 88.50% of Per-FedAvg, 98.93% of pFedMe(PM),

and 99.31% of Per-FedAvg, and 84.05% of pFedMe(PM), respectively. It is

evident that none of all baselines achieve the best accuracies using different

models under different datasets simultaneously, whereas FedMCSA achieves the

highest accuracies using both MLR and DNN models across the four datasets

simultaneously.

From Figure 3, Figure 4, and Table 1, we can observe that the performance

of the DNN model tends to be better than that of the MLR model under the

same experimental conditions. This is because DNN model has a hidden layer

with stronger information extraction ability than MLR model, and can more

fully mine the information in clients’ private data.

The key to the superiority of FedMCSA is that it abandons the setting of a

complete model as a basic unit to carry out the cooperation between different

models, and treats each layer of the model as a basic unit from the perspec-

tive of finer granularity. By taking each layer’s significance into consideration,

FedMCSA explores the potential of the model components to make collaboration

between different clients more targeted and effective. As a result, each model

component can learn as much useful knowledge as possible from other models.

With the advantage of model components self-attention mechanism, FedMCSA

has achieved surprising performance using different models on Synthetic, Mnist,

FMnist, and Cifar10 datasets.

5.3. Ablation Studies

To further analyze the model components self-attention mechanism of FedM-

CSA, we conduct ablation studies to verify the effectiveness of the mechanism

from two different perspectives. On the one hand, we construct a variant of

FedMCSA by replacing the model components self-attention mechanism with

the average aggregation method. On the other hand, we integrate this mecha-

nism into the most basic FL algorithm, FedAvg, as well as the representative
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Table 2: Accuracy on the variants of FedMCSA, FedAvg, and pFedMe on four benchmark

datasets. ”∆” represents the change values of the variants compared with FedMCSA, FedAvg,

and pFedMe and all results are averaged over 3 runs.

Synthetic Mnist FMnist Cifar10

MLR DNN MLR DNN MLR DNN MLR DNN

FedMCSA 94.06% 95.26% 98.82% 99.48% 99.32% 99.37% 72.18% 84.24%

FedMCSA−MCSA 76.35% 83.08% 92.20% 96.84% 83.76% 84.42% 34.05% 46.26%

∆ 17.71%↓ 12.18%↓ 6.62%↓ 2.64%↓ 15.56%↓ 14.95%↓ 38.13%↓ 37.98%↓

FedAvg 77.26% 83.55% 92.39% 96.54% 84.48% 83.87% 34.81% 45.60%

FedAvg+MCSA 94.32% 95.52% 98.83% 99.49% 99.31% 99.36% 72.13% 84.37%

∆ 17.06%↑ 11.97%↑ 6.44%↑ 2.95%↑ 14.83%↑ 15.49%↑ 37.32%↑ 38.77%↑

pFedMe 83.56% 86.04% 96.06% 97.98% 98.95% 99.23% 65.46% 83.77%

pFedMe+MCSA 93.86% 93.49% 98.85% 99.48% 99.33% 99.34% 74.62% 84.70%

∆ 10.30%↑ 7.45%↑ 2.79%↑ 1.50%↑ 0.38%↑ 0.11%↑ 9.16%↑ 0.93%↑

personalized FL with average aggregation, pFedMe. Considering that the per-

formance of the personalized model pFedMe(PM) is always better than the

global model pFedMe(GM) in the same setting, here we use pFedMe(PM) to

represent the pFedMe. Note that in each group of experiments, the settings are

identical except for the variables of interest.

Specifically, we conduct three variants of FedMCSA, FedAvg, and pFedMe

as follows.

• FedMCSA−MCSA: The variant model that replaces the model components

self-attention mechanism with the average aggregation method.

• FedAvg+MCSA: The variant model that replaces FedAvg’s aggregation

method with the model components self-attention mechanism.

• pFedMe+MCSA: The variant model that replaces pFedMe(PM)’s aggrega-

tion method with the model components self-attention mechanism.

The experimental results of ablation studies are shown in Table 2. Com-

pared with FedMCSA, FedMCSA−MCSA has a significant drop in accuracy on

the four benchmark datasets whether using the MLR model or the DNN model.
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FedMCSA−MCSA achieves relatively good performance on Mnist dataset, with

6.62% and 2.64% drop in accuracy compared to FedMCSA using the MLR and

DNN models, respectively. This is because the Mnist dataset is relatively simple,

and the basic average aggregation method can mine sufficient effective knowl-

edge. When the dataset is relatively complex, e.g., the Synthetic dataset, the

impact of the absence of the model components self-attention mechanism is sig-

nificantly enlarged. It is noted that compared with FedMCSA, FedMCSA−MCSA

drops by 38.13% with the MLR model and 37.98% with the DNN model on

Cifar10 dataset. The consistent accuracy drop across different datasets illus-

trates the effectiveness of the model components self-attention mechanism of

FedMCSA, and the greater accuracy impact on more complex datasets further

illustrates that the role of the model components self-attention mechanism is

more pronounced on relatively complex datasets.

We also compare the performance of FedAvg, FedAvg+MCSA, pFedMe, pFedMe+MCSA

on the four benchmark datasets. From Table 2, we can observe that the model

components self-attention mechanism of FedMCSA not only achieves the over-

all improvement on FedAvg, but also achieves the improvement on pFedMe.

FedAvg+MCSA has a significant accuracy improvement over FedAvg on the four

benchmark datasets. Especially on Cifar10 dataset, compared with FedAvg,

FedAvg+MCSA has improved the accuracy by 37.32% and 38.77% under the

MLR model and DNN model, respectively. Although pFedMe has achieved

good performance on different datasets, pFedMe+MCSA still achieves perfor-

mance improvements under a variety of different settings. On Synthetic dataset,

pFedMe+MCSA improves the accuracy by 10.3% and 7.45% under the MLR

model and DNN model, respectively.

The results of Table 2 demonstrate the effectiveness of the model components

self-attention mechanism of FedMCSA from the consistent accuracy decrease

of FedMCSA−MCSA and the consistent accuracy improvement of FedAvg+MCSA

and pFedMe+MCSA. Furthermore, the performance improvement across different

datasets, different network models, and different algorithms further illustrates

the generality and usability of the mechanism.
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Figure 5: Impact of σ on the convergence of FedMCSA using MLR and DNN models on

Synthetic dataset.

5.4. Impact of The Important Hyperparameter

To investigate the impact of the important hyperparameter σ on the conver-

gence of FedMCSA, we conduct diverse experiments on the Synthetic dataset

using both MLR and DNN models.

As σ is the scale of model components similarity in the FedMCSA, σ is

considered as a hyperparameter of FedMCSA. As illustrated in Figure 5, all

the parameters except σ are fixed during the experiments. For MLR, once σ

increases to 30, the upper limit of FedMCSA’s accuracy is reached under the

current conditions, while the upper limit of accuracy for DNN is only realized

when σ = 70. We observe that FedMCSA requires a moderate value to compute

the personalized model. When the value of σ is too small, FedMCSA will

converge slowly and reduce the accuracy. However, when the value of σ exceeds

a certain threshold, the accuracy of FedMCSA is not further improved, while an

excessive value of σ will cause the computational cost of the process to increase

sharply. As a result, the value of σ = 50 is selected as the default in the case

of both MLR and DNN for the Synthetic dataset. Similarly, the value of σ =

50 is selected as the default in the case of both MLR and DNN for the Mnist,

FMnist, and Cifar10 datasets.

6. Conclusion

In this paper, we propose a new framework, federated model components

self-attention, to handle the Non-IID data in FL, which devise the model compo-
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nents self-attention mechanism from a novel perspective of the component-based

aggregation method. Different from the previous personalized FL approaches

that treat the entire model as a basic unit for aggregation, FedMCSA promotes

purposeful and refined collaboration among clients through parallel model com-

ponents self-attention mechanism. Our extensive experiments on benchmark

datasets demonstrate the superior performance of FedMCSA compared with Fe-

dAvg, Fedprox, Per-FedAvg, pFedMe, and HeurFedAMP in different settings.

Moreover, the empirical experiment results demonstrate that the model compo-

nents self-attention mechanism of FedMCSA has effectiveness and universality,

and can also be easily integrated into existing personalized FL to further im-

prove their performance. We hope that future research of personalized FL will

not only focus on external optimization of the model, but also pay more at-

tention to exploring the potential of collaboration between model components,

which could lead to a more superior FL.
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[26] F. Hanzely, P. Richtárik, Federated learning of a mixture of global and

local models, arXiv preprint arXiv:2002.05516arXiv:2002.05516.

URL https://arxiv.org/abs/2002.05516

[27] Y. Deng, M. M. Kamani, M. Mahdavi, Adaptive personalized federated

learning, arXiv preprint arXiv:2003.13461arXiv:2003.13461.

URL https://arxiv.org/abs/2003.13461

[28] S. Lin, G. Yang, J. Zhang, A collaborative learning framework via feder-

ated meta-learning, in: 40th IEEE International Conference on Distributed

Computing Systems, ICDCS 2020, Singapore, November 29 - December 1,

2020, IEEE, 2020, pp. 289–299. doi:10.1109/ICDCS47774.2020.00032.

URL https://doi.org/10.1109/ICDCS47774.2020.00032

[29] V. Smith, C. Chiang, M. Sanjabi, A. S. Talwalkar, Federated multi-task

learning, in: Advances in Neural Information Processing Systems 30:

Annual Conference on Neural Information Processing Systems 2017,

December 4-9, 2017, Long Beach, CA, USA, 2017, pp. 4424–4434.

URL https://proceedings.neurips.cc/paper/2017/hash/

6211080fa89981f66b1a0c9d55c61d0f-Abstract.html

28

http://dx.doi.org/10.1145/3442381.3449926
http://dx.doi.org/10.1145/3442381.3449926
https://doi.org/10.1145/3442381.3449926
https://arxiv.org/abs/2002.05516
https://arxiv.org/abs/2002.05516
http://arxiv.org/abs/2002.05516
https://arxiv.org/abs/2002.05516
https://arxiv.org/abs/2003.13461
https://arxiv.org/abs/2003.13461
http://arxiv.org/abs/2003.13461
https://arxiv.org/abs/2003.13461
https://doi.org/10.1109/ICDCS47774.2020.00032
https://doi.org/10.1109/ICDCS47774.2020.00032
http://dx.doi.org/10.1109/ICDCS47774.2020.00032
https://doi.org/10.1109/ICDCS47774.2020.00032
https://proceedings.neurips.cc/paper/2017/hash/6211080fa89981f66b1a0c9d55c61d0f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6211080fa89981f66b1a0c9d55c61d0f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6211080fa89981f66b1a0c9d55c61d0f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6211080fa89981f66b1a0c9d55c61d0f-Abstract.html


[30] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,

K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., Advances and

open problems in federated learning, arXiv preprint arXiv:1912.04977.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in

Neural Information Processing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, December 4-9, 2017, Long Beach,

CA, USA, 2017, pp. 5998–6008.

URL https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[32] A. de Santana Correia, E. L. Colombini, Attention, please! A

survey of neural attention models in deep learning, arXiv preprint

arXiv:2103.16775arXiv:2103.16775.

URL https://arxiv.org/abs/2103.16775

[33] D. W. Romero, J. Cordonnier, Group equivariant stand-alone self-attention

for vision, in: 9th International Conference on Learning Representations,

ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net, 2021.

URL https://openreview.net/forum?id=JkfYjnOEo6M

[34] Y. Hao, L. Dong, F. Wei, K. Xu, Self-attention attribution: Interpreting

information interactions inside transformer, in: Thirty-Fifth AAAI Con-

ference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on

Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh

Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,

Virtual Event, February 2-9, 2021, AAAI Press, 2021, pp. 12963–12971.

URL https://ojs.aaai.org/index.php/AAAI/article/view/17533

[35] D. P. Bertsekas, Incremental gradient, subgradient, and proximal methods

for convex optimization: A survey, Optimization 2010 (2) (2015) 691–717.

[36] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning ap-

29

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2103.16775
https://arxiv.org/abs/2103.16775
http://arxiv.org/abs/2103.16775
https://arxiv.org/abs/2103.16775
https://openreview.net/forum?id=JkfYjnOEo6M
https://openreview.net/forum?id=JkfYjnOEo6M
https://openreview.net/forum?id=JkfYjnOEo6M
https://ojs.aaai.org/index.php/AAAI/article/view/17533
https://ojs.aaai.org/index.php/AAAI/article/view/17533
https://ojs.aaai.org/index.php/AAAI/article/view/17533


plied to document recognition, Proceedings of the IEEE 86 (11) (1998)

2278–2324.

[37] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms, CoRR abs/1708.07747. arXiv:

1708.07747.

URL http://arxiv.org/abs/1708.07747

[38] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from

tiny images.

30

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

	1 Introduction
	2 Related Works
	3 Problem Definition of Personalized Federated Learning
	4 Methodology
	4.1 The General Method
	4.2 Federated Model Components Self-Attention

	5 Experimental Results and Discussion
	5.1 Experimental Settings
	5.1.1 Datasets
	5.1.2 Network Models
	5.1.3 Baselines
	5.1.4 Implementation Details

	5.2 Performance Comparison
	5.2.1 The comparisons for the same hyperparameters.
	5.2.2 The comparisons for fine-tuned hyperparameters.

	5.3 Ablation Studies
	5.4 Impact of The Important Hyperparameter

	6 Conclusion

