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Abstract

Proactively and naturally guiding the dialog from the non-recommendation
context (e.g., Chit-chat) to the recommendation scenario (e.g., Music) is
crucial for the Conversational Recommender System (CRS). Prior studies
mainly focus on planning the next dialog goal (e.g., chat on a movie star)
conditioned on the previous dialog. However, we find the dialog goals can be
simultaneously observed at different levels, which can be utilized to improve
CRS. In this paper, we propose Dual-space Hierarchical Learning (DHL)
to leverage multi-level goal sequences and their hierarchical relationships for
conversational recommendation. Specifically, we exploit multi-level goal se-
quences from both the representation space and the optimization space. In
the representation space, we propose the hierarchical representation learning
where a cross attention module derives mutually enhanced multi-level goal
representations. In the optimization space, we devise the hierarchical weight
learning to reweight lower-level goal sequences, and introduce bi-level opti-
mization for stable update. Additionally, we propose a soft labeling strategy
to guide optimization gradually. Experiments on two real-world datasets
verify the effectiveness of our approach. Code and data are available here.
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1. Introduction

Recent years have witnessed the fast development of the Conversational
Recommender System (CRS) Sun and Zhang (2018); Konstantina et al.
(2018); Zhang et al. (2018); Yu et al. (2019); Lei et al. (2020a,b), which
aims to recommend proper items through human-machine natural language
interactions. Compared with traditional recommender systems which rely
on historical logs, CRS captures dynamic user interests by interacting with
users in a more free-form way (i.e. asking questions or recommending items).
Therefore, CRS has been widely adopted for various recommendation scenar-
ios, including e-commerce, search engine, and virtual assistant.

Rather than assuming users always bear in mind what they want, one
emerging direction Liu et al. (2020); Zhou et al. (2020) in CRS is to explore
proactively discovering users’ interests and naturally leading the conversation
from the non-recommendation context to the recommendation scenario. As
illustrated in Figure 1, the CRS can intelligently lead the goal type from QA
to Chit-chat on Stars and finally reach the goal of Music Rec. To achieve this
transition, the study in Liu et al. (2020) explicitly constructs dialog goal se-
quences and proposes a CNN based model to plan the next goal. Besides, the
study in Zhou et al. (2020) combines the sequential recommendation model
and the pre-trained language model to guide topic transitions by leveraging
various conversation signals. In summary, such methods learn a single repre-
sentation of previous goals which could then guide the conversation towards
the final recommendation goal.

However, after exploring large-scale recommendation dialogs, we observe
the sequence of dialog goals co-exists in multiple levels. Take the dialog
in Figure 1 again for example, we can observe the sequence of dialog goals
in at least two levels: the goal type level and the goal entity level. To be
specific, the goal type of the dialog first transits from QA to Chit-chat on
Stars and then reaches Music Rec. The corresponding goal entity sequence
can be summarized as Blood Brothers → Jacky Cheung → Cut My Heart.
Such multi-level dialog goal sequences are correlated and contain an intrin-
sic dependency hierarchy, which can be leveraged to enhance the next goal
planning capability and improve the effectiveness of CRS.

To this end, we propose the Dual-space Hierarchical Learning (DHL)
to exploit multi-level goal sequences for proactive and natural conversational
recommendation. Specifically, DHL models the hierarchical and sequential
structure of dialog goals from two spaces. In the representation space, we pro-
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Figure 1: An example of muti-level goal sequences in a human-machine conversation.

pose the hierarchical representation learning where a cross attention module
captures the hierarchical dependency between multi-level goal sequences. In
particular, the cross attention module consists of two symmetric components,
type2entity and entity2type, to derive mutually enhanced representations of
multi-level goal sequences. In the optimization space, a hierarchical weight
learning module is introduced to reweight goal sequences based on interme-
diate prediction results for better information use. More specifically, higher
accuracy of high-level prediction indicates more useful information for low-
level goal planning task, which is assigned with a larger hierarchical weight.
To avoid trivial solutions of joint model parameter and hierarchical weight
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optimization, we introduce bi-level optimization Luca et al. (2018) to dis-
till weak supervision signals from the training data for the stable update
of hierarchical weights. Additionally, we propose a soft labeling strategy to
guide the dialog to the final recommendation goal gradually. By assigning a
small parameter of the final recommendation goal to each one-hot encoded
current goal, the soft label can incorporate the global optimization direction
information in the model training phase. In summary, we make the following
three major contributions.

• To model hierarchical relationships between multi-level goal sequences
in the representation space, we propose the hierarchical representation
learning in which a cross attention module derives multi-grained goal
representations in a mutual reinforcement way.

• To leverage the hierarchical structure of goal sequences in the optimiza-
tion space, we develop the hierarchical weight learning to adaptively
reweight multi-level goal planning tasks. The bi-level optimization is
introduced to stabilize the update of hierarchical weights.

• To guide conversation to the final recommendation goal, we propose a
novel soft labeling strategy to adjust the global optimization direction.

We have conducted extensive experiments on two real-world conversational
recommendation datasets, and the results demonstrate the effectiveness of
our proposed approach.

2. Preliminaries

We first introduce some important definitions and then formalize the
problem we aim to investigate.

Let D = {dk}Nd
k=1 denote a set of dialogs, where Nd is the total number

of dialogs in the dataset. Each dialog dk ∈ D consists of multiple utterances
between user and machine.

Definition 1. Goal. A goal g is defined as the topic or knowledge (e.g., an
event, a movie star, etc.) the utterances focus on to keep the conversation
natural and engaging.

Depend on the granularity, the goal can be defined at different levels. In
this paper, we define dialog goals in three levels, (1) goal type gp describes the
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type of a sub-dialog (e.g., QA, Chit-chat and recommendation), (2) goal en-
tity ge means some entity the sub-dialog focuses about (e.g., some movie star
and music), and (3) goal attribute gr describes goal entity (e.g., descriptions
about the star like ”the best male singer”). Some consecutive utterances may
share the same goal. We use Np, Ne and Nr to denote the number of goal
type, goal entity, and goal attribute in D.

Definition 2. Goal sequence. Given a dialog di, the goal sequence gi =
[g1, g2, . . . , gf ] is defined as a knowledge path that describes the semantic tran-
sition of topics in di.

Note that gf denotes the final recommendation goal, which is predefined
before the dialog. The final recommendation goal setting Liu et al. (2020);
Zhou et al. (2020) has wide applications since the real-world recommendation
aims to deliver user interesting products/contents, which is usually predefined
in customer/audience targeting and advertising. To ensure consistency, we
constrain all goals in a goal sequence at the same level. We denote gp as
the goal type sequence, ge as the goal entity sequence, and gr as the goal
attribute sequence. Consider a goal sequence [g1, g2, . . . , gt] in a particular
level, denote the fixed-length initialization for each goal as [x1,x2, . . . ,xt].

Definition 3. Adjacency matrix. The adjacency matrix Cpe ∈ RNp×Ne

captures the co-occurrence relationship between the goal type and the goal
entity, where cpeij ∈ Cpe between goal type gpi and goal entity gej is defined as

cpeij =

{
1.0 if gpi and gej co-occurred in D

ϵ otherwise
, (1)

where ϵ is a small number. Similarly, the adjacency matrix Cer is constructed
by considering the co-occurrence relationship between goal entities and goal
attributes. In our work, the adjacency matrix can help infer the correspond-
ing entities by the goal type information.

Problem statement. Given a dialog context X of previous utterances and
the predefined final recommendation goal gf , we aim to simultaneously plan
multi-level goal sequences gp, ge, and gr to proactively and naturally lead
the conversation to reach the final goal. Based on the item recommendation
requirement of CRS, we regard the entity level goal planning as the main
task, the type level and attribute level goal planning as auxiliary tasks.
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3. Related work

This work is related to conversational recommender system and hierar-
chical structure modeling.

Conversational recommender system. The research on the conver-
sational recommender system has two research lines. One is from the recom-
mender system and another is from the dialogue system. The research works
of the first one Sun and Zhang (2018); Konstantina et al. (2018); Zhang
et al. (2018); Yu et al. (2019); Lei et al. (2020a,b); Yiming et al. (2022)
aim to infer user’s interest by historical interactions and the system gener-
ally consider two actions: ask questions or recommend items. The second
line from the dialogue system aims to enforce natural semantic transitions
in multi-turn human-machine natural language interactions. For example,
Xu et al. (2020a); Liu et al. (2022) proposed to leverage the information of
global graph structure to enhance goal embedding learning, and Liu et al.
(2020); Zhou et al. (2020) incorporated topic threads to enforce natural se-
mantic transitions towards recommendation. Additionally, Li et al. (2023)
builds a scalable, multi-layered tree to elucidate causal links between en-
tities and leverages past conversations for more relevant recommendation
responses. Meanwhile, Mao et al. (2023) uses a dual-attention Transformer
encoder to capture user history context. Other notable contributions like
Shin et al. (2023) and Rubin et al. (2023) center their research on refining
representation learning from language and entity perspectives, respectively,
thus advancing the capabilities of conversational recommendation.

Our work falls under the second research line. Distinctively, we pinpoint
an underexplored area in this domain: the untapped potential of recognizing
dialog goals across various granularities. The main problem our paper aims
to address in CRS is the limited utilization of dialog goals that can be ob-
served simultaneously at varying levels. To bridge this gap, we introduce an
approach to exploit multi-level goal sequences and their inherent hierarchical
relationships to enhance conversational recommendation.

Hierarchical structure modeling. Hierarchical structure modeling
has attracted lots of research attention in many fields including recommender
system Xu et al. (2020b); Qi et al. (2021) and natural language processing Su
et al. (2021); Hu et al. (2021); Wu et al. (2021); Chen et al. (2021b); Wang
et al. (2021). To name a few, Xu et al. (2020b); Qi et al. (2021) model the
user’s interest hierarchy from a higher level to a lower level. To train the
matching model in an ”easy-to-difficult” scheme, Su et al. (2021) proposed a
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hierarchical curriculum learning framework that consists of the corpus-level
curriculum and the instance-level curriculum. Hu et al. (2021) introduced
a recursive transformer to model multiple levels of granularity (e.g., words,
phrases, and sentences) and Wu et al. (2021) proposed a Hi-Transformer
which models documents in a hierarchical way.

In this paper, we exploit the hierarchical structure of goal sequences from
dual spaces, including representation space and optimization space.

4. Method

4.1. Framework Overview

Figure 2 shows an overview of DHL that includes the following three tasks,
(1) learning enhanced multi-level goal representations in a shared latent rep-
resentation space, (2) robustly optimizing goal representations by exploiting
cross-level supervision signals in the optimization space, and (3) guiding the
optimization direction of goal sequences toward the final recommendation
goal. The first two tasks study the multi-level goal sequences in two spaces
and the last task exploits the single-level goal sequence dependency to guide
the recommendation to reach the final goal. Specifically, for the first task,
we construct a two-layer goal sequence hierarchy between goal type and goal
entity, and propose the hierarchical representation learning to obtain goal
representations by capturing cross-level dependencies in a mutual reinforce-
ment way. For the second task, we propose the hierarchical weight learning
to achieve robust goal representation optimization by reweighting multi-level
goal sequences via bi-level optimization. For the third task, we propose a
soft labeling strategy to gradually enforce the global optimization direction
by attaching information of the final target to the goal sequence.

4.2. Base Model

We adopt LSTM Sepp and Jürgen (1997) as the basic building block for
proactive goal planning, with the consideration of sequential relationship in
the dialog goal entity sequence.

We derive the hidden representation of the goal entity sequence by he
i =

LSTM(xi,h
e
i−1) where LSTM(·, ·) is the LSTM function. Here xi is the fixed-

length initialization for the ith goal and i ranges from 1 to t. Then we can
derive the logit of the next goal entity by

let+1 = MLP(he
t), (2)
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Figure 2: Overview of DHL. Taking the goal type sequence and the goal entity sequence as
input, DHL outputs the next goal entity to lead the conversation via dual-space hierarchical
learning and soft labeling guidance.

where let+1 is a logit vector for all goals, and MLP(·) is a fully connected
neural network. We optimize the cross-entropy loss Le(θ) between the one-
hot encoded next goal entity ge

next and the goal entity probability vector
softmax(le), where θ are learnable model parameters.

4.3. Hierarchical Representation Learning

Then we introduce the hierarchical representation learning to further ex-
ploit relationships between multi-level goal sequences. The multi-level goal
sequences describe dialog topics in multiple granularities (illustrated in Def-
inition 1 Goal), which can be exploited to improve goal prediction. For
instance, if the logit score of goal type Music Rec is high and it ever co-
occurred with goal entity Cut My Heart in historical dialogs, the likelihood
of the goal entity Cut My Heart should be relatively larger than others. To
incorporate such hierarchical knowledge, we integrate high-level information
into low-level tasks based on Cpe and Cer:

le = le + softmax(lp) ·Cpe,

lr = lr + softmax(le) ·Cer,
(3)
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where lp ∈ RNp , le ∈ RNe and lr ∈ RNr are the logit vectors of goal type, the
goal entity and the goal attribute derived from Eq. (2), and · is the matrix
multiplication operation. The next goal type, the next goal entity and the
next goal attribute can be calculated as the one with the largest logit in lp,
le and lr, respectively.

Based on the hierarchical information exchange design, we propose the
cross attention module to learn enhanced goal representations, which includ-
ing two symmetric components: the type2entity attention component and
the entity2type attention component. Specifically, the type2entity attention
component adaptively absorbs the goal type knowledge during the goal en-
tity sequence learning, and the entity2type attention component dynamically
integrates the goal entity knowledge during the goal type sequence learning.
Due to page limit, we use the type2entity attention component for illustra-
tion, and the entity2type works in a similar way.

Formally, consider the sequence of goal entity embeddings [xe
1,x

e
2, . . . ,x

e
t ]

and the hidden state of the goal type sequence hp
t derived from the LSTM en-

coder. We transform the sequence of goal entity embeddings as the sequence
of key embeddings [xk

1,x
k
2, . . . ,x

k
t ] and value embeddings [xv

1,x
v
2, . . . ,x

v
t ] by

MLPs and treat hp
t as the query embedding. The distilled knowledge repre-

sentation by the type2entity component is defined by

hpe =
t∑

j=1

f(hp
t ,x

k
j )∑t

l=1 f(h
p
t ,x

k
l )
xv
j , (4)

where f(hp
t ,x

k
j ) represents the exponential kernel exp(

hp
t (x

k
j )

T

√
d

) and d denotes
the embedding size. Then we simply concatenate hpe with he

t to integrate
the distilled knowledge into the next goal entity prediction.

4.4. Hierarchical Weight Learning

Besides capturing the hierarchical relationship in the representation space,
we also propose the hierarchical weight learning to leverage the goal sequence
hierarchy in the optimization space.

A naive optimization scheme is to compute the goal type loss Lp(θ), the
goal entity loss Le(θ) and the goal attribute loss Lr(θ) as the cross-entropy
loss between the one-hot encoded next goal gnext and the goal probability
vector softmax(l). Then the overall learning objective L = Lp(θ) + Le(θ) +
Lr(θ) can be optimized by gradient methods such as Adam Kingma and Ba
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(2015). Yet, this optimization scheme neglects the hierarchical relationship
in the optimization space.
Hierarchical weight. Intuitively, an accurate prediction of the high-level
goal (e.g., the goal type) can provide much useful information to guide the
optimization of the low-level prediction task (e.g., the goal entity predic-
tion), which can be leveraged to improve model training. Therefore, we
introduce the hierarchical weight for the low-level prediction task, where a
more accurate high-level prediction indicates a larger hierarchical weight for
the low-level prediction task.

However, assigning a scalar weight for each goal sequence is not scalable
due to the large number of goal sequences in real-world datasets. Therefore,
we approximate the weight for each goal sequence via a neural network. In-
spired by Shu et al. (2019); Chen et al. (2021a, 2022b), we adopt an MLP
network followed by a sigmoid function to output the hierarchical weight.
Specifically, the MLP network takes the loss of goal type as input and out-
puts the hierarchical weight for the goal entity loss. And the same weight
assignment operation can be applied for goal attributes based on goal entities.
Denote the MLP parameters as α, the hierarchical weighted loss function is

L(θ,α)=Lp(θ)+ωα
e (Lp)Le(θ)+ωα

r (Le)Lr(θ), (5)

where ωα
e (Lp) and ωα

r (Le) denote the hierarchical weights for the goal entity
loss and the goal attribute loss, respectively. In the following, we denote
ωα
e (Lp) as ω

α
e and ωα

r (Le) as ω
α
r for brevity.

Bi-level optimization for weight learning. Directly optimizing Eq. (5)
may lead to a trivial solution where all hierarchical weights reduce to zeros.
In this work, we propose to formulate hierarchical weight learning as bi-level
optimization Luca et al. (2018); Chen et al. (2022a); Yuan et al. (2023) where
the hierarchical weight is decided by an outer level learning task:

min
α

Lout=Lp(θ
∗(α))+Le(θ

∗(α))+Lr(θ
∗(α)).

s.t. θ∗(α)=argmin
θ

Lp(θ)+ωα
e Le(θ)+ωα

r Lr(θ).
(6)

In this formulation, the inner variable is the model parameters θ and the
outer variable is the MLP network parameters α. We build the connection
between θ and α in the inner loop via a gradient descent step, and optimize
α in the outer loop. Denote Lin = Lp(θ) + ωα

e Le(θ) + ωα
r Lr(θ). For the the
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Figure 3: An illustrative example of the soft labeling strategy. A soft parameter 0.02
is attached to the one-hot goal label, which guides the prediction to approach the final
recommendation goal News Rec.

inner level loop, we have:

θ∗(α) ≈ θ − η
∂Lin(θ,α)

∂θ
. (7)

In the outer level, we update α by minimizing Lout(θ
∗(α)) via the gradient

descent method with the learning rate η
′
:

α∗ ≈ α− η
′ ∂Lout(θ

∗(α))

∂α
. (8)

In this way, we can leverage the weak supervision signals derived from the
outer level task to update hierarchical weights stably. In the final stage,
we calculate the weighted loss term in Eq. (5) by using the newly updated
hierarchical weights ωα

e and ωα
r .

4.5. Soft Labeling

As the number of goals is finite, the next goal prediction task can be
formulated as a multi-class classification task. Traditional classification tasks
optimize the cross-entropy loss between the probability score and the one-hot
label. Different from such formulation, one unique characteristic of the goal
guided conversational recommender system is to proactively and naturally
lead the user to the final recommendation goal when planning the short-
term goal in each step.

In this work, we achieve gradual guidance by introducing the soft labeling
strategy, which enforces the prediction closer to the final goal as the conver-
sation went on. As shown in Figure 3, we attach the one-hot goal label with
a soft parameter in the final goal position. As the goal sequence unrolls, we
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gradually increase the soft parameter. The soft parameter sp is calculated as

sp = s0min (
L

10
, 1), (9)

where L is the goal sequence length and s0 = 0.02 is a hyper-parameter that
controls the strength of soft labeling. From Eq. (9), We can observe that
sp increases as L increases and it remains unchanged when L is larger than
10. Denote the soft label of goal entity as ge

soft, the goal entity loss can be
computed by Le(θ) = CE(ge

soft, softmax(le)) where CE(·) is the cross entropy
loss. The loss function for other levels of goals can be computed similarly.
By leveraging the proposed soft labeling strategy, the goal sequence transits
to the final recommendation goal gradually.

5. Experiments

5.1. Datasets

We perform experiments on two datasets: DuRecDial Liu et al. (2020)
and TG-ReDial Zhou et al. (2020). Note that there are type level, entity
level and attribute level goals in DuRecDial while there are no explicit goal
attributes in TG-ReDial. Therefore, we only consider goal type prediction as
the auxiliary task in the experiments on TG-ReDial. See Appendix Appendix
A.1 for the details of datasets.

5.2. Baselines

We have chosen five baselines for comparison:

• Next chooses the last goal entity as the prediction of the next one;

• LSTM leverages an LSTM to model goal entity sequence dependency;

• CNN Liu et al. (2020) proposes a CNN model for the goal entity
sequence learning;

• TG Zhou et al. (2020) uses the dot product between the learned rep-
resentation and every goal entity embedding for ranking;

• MGNN Xu et al. (2020a); Liu et al. (2022) is the state-of-the-art graph
neural network based model for dialog policy learning.
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Table 1: Overall Results on DuRecDial Dataset.

Metrics Next LSTM CNN TG MGNN DHL

Acc(%) 68.75 78.24 81.85 79.48 67.31 83.51
Rec(%) 59.34 46.56 55.84 51.21 25.95 62.62
Prec(%) 66.34 54.33 61.82 61.79 26.81 72.52
F1(%) 61.37 48.29 56.50 54.31 23.91 65.25
LS(%) 11.49 13.38 12.87 14.22 14.46 13.52

Table 2: Overall Results on TGReDial Dataset.

Metrics Next LSTM CNN TG MGNN DHL

Acc(%) 33.59 37.98 38.78 37.06 36.98 39.99
Rec(%) 15.17 18.19 17.60 14.10 12.56 20.78
Prec(%) 29.18 24.26 15.63 8.98 7.76 46.32
F1(%) 12.76 17.68 14.45 10.23 8.74 20.43
LS(%) 0.00 9.26 20.16 19.29 2.79 24.82

5.3. Implementation Details

For all methods, we set the embedding size of goal type, goal entity and
goal attribute as 256 and the batchsize as 128. We use the dev dataset to
tune other hyper-parameters such as the learning rate. To assess the per-
formance of models in goal entity prediction, we utilize a range of metrics,
namely accuracy (Acc), recall (Rec), precision (Prec), and F1 scores. These
metrics provide a holistic view of each model’s efficacy. Further details and
clarifications on these evaluation metrics can be found in Appendix A.2. Be-
sides, we use the dialog-leading success rate metric(LS) to measure how well
a model can lead the dialog to approach the final recommendation goal. More
specifically, LS is the ratio of the number of achieved final recommendation
goals over the number of all goal predictions. Please refer to Appendix A.3
for more training details.

5.4. Overall Results

Table 1 and Table 2 summarize the results for all methods where the best
results are in bold and the second-best results are marked by underlines.
Firstly, we can observe that DHL outperforms all comparison methods in all
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Table 3: Ablation Study on DuRecDial Dataset.

Metrics base w/o att w/o weight w/o soft DHL

Acc(%) 78.24 82.54 82.95 82.80 83.51
Rec(%) 46.56 60.82 61.34 60.27 62.62
Prec(%) 54.33 69.84 69.20 67.81 72.52
F1(%) 48.29 62.98 62.90 61.73 65.25
LS(%) 13.38 13.46 13.24 12.95 13.52

Table 4: Ablation Study on TGReDial Dataset.

Metrics base w/o att w/o weight w/o soft DHL

Acc(%) 37.98 39.19 38.88 39.09 39.99
Rec(%) 18.19 20.00 20.17 20.72 20.78
Prec(%) 24.26 30.55 24.10 33.96 46.32
F1(%) 17.68 19.31 18.80 20.19 20.43
LS(%) 9.26 16.12 20.82 22.35 24.82

metrics except for the LS metric on DuRecDial . TG and MGNN perform
slightly better in terms of the LS metric but get relatively low performance
in other metrics. We increase s0 in Eq. (9) from 0.02 to 0.20 in DHL and get
better performance than TG and MGNN in terms of all metrics on DuRec-
Dial (Accuracy: 82.65%; Recall: 61.56%; Precision: 65.45%; LS: 17.00%).
Furthermore, we notice that the Next method gets much better performance
in DuRecDial compared with the experimental results in TG-ReDial. The
reason is that the goal entity sequence in DuRecDial contains more consec-
utive goal entities than that in TG-ReDial, and thus setting the last goal
entity as the prediction of the next goal entity prediction performs better
in DuRecDial . Last but not least, CNN serves as a good baseline in both
datasets. One possible explanation is that the next goal entity prediction
highly relies on the last several goal entities and CNN can model this re-
lation well via a small sliding window. We also analyze the computational
efficiency of all comparison methods in Appendix A.4.

5.5. Ablation Study

We have also conducted additional experiments on both DuRecDial and
TG-ReDial with ablation consideration. More specifically, we remove the
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hierarchical representation learning, the hierarchical weight learning, and
the soft labeling in DHL, and denote these variants as w/o att, w/o weight,
w/o soft respectively. Besides, we denote DHL without all the three designs
as base. The results are reported in Table 3 and Table 4.

Firstly, we can observe that DHL outperforms base by a large mar-
gin (5.27% accuracy, 16.06% recall, 18.19% precision, 16.96% F1 and 0.14%
LS) in DuRecDial and (2.01% accuracy, 2.59% recall, 21.96% precision, 2.75%
F1 and 15.56% LS) in TG-ReDial. This validates the effectiveness of the
proposed DHL. Secondly, we can observe that the hierarchical representa-
tion learning and the hierarchical weight learning both play important roles
in DHL. In the DuRecDial experiments, the precision score drops 2.68%
without the hierarchical representation learning and drops 3.32% without
the hierarchical weight learning. A similar trend is observed in TG-ReDial
experiments: 15.77% and 22.22% precision score drop after removing the
hierarchical representation learning and the hierarchical weight learning re-
spectively. Last not but least, as shown in Table 3 and Table 4, DHL gets
lower LS after removing the soft labeling strategy (from 13.52% to 12.95%
in the DuRecDial experiments and from 24.82% to 22.35% in the TG-ReDial
experiments). This can be explained as the lack of the gradual guidance to
the final recommendation goal. We further notice that the other four metrics
degrade slightly (accuracy from 83.51% to 82.80% in the DuRecDial exper-
iments and from 39.99% to 39.09% in the TG-ReDial experiments) and the
reason may be the soft labeling strategy also acts as an implicit regularization
which improves the model training Christian et al. (2016).

5.6. Parameter Sensitivity

We further analyze the parameter sensitivity of DHL in DuRecDial.
Soft parameter. We first examine the soft parameter and results are shown
in Figure 4(a). It can be observed that as s0 increases from 0 to 0.32, the LS
score increases from 12.95% to 22.70%. This verifies that the soft labeling
strategy can lead the conversation to the final recommendation goal. Other
metrics including the accuracy, the recall, the precision and the F1 score,
increase at first and then decrease as s0 becomes larger than 0.02. The
increase may be explained by that the soft labeling serves as an implicit
regularization to improve the model training Christian et al. (2016) while
the reason for the decrease is that the soft label gradually becomes a noisy
label when s0 becomes large. We choose s0 = 0.02 in our experiments.
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(a) Soft parameter (b) Learning rate

Figure 4: Parameter sensitivity of DHL.

Learning rate. Besides, we examine the sensitivity of the learning rate. As
shown in Figure 4(b), given a small learning rate of 1e−4, the model gets
poor performance. As the learning rate increases from 1e−3.5 to 1e−1.5,
the model performs well and is not sensitive to the learning rate during this
period. It can be observed that the 1e−3 learning rate performs best for most
metrics. When the learning rate becomes large as 1e−1, the model collapses
and all goal entity predictions become the final recommendation goal.

5.7. Case Study

To qualitatively analyze the effectiveness of DHL, we visualize the cross
attention weights and the hierarchical weights in DuRecDial .
Cross attention weights. We extract the goal type sequence and the
goal entity sequence from a dialog. As shown in Figure 5(a), we list the
goal type sequence and the goal entity sequence, and visualize the cross
attention weights between the hidden state and the goal embeddings. We
can observe the cross attention weight, between the goal type hidden state
and the goal entity embeddings, increases as the goal sequence unrolls. This
makes sense, since the last goal entities have more influence on the next goal
entity prediction. To be specific, highlighted by the goal type hidden state,
the goal entity Jay Chou contributes a lot to the next goal entity prediction as
Jay Chou’s news. Similarly, stressed by the goal entity hidden state, the goal
type Chit-chat on Stars contributes much to the next goal type prediction as
News Rec. The above observations further validate the effectiveness of the
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(a) Visualization of cross attention weights.

(b) Visualization of hierarchical weights.

Figure 5: Case study.

17



hierarchical representation learning module.
Hierarchical weights. As shown in Figure 5(b), we visualize the MLP
weight network and the hierarchical weight for the goal entity task decreases
as the goal type loss increases. This makes sense: given a small goal type
loss, the goal type prediction is accurate and thus provides much useful in-
formation for the goal entity prediction. Therefore the goal entity prediction
deserves a large task weight for optimization.

Furthermore, in the example of Figure 5(a), we find the goal type loss
is 0.012 and this small loss corresponds to a large task weight 0.96 for the
goal entity prediction in Figure 5(b). Following Eq. (3), we compute the goal
type prediction’s contribution score to the goal entity prediction as

lp2e = softmax(lp) ·Cpe. (10)

The ground-truth goal entity position of softmax(lp2e) is 1.17%, much larger
than the average score 1

1385
= 0.07% (1385 is the class number of the goal

entity in DuRecDial). The above results further validate the effectiveness of
hierarchical weight learning.

6. Conclusion

In this paper, we propose DHL to enhance the proactive goal planning
in CRS by exploiting the hierarchical structure of multi-level goal sequences.
Specifically, we propose the hierarchical representation learning in the rep-
resentation space and the hierarchical weight learning in the optimization
space to model hierarchical goal sequences. In addition, we develop a novel
soft labeling strategy, which can gradually guide the conversation to the final
recommendation goal. We conduct extensive experiments on DuRecDial and
TG-ReDial and the results demonstrate the effectiveness of DHL.
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Appendix A. Appendix

Appendix A.1. Dataset

DuRecDial contains 10.2k dialogues, 15.5k utterances and 1362 seekers
and TG-ReDial contains 10.0k dialogues, 129.4k utterances and 1482 seekers.
The number of goal type, goal entity, and goal attribute in DuRecDial are
22, 1355 and 20637 respectively. Following the original paper, we randomly
sampling 65%/10%/25% data in DuRecDial at the level of seekers to form
the train/dev/test datasets. As for TG-ReDial, we extract the topic as the
goal entity, and reduce the number of goal entity by clustering and manual
processing. The number of goal type and goal entity in TG-ReDial are 6
and 100 respectively. We treat the action in TG-ReDial as the goal type and
follow the train/dev/test splitting in the original paper. The average goal
sequence length is 5.6 in the training set.

Appendix A.2. Evaluation Metrics

The task of goal entity prediction is fundamentally a multi-class classi-
fication problem. To evaluate the performance of our proposed methods on
this task, we employ a variety of standard metrics that encompass different
aspects of classification quality, namely accuracy, recall, precision, and F1
scores. Herein, we present the definitions, equations, and abbreviations for
these metrics for clarity:
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• Accuracy (Acc): Accuracy provides an overall measure of the classi-
fier’s correctness across all classes. It represents the proportion of total
predictions that were correct.

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN

For multi-class problems, accuracy doesn’t require averaging over classes,
as it captures the overall correctness.

• Recall (Rec): Also known as sensitivity or the true positive rate, re-
call, when viewed from a one-class perspective, measures the proportion
of actual positive instances of that class that were correctly predicted.

Recall (Rec) =
TP

TP + FN

• Precision (Prec): Viewed from a one-class perspective, precision con-
veys the proportion of predicted positive instances for that class that
are truly positive.

Precision (Prec) =
TP

TP + FP

• F1 Score (F1): The F1 score is the harmonic mean of precision and
recall, providing a balance between them, especially when their values
are low. Like precision and recall, the F1 score can be viewed from a
one-class perspective.

F1 = 2× Precision× Recall

Precision + Recall

In our results, we report the macro-average of these metrics. The macro-
average metric computes each metric (except accuracy) independently for
each class and then takes the average.

Appendix A.3. Training Details

The hidden size of LSTM is set to 256. We adopt the cosine learning
rate decay schedule for a total of 30 epochs for all comparison methods. We
use the dev set to tune learning rate from [1e−4, 1e−3.5, 1e−3, 1e−2.5,
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1e−2, 1e−1.5, 1e−1]. The Adam optimizer Kingma and Ba (2015) is used in
training the model parameters. For the hierarchical weight learning, we set
the embedding size of the MLP as 100 and optimize the MLP via the Adam
optimizer with a 1e−5 learning rate. We tune the soft parameter from [0,
0.01, 0.02, 0.04, 0.08, 0.16, 0.32] via the performance of the dev set. All
experiments are performed on a single Tesla P40.

Appendix A.4. Computational Efficiency

As for the computational efficiency, on a single Tesla P40, MHFL takes
28.87s to finish the inference on the whole DuRecDial test set (LSTM: 27.85s;
CNN: 24.86s; TG: 24.70s; MGCG: 29.06s). Note that the inference speed of
all methods are similar and MHFL is a little slower due to the introduction
of the cross attention module.
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