
Adjustable Privacy using Autoencoder-based Learning
Structure

Mohammad A. Jamshidi? , Hadi Veisi† , Mohammad M. Mojahedian? ,
Mohammad R. Aref?

?Information Systems and Security Lab. (ISSL), Sharif University of Tech., Tehran, Iran
†Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

m.a.jamshidi992@gmail.com, h.veisi@ut.ac.ir, m.mojahedian@gmail.com, aref@sharif.ir

Abstract

Inference centers need more data to have a more comprehensive and benefi-

cial learning model, and for this purpose, they need to collect data from data

providers. On the other hand, data providers are cautious about delivering

their datasets to inference centers in terms of privacy considerations. In this

paper, by modifying the structure of the autoencoder, we present a method

that manages the utility-privacy trade-off well. To be more precise, the data

is first compressed using the encoder, then confidential and non-confidential

features are separated and uncorrelated using the classifier. The confidential

feature is appropriately combined with noise, and the non-confidential feature

is enhanced, and at the end, data with the original data format is produced by

the decoder. The proposed architecture also allows data providers to set the

level of privacy required for confidential features. The proposed method has

been examined for both image and categorical databases, and the results show

a significant performance improvement compared to previous methods.

Keywords: Privacy, utility, deep neural networks, autoencoders, collaborative

learning.

1. Introduction

The more data a learning system can access, its model can be more com-

prehensive. But sometimes, the learner or utility provider does not have access

Preprint submitted to Elsevier April 10, 2023

ar
X

iv
:2

30
4.

03
53

8v
1

 [
cs

.L
G

]
 7

 A
pr

 2
02

3

to much data or does not have any data at all and must receive it from dif-

ferent units. Different units may be sensitive about their data and do not like

to provide all their information to the utility provider. In this paper, we are

looking for a solution so that data providers can distort their data to such an

extent that the utility provider can use it and that the information they want

remains confidential as much as possible from the utility provider or any other

adversary. To be more precise, as shown in Fig. 1, we have m data providers,

each of which has a set of data and wants to provide it to the utility provider in

such a way that a part of the data or its features can remain private from the

utility provider or any other adversary. On the other hand, the quality of the

data provided to the utility provider must be good enough to train his learning

model well. The utility provider is supposed to provide services using the re-

sulting model to data providers or other users. Therefore the trade-off between

the utility and privacy of the datasets becomes important.

DP1

DP2

DPm

Utility

Provider
Users

Figure 1: Data providers (DPs) tend to distort their data and send it to the utility provider

in a way that balances privacy and utility.

Ensuring privacy is paramount in an era where so much data is available.

The utility-privacy trade-off has been studied theoretically [1, 2] and algorith-

mically. Various algorithms have been proposed to balance the trade-off, and

the present paper is in this direction. The primary algorithms proposed for

privacy include k-anonymity [3], `-diversity [4], and t-clossness [5], which are

suitable only for small datasets. Another group of private algorithms is based

2

on differential privacy, which is a mathematical tool that guarantees the pri-

vacy of the dataset by appropriately adding noise [6, 7, 8, 9, 10]. Among the

difficulties of differential privacy for high dimensions, it is time-consuming, re-

quires a lot of noise and as a result distorts the dataset utility, etc. There

are other private methods, including homomorphic encryption [11, 12], and se-

cure multi-party computation (SMPC) [13, 14], which are two cryptographic

approaches that are related to calculations on encrypted data and face limi-

tations such as computational cost, limited range of computational operations

that can be performed, communication cost, etc. In addition to the centralized

privacy-preserving methods, there is the distributed federated learning frame-

work, where each data provider trains the model. This method faces limitations

such as the negative effect of heterogeneous systems of different data providers,

inefficiency in terms of communication, etc. [15, 16, 17].

Another category of private algorithms that have received special attention

with the increase in data dimensions are heuristic methods based on machine

learning tools [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. These meth-

ods use machine learning tools such as autoencoders, generative adversarial

networks (GAN), variational autoencoders, etc. This paper is also included in

this category. In particular, we discuss privacy in data publishing using neural

networks. There are similar works in this direction. Huang et al. in [20, 21] uses

the generative adversarial network (GAN) and solves a minimax game between

the privatizer and the adversary to conceal a specific feature. Li et al. in [22]

have used mutual information-based training to learn the feature extractor so

that the private features are hidden while maintaining the utility of the remain-

ing information. The output of the proposed method in [22] is a censored feature

vector that is not in the original data format and, therefore, not suitable for

data publishing, which makes it useless for pre-trained models such as DenseNet.

In [24], by combining variational autoencoder and differential privacy, the data

dimension is first reduced, then sensitive and non-sensitive data are separated

using two classifiers, and after the covariance matrix of sensitive data is learned,

it is perturbed to establish differential privacy. Using the differential privacy

3

tool requires more training data and is therefore time-consuming [32]. A fea-

ture extraction method in [26] is proposed for implementation on mobile devices

based on Siamese architecture. This method also produces data that does not

match the original dataset format. In [27], the obfuscator uses an autoencoder

to reduce the dimensions of the image, and then with a GAN-based structure,

the encoder output distribution approaches the Gaussian distribution. Also,

the classifier that extracts the desired feature gives feedback to the obfuscator.

Mandal et al. proposed a private learning algorithm based on uncertainty au-

toencoder in [28]. Their work has significant results on categorical datasets, so

we use it as a benchmark for comparison. Making the dataset confidential may

lead to a dataset that does not have a standard format; for this purpose, in

[28], the algorithm’s performance with data-type ignorant and data-type aware

conditions is studied.

In this paper, we use the autoencoder-based structure, which helps us in two

ways by reducing the data dimension. First, the encoder output will be com-

pressed data that are as uncorrelated as possible. Secondly, processing can be

done on the reduced-dimension data with a simpler network, significantly reduc-

ing the computational load. The paper’s main idea is that the dimensionality-

reduced data is appropriately processed using neural networks so that while the

utility of the dataset is maintained in terms of some features, the obfuscated

dataset is private in terms of other features. The advantages and contributions

of the proposed private learning algorithm are:

• The proposed scheme works well on both categorical and image datasets.

• In terms of utility-privacy trade-off, the proposed algorithm outperforms

other methods while using a much simpler structure that makes it more

suitable for use on weaker processors such as mobile and Internet of Things

(IoT) devices.

• The obfuscating model can be learned by a utility provider or any trusted

entity and then sent to the data providers for use. This removes the burden

of training the model from the data providers. It is also possible for each

4

data provider to adjust the level of privacy they need without changing

the model and just by tuning the noise. Further, the data providers are

given a parameter to adjust the data utility amount.

• In our proposed obfuscator, all the features are obscured except for non-

confidential ones, which makes it more private against adversaries who do

not have a specific goal. To put it more clearly, in our method, the feature

or features that the utility provider wants to infer are known, and the data

providers obscure the rest of the features.

The rest of the paper is organized as follows. The system model is described

in Section 2. The details of the proposed structure are discussed in Section 3.

Simulation results are included in Section 4. Finally, the paper is concluded in

Section 5.

2. System Model

The dataset D is a collection containing n samples of the instance space

Z = X × Y, in which X and Y are input and output spaces, respectively. We

assume that Y ∈ Y is a vector of features that are divided into private and non-

private categories in the form of Y = (YP,YNP). For example, in this paper,

we consider a set of face images as X , the smiling feature as non-private and

other features as private.

The data provider intends to deliver data to the utility provider for collab-

orative learning, and on the other hand, the confidentiality of some features is

important to him. Therefore, by converting X to X′, the data provider aims

to keep all features private except the non-private one while the utility of the

dataset is acceptable in terms of the non-private feature. The function that con-

verts X to X′ is an obfuscator; the amount of ambiguity it adds to the dataset

determines the utility-privacy trade-off. The Obfuscator, adversary, and utility

provider are shown in Fig. 2. Here, UP and UNP are private and non-private

features, respectively, that are inferred by the adversary and the utility provider

from the obfuscated dataset.

5

ObfuscatorX X′

Utility Provider

kψ2

Adversary

hψ1

UP

UNP

Figure 2: Adversary and utility provider are two deep neural networks with ψ1 and ψ2 pa-

rameters, respectively, which receive obfuscated data as input and try to extract private and

non-private features, respectively.

Threat Model

We assume the adversary is a machine learning model that seeks to extract a pri-

vate feature from the obfuscated dataset. We also assume that the data provider

does not know what feature or features the adversary looks for. Therefore, the

data provider tries to obfuscate all features other than the utility provider’s

demands. In this paper, we consider two types of adversaries.

• Weak adversary: This type of adversary does not have access to the obfus-

cation model and only has the obfuscated dataset. Therefore, it is trained

using a dataset similar to the original dataset (non-obfuscated) and then

extracts the desired feature from the obfuscated dataset.

• Strong adversary: This type of adversary introduced in [33] has access

to obfuscator model. Therefore, it creates an obfuscated dataset from a

dataset similar to the original dataset. Now it has a dummy obfuscated

dataset, and on the other hand, it has the exact value of the feature it

wants to infer and trains its network using supervised learning.

Utility Provider

A utility provider is a deep neural network (DNN) classifier trained on the

obfuscated dataset to infer one or more features. Other users can utilize this

network to infer features from the unobfuscated dataset available to them. It is

assumed that the data provider is aware of non-private features.

6

Obfuscator

The paper’s main idea is to decorrelate private and non-private features and

then obfuscate the private features while enhancing the non-private ones. For

this purpose, as shown in Fig. 3, the dimension of the data is reduced by using

the autoencoder, and decorrelation is done inside it. We employ autoencoder

for three reasons:

1. By reducing the dimension, the autoencoder reduces the utility of the data

and increases its privacy.

2. Encoder produces uncorrelated output by compressing data and removing

redundancy.

3. By reducing the dimension of the data, the intermediate networks that

have the task of separating non-private features from compressed data

will have a much simpler structure.

X Eα
V

Cθ

Rφ
WP

WNP

f(·)

g(·)

W′
P

W′
NP

‖ V′ Dβ X′

Figure 3: The obfuscator consists of an autoencoder, inside which the private and non-private

features are intelligently separated. Then, the private features are combined with the noise

appropriately while the non-private features are enhanced. Then the decoder constructs the

obfuscated dataset from all the manipulated features.

The autoencoder consists of encoder Eα and decoder Dβ , and the coded data

is determined by V. More precisely,

V = Eα(X) . (1)

Here, the encoder and decoder are DNNs whose parameter sets are indicated

by α and β, respectively.

Now, we make two sets of data from the reduced dimensional and meaning-

less coded data V.

7

1. The DNN Cθ with parameter θ: It is actually a classifier that takes mean-

ingless data V and produces meaningful features WNP = Cθ (V). The

features represented by WNP are the ones we want to remain useful.

2. The DNN Rφ with parameter φ: Its output contains information from V

that is appropriately uncorrelated from WNP. We want to keep this part

of the information as confidential as possible, so we have shown it with

WP.

In the next step, we apply the functions f(·) and g(·) to obtain the data W′
P

and W′
NP, respectively, and create V′ by putting them together. In the final

step, the decoder will convert V′ to X′. Now we have to design parameters α,

β, φ, θ and functions f(·) and g(·). For this purpose, we consider the following

properties to balance privacy and utility.

(P1) To preserve the utility of the original dataset, we like X and X′ to be as

similar as possible. For this purpose, we will minimize the following loss

function.

Lae(α, β, φ, θ) = E
[
`(X,X′)

]
, (2)

where the expectation is over the distribution of X. Additionally, X′

without considering the functions f(·) and g(·) is equal to

X′ = Dβ

(
Cθ(V) ‖ Rφ(V)

)
. (3)

(P2) To make WNP useful for utility provider, we consider minimizing the fol-

lowing.

LC(α, θ) = E
[
` (WNP,YNP)

]
, (4)

where the expectation is over the joint distribution of X and Y.

(P3) Suppose that adversary hψ1
is a DNN with parameter ψ1 that is well

trained on a dataset similar to the original dataset/dummy obfuscated

8

dataset (weak/strong) to infer private features YP. As a result, the ad-

versary wants to minimize the following loss function, while we want it to

be maximized.

Lhψ1
(f, g) = E

[
`
(
hψ1 (Dβ (W′

NP ‖W′
P)) ,YP

)]
. (5)

(P4) Suppose that utility provider kψ2
is a DNN with parameter ψ2 that is

well trained on the obfuscated dataset to infer certain non-private feature

YNP. As a result, the utility provider wants to minimize the following loss

function.

Lkψ2
(f, g) = E

[
`
(
kψ2

(Dβ (W′
NP ‖W′

P)) ,YNP

)]
. (6)

The design of the proposed network is done in two stages. In the first step,

assuming the absence of functions f(·) and g(·) and using (P1) and (P2), the

network parameters are calculated as follows.

α∗, β∗, φ∗, θ∗ = arg min
α,β,φ,θ

Lae(α, β, φ, θ) + LC(α, θ). (7)

Then f(·) and g(·) are optimized according to the following optimization prob-

lem.

(f∗, g∗) = arg max
f,g

Lhψ1
(f, g)− Lkψ2

(f, g). (8)

3. Methodology

As mentioned in the previous section, (7) is used to train DNNs Eα, Dβ ,

Cθ and Rφ. In addition, instead of solving the optimization problem in (8), we

design the functions f(·) and g(·) intelligently. Further, the proposed scheme is

examined on two image and categorical datasets to measure its performance in

various applications.

3.1. Image Dataset

CelebA is chosen as the dataset, a collection of large-scale facial features [34].

Facial images with size 64× 64× 3 are input, and their labels are different fea-

tures, including age, gender, etc. To compare the performance of the proposed

9

scheme with the previous works, the desired features of open mouth, smiling,

and high cheekbone have been selected, which are denoted by “CelebA-G-M”,

“CelebA-G-S”, “CelebA-G-C”, respectively. Here “G” stands for gender, which

is the feature the adversary is looking for. It should be noted that we assume

that the data providers do not know which feature is confidential.

DNNs Structures

Inspired by VGG-16 network [35], the building blocks of the autoencoder, i.e.

Eα and Dβ , both consist of 4 2D-convolutional layers, 3 batch normalization

layers, and 1 fully-connected layer. Eα takes images with size 64 × 64 × 3 and

produces 1024 features as output. In other words, the V size equals 1024. The

decoder then converts a vector of manipulated features with size 1024 into a

64× 64× 3 image.

Two fully-connected networks Cθ and Rφ are used in the middle of the au-

toencoder. Cθ is a 4-layer fully-connected network that converts the input of

size 1024 into 2 outputs expressing the desired feature of the utility provider.

Rφ is a 3-layer fully-connected network that converts the input of size 1024 into

1022 outputs representing the rest of the features that are well uncorrelated

with the desirable feature of the utility provider. The DNNs structure details

are given in Table 1.

Loss Functions

We use the mean square error measure as the loss function of the autoencoder

and the negative log-likelihood as the loss function of the classifier. More pre-

cisely, we have

Lae =
1

N

N∑
j=1

(
Xj −X ′j

)2
(9)

LC = −
M∑
j=1

YNP,j log (WNP,j) + (1− YNP,j) log (1−WNP,j) , (10)

where N and M are the dimensions of the vectors X and YNP, respectively.

Moreover, the negative log-likelihood loss function has been used to train the

utility provider and adversary.

10

Table 1: DNNs architecture details for image datasets.

Component Num Layer Output Size Specs Activation Function

Input Data Image Samples 3× 64× 64

Encoder 1 Conv2D 64× 32× 32 kernel=4, stride=2, padding=1 LeakyReLU

2 Conv2D 64× 16× 16 kernel=4, stride=2, padding=1

3 BatchNorm2D eps=1e-5, momentum=0.1 LeakyReLU

4 Conv2D 64× 8× 8 kernel=4, stride=2, padding=1

5 BatchNorm2D eps=1e-5, momentum=0.1 LeakyReLU

6 Conv2D 128× 4× 4 kernel=4, stride=2, padding=1

7 BatchNorm2D 128× 4× 4 → 2048 (shaped) eps=1e-5, momentum=0.1 LeakyReLU

8 Linear 1024 LeakyReLU

Classifier 1 Linear 1024 Dropout(p=0.5) LeakyReLU

2 Linear 256 Dropout(p=0.5) LeakyReLU

3 Linear 64 LeakyReLU

4 Linear 2 LogSoftMax

R 1 Linear 1024 Dropout(p=0.5) LeakyReLU

2 Linear 1024 Dropout(p=0.5) LeakyReLU

3 Linear 1022 LeakyReLU

Decoder 1 Linear 2048 → 128× 4× 4 (shaped) LeakyReLU

2 ConvTranspose2D 64× 8× 8 kernel=4, stride=2, padding=1

3 BatchNorm2D eps=1e-5, momentum=0.1 ReLU

4 ConvTranspose2D 64× 16× 16 kernel=4, stride=2, padding=1

5 BatchNorm2D eps=1e-5, momentum=0.1 ReLU

6 ConvTranspose2D 64× 32× 32 kernel=4, stride=2, padding=1

7 BatchNorm2D eps=1e-5, momentum=0.1 ReLU

8 ConvTranspose2D 3× 64× 64 kernel=4, stride=2, padding=1 Sigmoid

Adversary 1 Conv2D 64× 32× 32 kernel=4, stride=2, padding=1 LeakyReLU

and 2 Conv2D 64× 16× 16 kernel=4, stride=2, padding=1

Utility Provider 3 BatchNorm2D eps=1e-5, momentum=0.1 LeakyReLU

4 Conv2D 64× 8× 8 kernel=4, stride=2, padding=1

5 BatchNorm2D eps=1e-5, momentum=0.1 LeakyReLU

6 Conv2D 128× 4× 4 kernel=4, stride=2, padding=1

7 BatchNorm2D 128× 4× 4 → 2048 (shaped) eps=1e-5, momentum=0.1 LeakyReLU

8 Linear 1024 LeakyReLU

9 Linear 1024 Dropout(p=0.5) LeakyReLU

10 Linear 256 Dropout(p=0.5) LeakyReLU

11 Linear 64 LeakyReLU

12 Linear 2 LogSoftMax

Training

The training phase is explained in Algorithm 1. A batch with the size of nb

samples is taken from the dataset, and the parameters of all the DNNs Eα, Rφ,

Cθ, and Dβ are updated using the loss function defined in (9). Then, keeping

the networks Rφ and Dβ unchanged, we update the Eα and Cθ parameters using

the loss function in (10) and repeat this for ne epochs. It should be noted that

the training process is carried out without considering functions f(·) and g(·).

11

Algorithm 1 Training phase of the framework

Input: Training dataset samples X

parameter: learning rate a

parameter: training steps ne and nb

Output: Obfuscator Model

Initialization.

1: for ne epochs do

2: Randomly select the mini-batch

from the training data set.

3: for i = 0 to nb iterations do

4: Update the decoder parameters:

βi+1 = βi − a∇βLae(βi,X)

5: Update Rφ parameters:

φi+1 = φi − a∇φLae(φi,X)

6: Update the classifier parameters:

θi+1 = θi − a∇θLae(θi,X)− a∇θLC(θi,X,YNP)

7: Update the encoder parameters:

αi+1 = αi − a∇αLae(αi,X)− a∇αLC(αi,X,YNP)

8: end for

9: end for

10: return

As can be seen in Algorithm 1, in each iteration, the weights are updated

based on both the autoencoder and classifier loss functions, which makes not

only the output of the autoencoder remain as similar as possible to the input

data (maintain its utility), but also the output of the classifier (desirable feature)

is well uncorrelated from the rest of the features.

Selection of Functions f(·) and g(·)
It is difficult to solve the optimization problem (8) to obtain optimal functions.

Instead of optimally choosing these functions, here we introduce a natural and

intelligent choice for them.

The function g(·) should be chosen to contributes to the dataset’s utility

12

for inferring non-private data. Therefore, a natural choice is to modify the

classifier’s output according to the labels in the original dataset. Assume that we

consider smiling a feature required by the utility provider; since the LogSoftMax

function is selected as the last layer of the classifier, the exponential value of

its output represents the probability of smiling or not smiling, which can be

between 0 and 1. Therefore, the function g(·) changes the output produced by

the classifier to log(0) or log(1) depending on whether the image in the original

dataset is smiling or not smiling. It should be noted that since log(0) cannot

be used, we instead choose a sufficiently large negative value and call it λ. The

reason for using LogSoftMax in the last layer of the classifier is that the output

values of the classifier and the network Rφ are in the same numerical range,

and both are effective in the obfuscated output image. Also, the existence of

the λ parameter will effectively control the utility of the obfuscated dataset.

Using SoftMax instead of LogSoftMax makes the obfuscator not converge or

converge after a large number of epochs. In addition, using LogSoftMax has

better numerical properties and makes training more stable [36].

The input to the function f(·) are the features we want to remain private and

are well uncorrelated from the non-private features. Therefore, adding Gaussian

noise is a suitable choice for the function f(·). The higher the amount of noise,

the higher the level of privacy, and of course, the usefulness of the dataset is

affected from the point of view of all features except non-confidential features.

The effect of changing noise variance and λ has been evaluated with simulations.

Utility Provider and Adversary Structures

The structure of both of them is similar to the structure of the encoder plus

classifier. The only difference will be in the output number of the last layer,

which is proportional to the number of private features desired by the adversary

or the number of features desired by the utility provider for inference.

Measurement of Utility and Privacy

We assume that the adversary intends to infer the binary feature of gender

(male/female) from the obfuscated dataset. The adversary is trained to infer

this feature and then applied to the obfuscated dataset. Its accuracy in correctly

13

diagnosing males or females is considered a measure of confidentiality.

The features of open mouth, smiling, and high cheekbone are considered as

desirable features of the utility provider. We train the utility provider on the ob-

fuscated dataset and then test the trained network on the original dataset. The

accuracy of the utility provider in the desired feature recognition is considered

a measure of utility.

As stated in the introduction, a significant drawback of the methods pro-

posed for data privacy is that each data provider must separately train a network

for this purpose. That puts a lot of burden on data providers. In our proposed

method, the utility provider or a trusted authority can design and train an ob-

fuscator according to the feature he wants to remain useful and share it among

all data providers. Each data provider can then simply adjust the model’s

utility-privacy trade-off by adjusting the noise level and the value of λ based on

their sensitivity to their data.

3.2. Categorical Dataset

UCI Adult dataset includes census data of 48842 people and 14 categorical

and continuous features of them [37]. Putting [28] as a benchmark, we convert

the 14 features into a vector of length 106 by removing missing value data,

normalizing the variables, and using one-hot encoding for categorical features.

The binary features of income (more or less than 50K per year) and gender are

considered the demands of the utility provider and the adversary, respectively.

In addition, the binary features of gender and income, which are adversary and

utility provider preferences, are removed from the dataset. The resulting dataset

with a feature vector of length 102 is used for training networks.

DNNs Structures

All DNNs comprise 3 fully-connected layers, except Rφ, which comprises 2 fully-

connected layers. The details of the DNNs are given in Table 2.

Utility Provider and Adversary Structures

Utility provider and adversary are 4-layer fully-connected networks that take

an input of size 102 and convert it into 2 outputs (gender (male/female) for the

14

Table 2: DNNs architecture details for categorical datasets.

Component Num Layer Output Size Specs Activation Function

Input Data Samples 102

Encoder 1 Linear 128 ReLU

2 Linear 128 ReLU

4 Linear 64 ReLU

Classifier 1 Linear 32 ReLU

2 Linear 8 ReLU

4 Linear 2 LogSoftMax

Rφ 1 Linear 64 ReLU

2 Linear 62 ReLU

Decoder 1 Linear 128 ReLU

2 Linear 128 ReLU

4 Linear 102 Sigmoid

Adversary 1 Linear 256 Dropout (p=0.2) ReLU

and 2 Linear 256 Dropout (p=0.3) ReLU

Utility Provider 3 Linear 128 Dropout (p=0.4) ReLU

4 Linear 2 LogSoftMax

adversary and income (≷ 50K) for the utility provider). Details are in Table 2.

4. Experiments

The proposed scheme is implemented in this section, and its performance is

compared with other methods.

4.1. Experiments Settings

To compare and evaluate the performance, the settings (Input dataset, the

size ratio of training, validation and test sets, etc.) used for image and categor-

ical datasets are similar to [24] and [28], respectively. For the image dataset,

the desirable features of the utility provider are open mouth, smiling, and high

cheekbone, and the private feature is gender. For the categorical dataset, the

utility provider is interested in inferring income (is it more or less than 50K per

year?), and the adversary is interested in understanding gender.

15

Dataset

We choose CelebA as our image dataset. CelebA is a large-scale facial feature

dataset with 202, 599 face images from 10, 177 identities and 40 binary feature

labels (such as gender, age, smile, etc.) in each image. 162, 752 samples were

used as a training set, and the rest were used as a test and validation set. The

obfuscator is trained on the training set and is validated in each epoch using

the validation set. Finally, the performance of the network is evaluated on the

test set. To learn the adversary, again, the CelebA dataset is used considering

the gender feature as the data to be inferred while the utility provider training

is done on the obfuscated dataset, and then the utility provider performance is

tested on the non-obfuscated dataset.

UCI Adult has been selected as a categorical dataset containing the census

data of 48842 people. As explained in the previous section, with pre-processing

corresponding to each record, we have a feature vector with length 106. The

desired features of the utility provider and the adversary are income and gender.

80% of the dataset is used for training and the rest for testing.

Implementation Details

Our experiment is implemented by PyTorch [38] on Google Colab GPUs. The

size of the images is 64×64×3, and the mini-batch technique is used with a batch

size of nb = 64. We use Adam optimizer [39] to train all our networks and set

the learning rate of all optimizers to 0.001. Obfuscator, adversary, and utility

provider training have been conducted with similar setups. The initial value

of the weights for all networks is randomly generated with a Gaussian random

variable with a variance of 0.02 and an average of 0 for the convolutional layers

and an average of 1 for the batch normalization layers. In addition, when the

validation loss starts to increase, we stop the learning algorithm and use dropout

with probability 0.5 in some layers to protect the training from overfitting.

For the categorical dataset, we have 48842 records, and corresponding to

each record after one-hot encoding, there is a feature vector with length 106.

We use 39074 records for training and the rest for testing. Also, we remove the

features of income and gender, which are the demands of the utility provider

16

and the adversary, respectively, from the dataset and use the resulting dataset

for obfuscator training. Weights are initialized by Gaussian distribution with

mean 0 and variance 0.02.

The implementation codes of the proposed scheme are available in https:

//github.com/bozorgmehr77/adjustable-privacy.

4.2. Experiments Results

Let’s assume smiling is the desire of the utility provider, and gender is the

adversary’s desire. By training the obfuscator on the CelebA dataset for several

epochs, the validation and training errors of the autoencoder are plotted in Fig.

4. As can be seen from Fig. 4, with the increase in the number of epochs,

the training and validation errors related to the autoencoder are both reduced

and as a result, the obfuscated image X′ is getting closer to the original image

X. Therefore, according to Fig. 4, the PSNR between X and X′ increases.

Reducing the autoencoder error makes the obfuscated image remain as useful

as possible despite the compression, while the classifier helps to preserve the

desired feature (smiling here) well in the final dataset. Therefore, controlling

the errors of the autoencoder preserves the desired feature and makes it well

uncorrelated from other features. Later, in subsection 4.2.3, we will discuss the

validation of the obfuscator training process.

After the training phase, we activate the functions f(·) and g(·). The func-

tion g(·) converts the output of the classifier to log(0) ≈ λ and log(1) = 0

depending on the smiling feature in the original dataset, and the function f(·)
is an additive white Gaussian noise (AWGN) with µ = 0 and variance propor-

tional to ν. Here, ν is the average of the R output nodes for each record.

Suppose the model corresponding to the epoch number 183 is selected, the

noise variance is set to 60ν, and λ = −3000. Then we convert the whole dataset

D to dataset D′ by passing through obfuscator. Now the adversary infers the

gender from the obfuscated dataset, and its accuracy in recovering the gender,

which is our privacy criterion, in weak and strong cases are %53.55 and %63.24,

respectively, while the accuracy of gender inference from the main dataset is

17

https://github.com/bozorgmehr77/adjustable-privacy
https://github.com/bozorgmehr77/adjustable-privacy

0 25 50 75 100 125 150 175 200
Epoch

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

M
SE

L
os

s Training Loss
Validation Loss
PSNR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

PS
N

R
(d

B
)

Figure 4: Training and validation losses related to

autoencoder.

equal to %97.30. Therefore, the proposed algorithm has strengthened privacy

in weak and strong adversarial cases by %43.75 and %34.06, respectively.

In terms of utility, assuming that the utility provider is trained with the

obfuscated dataset, its inference accuracy for the smiling feature from the orig-

inal dataset is equal to %85.43. But if it is trained on the main dataset, this

value will equal %91.92. This slight decrease of %6.49 in usefulness shows the

strength of the proposed method.

4.2.1. Effect of Noise Variance on Utility-Privacy Trade-off

The noise variance is a parameter the data provider can use to adjust privacy.

Considering the CelebA-G-S case, we train the obfuscator for 200 epochs. We

set λ equal to −3000 and change the noise variance in the interval [0, 200ν]. Fig.

5 shows the changes in privacy and utility with noise variance. This figure gives

the results for weak and strong adversaries and the case where the function g(·)
is not applied. The following points are evident from Fig. 5.

• By increasing the noise, the utility increases slightly first because adding

a small amount of noise makes the dataset more diverse. As a result, the

18

0 25 50 75 100 125 150 175 200
Noise Variance / ν

0.0

0.2

0.4

0.6

0.8

1.0
A

dv
er

sa
ry

or
U

ti
lit

y
Pr

ov
id

er
A

cc
ur

ac
y

The Maximum Accuracy of Gender Inference from The Original Dataset (0.988).

The Maximum Accuracy of Smiling Inference from The Original Dataset (0.949).

Information Leakage (Weak Adversary, λ = −3000)
Information Leakage (Strong Adversary, λ = −3000)
Utility (λ = −3000)

Information Leakage (Weak Adversary, Without g(·))
Information Leakage (Strong Adversary, Without g(·))
Utility (Without g(·))

Figure 5: Utility and privacy in terms of the increase of noise variance for the CelebA-G-S

and considering the cases where the function g(·) is active or inactive.

utility provider is better trained on it. With the further increase of the

noise and in the presence of the function g(·), the utility decreases slightly,

while without applying g(·), the decrease is more significant. Therefore,

the presence of the function g(·) preserves the dataset’s utility regarding

the smiling feature.

• Comparing the utility and privacy curves for the case where the g(·) func-

tion is disabled, and we don’t have noise (the starting point of the curves)

with the maximum utility and privacy values shows that the privacy and

utility have dropped by 0.066 and 0.093, respectively. The lower amount

of utility loss is because the presence of the classifier makes the feature of

smiling (non-confidential) better preserved.

• For both strong and weak adversaries, privacy is strengthened by increas-

ing the noise variance until it reaches the saturation limit. The saturation

value for a weak adversary is about 50%, which is the same as a random

guess, and for a strong adversary, it is 60%.

• The comparison of privacy for two cases of active and inactive g(·) function

19

0.5 0.6 0.7 0.8 0.9 1.0
Adversary Accuracy

0.5

0.6

0.7

0.8

0.9
U

ti
lit

y
Pr

ov
id

er
A

cc
ur

ac
y

M
ax

Le
ak

ag
e

Max Utility

Weak Adversary
Strong Adversary

Figure 6: Utility-privacy trade-off for case CelebA-G-S with strong and weak adversaries.

shows that g(·) does not have much effect on privacy.

Moreover, the utility-privacy trade-off curves for strong and weak adversaries

are depicted in Fig. 6. The horizontal axis represents information leakage as a

measure of privacy, and the vertical axis represents utility. The ideal point is

(0.5, 1); the closer the curve is to this point; the better the algorithm is from

the point of view of the utility-privacy trade-off. It can be seen that the curve

has shifted to the right for the strong adversary.

4.2.2. Effect of λ on Utility-Privacy Trade-off

λ is a parameter that affects the utility of the dataset. Considering the

case CelebA-G-S, the utility-privacy trade-off for λ ∈ {−5000,−3000,−1000},
the case where the function g(·) is not applied, and the noise variances of

{0, 5, 10, 15, 20}ν are plotted in Fig. 7. The adversarial type is weak, and

points related to not adding noise are marked with a cross. Further, the max-

imum utility and information leakage shown in the figure corresponds to the

accuracy of inferring smiling and gender features by the utility provider and the

adversary, respectively. The following points can be deduced from Fig. 7.

• By increasing the value of |λ|, the effect of the output value of the classifier

20

0.5 0.6 0.7 0.8 0.9 1.0
Adversary Accuracy

0.5

0.6

0.7

0.8

0.9
U

ti
lit

y
Pr

ov
id

er
A

cc
ur

ac
y

λ = −3000, Without f (·)

λ = −1000, Without f (·)
λ = −5000, Without f (·)

Without g(·) and f (·)

M
ax

Le
ak

ag
e

Max Utility

λ = −3000
λ = −1000
λ = −5000

Without g(·)

Figure 7: Comparison of the utility-privacy trade-off for case CelebA-G-S and different

values of λ.

increases. As a result, the power of inferring the desired feature of the

utility provider increases in high noise. On the other hand, the diversity

of the dataset is reduced, and the effect of other features fades, which

leads to a small increase in privacy. By decreasing the value of |λ|, the

inference power of the utility provider decreases and, consequently, the

utility. Therefore, to maintain the dataset’s diversity and the accuracy of

the utility provider’s inference, the value of λ should be well adjusted.

• Increasing the value of |λ| reduces the diversity of the dataset, and in low

noise variances, it leads to a slight decrease in utility.

• With the addition of noise, the utility generally decreases. However, for

λ = −3000, the utility is almost constant for a relatively wide range of

noise variances, which makes it a suitable candidate.

Considering the case CelebA-G-S, the effect of different amounts of noise

and λ is given visually in Fig. 8.

21

Original Dataset

Var = 10ν and without g(·)

Var = 10ν and λ = −3000

Var = 20ν and λ = −3000

Var = 10ν and λ = −5000

Var = 20ν and λ = −5000

Figure 8: Obfuscated images using different values of noise variance and λ.

4.2.3. Effect of Epoch Number on Utility-Privacy Trade-off

As seen in Fig. 4, the autoencoder error continuously decreases with increas-

ing epochs. However, to validate the training process, the overall performance

of the obfuscator should be evaluated, and the epoch number should be deter-

mined based on this overall performance to have a satisfactory model. For this

purpose, ignoring the functions f(·) and g(·), the inference accuracy of smiling

and gender features by the well-trained networks is plotted in Fig. 9. As you

can see, with the increase in the number of epochs, both curves climb to a high

value, which shows that both the utility provider has a good performance and

the dataset remains diverse in terms of features other than non-private ones.

Therefore, by increasing the number of epochs, the overall performance of the

obfuscator will be better.

Consider the case CelebA-G-S and choose the models corresponding to the

epoch numbers 13 and 183. According to Fig. 9, in epoch 13, the accuracy of

inferring smiling is high, while the accuracy of gender inference is low. Herefore,

the feature of smiling is well preserved while other features are somewhat de-

graded. In epoch 183, where the autoencoder is well trained (based on Fig. 4),

the accuracy of both smiling and gender inference is high, indicating that both

22

0 25 50 75 100 125 150 175 200
Obfuscator Model Number (Training Epoch Number)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

A Well-Trained Network for Gender Inference
A Well-Trained Network for Smiling Inference

Figure 9: Accuracy of well-trained networks for extracting

gender and smiling features by the number of epochs.

the classifier is well trained, and diversity of the obfuscated dataset is preserved.

Suppose λ is −3000 and −2000 for epochs 13 and 183, respectively, and we

have a weak adversary; the utility-privacy trade-off is plotted in Fig. 10 for

epochs 13 and 183. As you can see in the figure, more training has led to an

increase in utility and a slight decrease in privacy. The reason for the reduction

of privacy is that by reducing the autoencoder error, the output image preserves

as many of the features of the input image as possible. As a result, the private

feature is also present in the obfuscated dataset with higher quality. Regarding

the utility, with less training of the autoencoder, the resulting dataset has less

diversity, which will lead to less utility. Therefore, the model corresponding to

a higher epoch performs better regarding the utility-privacy trade-off, and the

obfuscator is not overfitted until at least epoch 200.

It should be noted that the values of λ = −2000,−3000 have been chosen

so that the models related to epochs 13 and 183 perform well, as shown in

Figs. 11 and 12. To depict these two figures, assuming that the function f(·)
is inactive, the accuracy of two well-trained networks for inferring smiling and

gender features has been evaluated in terms of the λ parameter on the obfuscated

23

0.5 0.6 0.7 0.8 0.9 1.0
Adversary Accuracy

0.5

0.6

0.7

0.8

0.9
U

ti
lit

y
Pr

ov
id

er
A

cc
ur

ac
y

Epoch number = 183, λ = −3000, Without f (·)

Epoch number = 183, Without g(·) and f (·)

Epoch number = 13, λ = −2000, Without f (·)

Epoch number = 13, Without g(·) and f (·)

M
ax

Le
ak

ag
e

Max Utility

Epoch Number = 183
Epoch Number = 13

Figure 10: Comparison of utility-privacy trade-off for obfuscator corresponding to models

No. 13 and 183.

test set. The optimal λ point, as shown in the figure, is where both networks

have reached high accuracy, and the accuracy of the gender-inferring network

has not dropped too much to have diversity in the constructed data set. Here,

gender represents all the features except non-private ones.

4.2.4. Decorrelation

In this section, we show that the proposed obfuscator makes the utility

provider’s desired feature well uncorrelated from the rest of the features. For

this purpose, consider the case CelebA-G-S and set λ to −3000. We also assume

that the function f(·) is not applied. For each image, we randomly change the

output of the classifier to 0 or −3000 (smiling or not) and give it to the decoder

along with the Rφ output vector without applying noise to generate a new image.

The output image is labeled smiling or not smiling by the utility provider. The

histogram of inferring the smiling feature by the utility provider is given in

Fig. 13. As you can see, the images are well separated regarding smiling or not

smiling. This shows that the classifier’s output has almost complete control over

the smiling feature, and the Rφ output has almost no effect on the inference of

24

−10000 −8000 −6000 −4000 −2000 0
λ

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y A Well-Trained Network for Gender Inference
A Well-Trained Network for Smiling Inference
λ = −2000

Figure 11: Choosing a suitable λ for obfuscator corresponding

to the model number 13 and case CelebA-G-S.

−10000 −8000 −6000 −4000 −2000 0
λ

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y A Well-Trained Network for Gender Inference
A Well-Trained Network for Smiling Inference
λ = −3000

Figure 12: Choosing a suitable λ for obfuscator corresponding

to the model number 183 and case CelebA-G-S.

this feature.

25

0.0 0.2 0.4 0.6 0.8 1.0
Output of Utility Provider

0

2500

5000

7500

10000

12500

15000

17500

N
um

be
r

of
O

cc
ur

re
nc

e

Smiling
Not Smiling

Figure 13: Histogram of the utility provider prediction when the classifier’s output is

randomly labeled smiling or not smiling.

4.2.5. Comparison with Similar Works

In this section, we have compared the proposed scheme with the methods of

different references regarding the utility-privacy trade-off. For this purpose, the

results obtained in [24] have been used. This comparison has been made for all

three cases of CelebA-G-M, CelebA-G-S, and CelebA-G-C and for both weak

and strong adversaries. As is evident from Figs. 14, 15 and 16, the proposed

model outperforms other methods. The references of the algorithms used for

comparison are mentioned in the figure. “Noise” refers to adding Gaussian noise

with zero mean and variance 40 as done in [22]. In the learned noise method,

first, a noise gets into a DNN, and the output is added to the dataset [20, 21]. To

make a fair comparison, the adversary and the utility provider are designed to

be almost identical to the previous works regarding maximum privacy and util-

ity. Another positive point about the proposed scheme is that utility provider

converges in low epochs, generally less than 10. Strong adversaries are con-

sidered in the case of curves related to previous work. In addition, the utility

provider is trained on the obfuscated dataset, and its accuracy is checked on the

26

0.5 0.6 0.7 0.8 0.9 1.0
Adversary Accuracy

0.5

0.6

0.7

0.8

0.9
U

ti
lit

y
Pr

ov
id

er
A

cc
ur

ac
y

Proposed Scheme (Weak Adversary - Without f (·))

Proposed Scheme (Strong Adversary - Without f (·) and g(·))

M
ax

Le
ak

ag
e

Max Utility

Proposed Scheme (Weak Adversary)
Proposed Scheme (Strong Adversary)
Sanitizer [24]
GAP [20, 21]
TIPRDC [22]
Noise
Learned Noise

Figure 14: Comparison of utility-privacy trade-off for different methods for case

CelebA-G-M.

obfuscated dataset, while the logical assumption is that the accuracy should be

calculated on the original dataset (similar to what we did in this paper). As you

can see in the figure, the performance curve will be better assuming the same

utility provider as the previous works.

4.2.6. Categorical Dataset

For the categorical dataset, the performance of the proposed algorithm is

compared with the previous methods in terms of utility-privacy trade-off in Fig.

17. All curve values of previous works are taken from [28]. AE-PUPET, UAE-

PUPET, VAE-PUPET, and b-VAE-PUPET methods are related to [28], and

VFAE, LMFIR, and emb-g-filter methods are introduced in [29], [30], and [31],

respectively.

4.2.7. Area Under Curve

Calculating the area under the curve (AUC) can be a good measure to

compare different algorithms regarding the utility-privacy trade-off. For this

purpose, we consider the convex hull of the curve and then calculate AUC

[28]. AUC values for different schemes are compared in Table 3. The AUC of

27

0.5 0.6 0.7 0.8 0.9 1.0
Adversary Accuracy

0.5

0.6

0.7

0.8

0.9

U
ti

lit
y

Pr
ov

id
er

A
cc

ur
ac

y

Proposed Scheme (Strong Adversary - Without f (·))
Proposed Scheme (Strong Adversary - Without f (·) and g(·))

M
ax

Le
ak

ag
e

Max Utility

Proposed Scheme (Weak Adversary)
Proposed Scheme (Strong Adversary)
Sanitizer [24]
GAP [20, 21]
TIPRDC [22]
Noise
Learned Noise

Figure 15: Comparison of utility-privacy trade-off for different methods for case CelebA-G-S.

0.5 0.6 0.7 0.8 0.9 1.0
Adversary Accuracy

0.5

0.6

0.7

0.8

0.9

U
ti

lit
y

Pr
ov

id
er

A
cc

ur
ac

y

Proposed Scheme (Weak Adversary - Without f (·))

Proposed Scheme (Weak Adversary - Without f (·) and g(·))

M
ax

Le
ak

ag
e

Max UtilityProposed Scheme (Weak Adversary)
Proposed Scheme (Strong Adversary)
Sanitizer [24]
GAP [20, 21]
TIPRDC [22]
Noise
Learned Noise

Figure 16: Comparison of utility-privacy trade-off for different methods for case CelebA-G-C.

28

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Adversary Accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
U

ti
lit

y
Pr

ov
id

er
A

cc
ur

ac
y

VFAE [29]

LMFIR [30]

emb-g-filter [31]

M
ax

Le
ak

ag
e

Max Utility

Proposed Scheme
AE-PUPET [28]
UAE-PUPET [28]
VAE-PUPET [28]
b-VAE-PUPET [28]

Figure 17: Comparison of utility-privacy trade-off for different methods on UCI Adult dataset.

The desirable features of the adversary and the utility provider are gender and income, re-

spectively.

the proposed scheme for the image dataset is more than other methods, and

it competes with other methods in the case of the categorical dataset. For

comparison, to calculate AUC similar to [24], the origin point is considered

(0, 0), while it is logical to take the point (0.5, 0.5) as the origin.

4.3. Complexity Analysis

As you have seen in the previous sections, the proposed scheme for im-

age datasets performs better than the earlier works. In the case of categorical

datasets, it is almost close to the performance of the best available algorithm.

In addition to performance, the proposed algorithm has advantages over other

algorithms in terms of complexity and convergence time. The absence of a GAN

structure in the proposed scheme prevents convergence and stability problems

[40, 41, 42], which makes convergence faster than GAN-based algorithms. For

the categorical dataset, although our performance is slightly worse than the per-

formance of the algorithm in [28], as shown in Table 4, our obfuscator parameters

are about 25% of the parameters in the proposed network in [28]. Therefore,

our network structure is simpler and converges faster. Since [28] has used the

29

Image Dataset (CelebA-G-M) Convex Hull AUC (CelebA-G-S) Convex Hull AUC (CelebA-G-C) Convex Hull AUC

Sanitizer [24] 0.5210 0.5337 0.5241

TIPRDC [22] 0.5121 0.4690 0.4736

GAP [20, 21] 0.4701 0.4690 0.4715

Gaussian Noise 0.4701 0.4690 0.4709

Learned Noise 0.4701 0.4693 0.4709

Proposed Scheme 0.5790 0.5963 0.5566

Categorical Dataset Convex Hull AUC

AE-PUPET [28] 0.4236

UAE-PUPET [28] 0.4234

VAE-PUPET [28] 0.3995

b-VAE-PUPET [28] 0.4001

Proposed Scheme 0.4183

Table 3: Comparison of AUC convex hulls for utility-privacy trade-off curves.

Method Components Number of Parameters

Mandal et al. [28] Obfuscator, Utility Provider, and Adversary 338, 214

Proposed Scheme Obfuscator 88, 494

Table 4: Comparison of the complexity of the proposed scheme with the method presented in

[28] in terms of the number of parameters.

GAN structure, it should also train the adversary and the utility provider in

addition to the obfuscator, which increases the number of parameters.

5. Conclusion

This paper introduced a private method of data publishing using a struc-

ture based on an autoencoder. The simulation results show that the proposed

method establishes a good balance in trade-off between utility and privacy com-

pared to previous methods. Moreover, the presented method has two main

advantages over the earlier methods. First, each data provider can adjust the

privacy and utility level; secondly, there is no need to specify the private feature

for the obfuscation design.

30

Acknowledgment

This work was partially supported by Iran National Science Foundation

(INSF) under contract No. 97011231.

References

[1] L. Sankar, S. R. Rajagopalan, H. V. Poor, Utility-privacy tradeoffs in

databases: An information-theoretic approach, IEEE Transactions on In-

formation Forensics and Security 8 (6) (2013) 838–852.

[2] K. Kalantari, L. Sankar, O. Kosut, On information-theoretic privacy with

general distortion cost functions, in: 2017 IEEE International Symposium

on Information Theory (ISIT), IEEE, 2017, pp. 2865–2869.

[3] L. Sweeney, k-anonymity: A model for protecting privacy, International

journal of uncertainty, fuzziness and knowledge-based systems 10 (05)

(2002) 557–570.

[4] A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, `-

diversity: Privacy beyond k-anonymity, ACM Transactions on Knowledge

Discovery from Data (TKDD) 1 (1) (2007) 3–es.

[5] N. Li, T. Li, S. Venkatasubramanian, t-closeness: Privacy beyond k-

anonymity and `-diversity, in: 2007 IEEE 23rd international conference

on data engineering, IEEE, 2006, pp. 106–115.

[6] C. Dwork, A. Roth, et al., The algorithmic foundations of differential pri-

vacy, Foundations and Trends® in Theoretical Computer Science 9 (3–4)

(2014) 211–407.

[7] M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, P. Degano, C. Palamidessi,

Differential privacy: On the trade-off between utility and information leak-

age., Formal Aspects in Security and Trust 7140 (2011) 39–54.

31

[8] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,

L. Zhang, Deep learning with differential privacy, in: Proceedings of the

2016 ACM SIGSAC conference on computer and communications security,

2016, pp. 308–318.

[9] N. Phan, Y. Wang, X. Wu, D. Dou, Differential privacy preservation for

deep auto-encoders: an application of human behavior prediction, in: Thir-

tieth AAAI Conference on Artificial Intelligence, 2016.

[10] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, K. Talwar, Semi-

supervised knowledge transfer for deep learning from private training data,

arXiv preprint arXiv:1610.05755.

[11] E. Hesamifard, H. Takabi, M. Ghasemi, Cryptodl: Deep neural networks

over encrypted data, arXiv preprint arXiv:1711.05189.

[12] F. Emekçi, O. D. Sahin, D. Agrawal, A. El Abbadi, Privacy preserving

decision tree learning over multiple parties, Data & Knowledge Engineering

63 (2) (2007) 348–361.

[13] P. Mohassel, Y. Zhang, Secureml: A system for scalable privacy-preserving

machine learning, in: 2017 IEEE symposium on security and privacy (SP),

IEEE, 2017, pp. 19–38.

[14] A.-T. Tran, T.-D. Luong, J. Karnjana, V.-N. Huynh, An efficient approach

for privacy preserving decentralized deep learning models based on secure

multi-party computation, Neurocomputing 422 (2021) 245–262.

[15] R. Shokri, V. Shmatikov, Privacy-preserving deep learning, in: Proceedings

of the 22nd ACM SIGSAC conference on computer and communications

security, 2015, pp. 1310–1321.

[16] H. Zhu, R. Wang, Y. Jin, K. Liang, J. Ning, Distributed additive encryption

and quantization for privacy preserving federated deep learning, Neurocom-

puting 463 (2021) 309–327.

32

[17] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q.

Quek, H. V. Poor, Federated learning with differential privacy: Algorithms

and performance analysis, IEEE Transactions on Information Forensics and

Security 15 (2020) 3454–3469.

[18] Z. Kuang, Z. Guo, J. Fang, J. Yu, N. Babaguchi, J. Fan, Unnoticeable

synthetic face replacement for image privacy protection, Neurocomputing

457 (2021) 322–333.

[19] N. Raval, A. Machanavajjhala, J. Pan, Olympus: Sensor privacy through

utility aware obfuscation., Proc. Priv. Enhancing Technol. 2019 (1) (2019)

5–25.

[20] C. Huang, P. Kairouz, X. Chen, L. Sankar, R. Rajagopal, Context-aware

generative adversarial privacy, Entropy 19 (12) (2017) 656.

[21] P. Kairouz, J. Liao, C. Huang, M. Vyas, M. Welfert, L. Sankar, Generating

fair universal representations using adversarial models, IEEE Transactions

on Information Forensics and Security 17 (2022) 1970–1985.

[22] A. Li, Y. Duan, H. Yang, Y. Chen, J. Yang, Tiprdc: task-independent

privacy-respecting data crowdsourcing framework for deep learning with

anonymized intermediate representations, in: Proceedings of the 26th ACM

SIGKDD international conference on knowledge discovery & data mining,

2020, pp. 824–832.

[23] A. Li, J. Guo, H. Yang, Y. Chen, Deepobfuscator: Adversarial train-

ing framework for privacy-preserving image classification, arXiv preprint

arXiv:1909.04126 2 (3).

[24] A. Singh, E. Garza, A. Chopra, P. Vepakomma, V. Sharma, R. Raskar,

Decouple-and-sample: Protecting sensitive information in task agnostic

data release, in: Computer Vision–ECCV 2022: 17th European Conference,

Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XIII, Springer,

2022, pp. 499–517.

33

[25] S. A. Osia, A. Taheri, A. S. Shamsabadi, K. Katevas, H. Haddadi, H. R.

Rabiee, Deep private-feature extraction, IEEE Transactions on Knowledge

and Data Engineering 32 (1) (2018) 54–66.

[26] S. A. Osia, A. S. Shamsabadi, S. Sajadmanesh, A. Taheri, K. Katevas,

H. R. Rabiee, N. D. Lane, H. Haddadi, A hybrid deep learning architecture

for privacy-preserving mobile analytics, IEEE Internet of Things Journal

7 (5) (2020) 4505–4518.

[27] H. Nguyen, D. Zhuang, P.-Y. Wu, M. Chang, Autogan-based dimension

reduction for privacy preservation, Neurocomputing 384 (2020) 94–103.

[28] B. Mandal, G. Amariucai, S. Wei, Uncertainty-autoencoder-based privacy

and utility preserving data type conscious transformation, in: 2022 Inter-

national Joint Conference on Neural Networks (IJCNN), IEEE, 2022, pp.

1–8.

[29] C. Louizos, K. Swersky, Y. Li, M. Welling, R. Zemel, The variational fair

autoencoder, arXiv preprint arXiv:1511.00830.

[30] J. Song, P. Kalluri, A. Grover, S. Zhao, S. Ermon, Learning controllable

fair representations, in: The 22nd International Conference on Artificial

Intelligence and Statistics, PMLR, 2019, pp. 2164–2173.

[31] X. Chen, T. Navidi, S. Ermon, R. Rajagopal, Distributed genera-

tion of privacy preserving data with user customization, arXiv preprint

arXiv:1904.09415.

[32] F. Tramer, D. Boneh, Differentially private learning needs better features

(or much more data), arXiv preprint arXiv:2011.11660.

[33] N. Raval, A. Machanavajjhala, L. P. Cox, Protecting visual secrets using

adversarial nets, in: 2017 IEEE Conference on Computer Vision and Pat-

tern Recognition Workshops (CVPRW), IEEE, 2017, pp. 1329–1332.

34

[34] Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild,

in: Proceedings of the IEEE international conference on computer vision,

2015, pp. 3730–3738.

[35] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556.

[36] P. Contributors, Softmax - pytorch 2.0 documentation, accessed on March

19, 2023 (2023).

URL https://pytorch.org/docs/stable/generated/torch.nn.

Softmax.html

[37] D. Dua, C. Graff, et al., Uci machine learning repository.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imperative

style, high-performance deep learning library, Advances in neural informa-

tion processing systems 32.

[39] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980.

[40] I. Goodfellow, Nips 2016 tutorial: Generative adversarial networks, arXiv

preprint arXiv:1701.00160.

[41] N. Kodali, J. Abernethy, J. Hays, Z. Kira, On convergence and stability of

gans, arXiv preprint arXiv:1705.07215.

[42] S. A. Barnett, Convergence problems with generative adversarial networks

(gans), arXiv preprint arXiv:1806.11382.

35

https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html

	1 Introduction
	2 System Model
	3 Methodology
	3.1 Image Dataset
	3.2 Categorical Dataset

	4 Experiments
	4.1 Experiments Settings
	4.2 Experiments Results
	4.2.1 Effect of Noise Variance on Utility-Privacy Trade-off
	4.2.2 Effect of lambda on Utility-Privacy Trade-off
	4.2.3 Effect of Epoch Number on Utility-Privacy Trade-off
	4.2.4 Decorrelation
	4.2.5 Comparison with Similar Works
	4.2.6 Categorical Dataset
	4.2.7 Area Under Curve

	4.3 Complexity Analysis

	5 Conclusion

