
Jaakko Peltonen, Arto Klami, and Samuel Kaski. 2004. Improved learning of
Riemannian metrics for exploratory analysis. Neural Networks, volume 17, numbers
8­9, pages 1087­1100.

© 2004 Elsevier Science

Reprinted with permission from Elsevier.

2004 Special Issue

Improved learning of Riemannian metrics for exploratory analysis*

Jaakko Peltonena, Arto Klamia, Samuel Kaskia,b,*

aNeural Networks Research Centre, Helsinki University of Technology, P.O. Box 5400, FI-02015 HUT, Finland
bDepartment of Computer Science, P.O. Box 68, FI-00014, University of Helsinki, Finland

Received 11 December 2003; accepted 3 June 2004

Abstract

We have earlier introduced a principle for learning metrics, which shows how metric-based methods can be made to focus on

discriminative properties of data. The main applications are in supervising unsupervised learning to model interesting variation in data,

instead of modeling all variation as plain unsupervised learning does. The metrics are derived by approximations to an information-geometric

formulation. In this paper, we review the theory, introduce better approximations to the distances, and show how to apply them in two

different kinds of unsupervised methods: prototype-based and pairwise distance-based. The two examples are self-organizing maps and

multidimensional scaling (Sammon’s mapping).

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Information geometry; Information visualization; Learning metrics; Multidimensional scaling; Self-organizing map
1. Introduction

Unsupervised learning for clustering or information

visualization suffers from the garbage in—garbage out

problem. The ultimate goal is to make discoveries in

data, that is, to find new things without specifying them

in advance. The problem is that unsupervised learning

cannot distinguish relevant variation from irrelevant

variation in data. Structured noise becomes modeled as

well as relevant structure. The problem is particularly

hard in mining high-dimensional databases, for example,

in bioinformatics or text mining.

Hence, all successful unsupervised learning must have

been supervised implicitly or explicitly. We have introduced

a learning metrics principle (Kaski & Sinkkonen, 2004;

Kaski, Sinkkonen, & Peltonen, 2001) to help automate some

of the implicit supervision for methods that are based on

distance computations. Two subproblems need to be solved:
0893-6080/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2004.06.008

* This work was supported by the Academy of Finland, grant 52123.

* Corresponding author. Address: Department of Computer Science, P.O.

Box 68, FI-00014, University of Helsinki, Finland. Tel.: C358 9 191

51230; fax: C358 9 191 51120.

E-mail address: samuel.kaski@cs.helsinki.fi (S. Kaski).
(i) how to infer what is relevant and what not, and (ii) how to

use the findings in data-analysis methods.

Supervised methods are told directly what is relevant:

the task is to predict the value of a dependent variable,

and only variation relevant to the prediction task is

interesting. Relevance is learned from a set of data pairs

(x, c), where x is the primary data and c is the desired

response, that is, value of the dependent variable

(auxiliary data). It has been suggested that relevance

could be derived from dependencies between such

paired data (Becker & Hinton, 1992; Tishby, Pereira,

& Bialek, 1999). In practice, mutual information between

representations of the data, such as clusters (Becker,

1996; Friedman, Mosenzon, Slonim, & Tishby, 2001;

Sinkkonen & Kaski, 2002; Tishby et al., 1999) or linear

projections (Kaski & Peltonen, 2003; Torkkola, 2003),

and the class labels c would be maximized.

The question we asked was whether the relevance

could be incorporated in the metric of the data space. A

distance measure that would learn to gauge only relevant

differences between data points would be generally

applicable to a wide variety of data analysis methods

that are based on distance computations. The difference

from standard supervised learning is that only the metric

is supervised. The ultimate task need not be prediction; in
Neural Networks 17 (2004) 1087–1100
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet

J. Peltonen et al. / Neural Networks 17 (2004) 1087–11001088
fact, the main applications for learning metrics are in

exploring new things in the primary data given the

supervision. This task could be called supervised unsu-

pervised learning.

The learning metrics principle, reviewed in Section 3,

was formulated in terms of idealized information-

geometric concepts. Practical applications require

approximations, and in this paper we introduce consider-

ably improved approximations and methods for comput-

ing the distances.

Learning of metrics has been studied by others as

well. The so-called Fisher kernels (Jaakkola & Haussler,

1999; Tsuda, Kawanabe, Rätsch, Sonnenburg, & Müller,

2002) form distance measures between data points. The

goal of that work is opposite to ours, namely to derive

metrics from unsupervised generative models and use

them to construct distances for supervised learning. Also,

although the method appears similar to ours in that both

use information geometry, the similarity is actually only

superficial. Recently, supervised global (non-Riemannian)

metrics have been optimized based on auxiliary data

(Xing, Ng, Jordan, & Russell, 2003), in this case about

similarity of pairs of samples. Parametrized metrics have

also been optimized in classification tasks (Hammer &

Villmann, 2002).

So far we have applied the learning metrics principle

only to self-organizing maps (Kaski et al., 2001),

although the same principle has motivated discriminative

clustering (Sinkkonen & Kaski, 2002) and projection

algorithms (Kaski & Peltonen, 2003). Here, we apply the

metrics additionally to Sammon’s mapping, a multi-

dimensional scaling (MDS) method that aims at preser-

ving pairwise distances between data samples. The same

computational methods are applicable to any prototype-

based and mutual distance-based methods.
1 Continuous c are possible although the computation would be more

difficult.
2. Preliminaries: from Euclidean to Riemannian metrics

We start by introducing the kind of metric the principle

constructs.

The simplest metrics take for granted the original

coordinates of the data space and their scaling. The normal

Euclidean metric dI between two data points, x and y2R
n;

can be expressed by

d2
I ðx; yÞhjjx Kyjj2 Z ðx KyÞT Iðx KyÞ; (1)

that is, by a quadratic form with the identity matrix I.

The next more general metric is a global metric dA

that re-scales the coordinates or their combinations. Such

a metric can be expressed by a positive semi-definite

matrix A, xTAxR0 for all x, which replaces the identity

matrix in Eq. (1). A positive semi-definite matrix can

always be expressed by AZSTS for some S, and hence
the global distance is

d2
Aðx; yÞhðx KyÞT Aðx KyÞ Z ðx KyÞT ST Sðx KyÞ

Z ðSx KSyÞT ðSx KSyÞ Z d2
I ðx

0; y0Þ; (2)

where x 0ZSx. Hence, the global metric is equivalent to

linear feature extraction with a matrix S, followed by

the standard Euclidean metric.

In the most general metric, the matrix A depends on the

location, and the distance is

d2
AðxÞðx; yÞ Z ðx KyÞT AðxÞðx KyÞ:

Since a metric has to be symmetric, that is, d(x, y)Z
d(y, x), this direct definition is used only for local distances

between very close-by x and yZxCdx. The local distances

are extended by defining global distances as minimal path

integrals.

The learning metrics principle constructs these most

general kinds of metrics called Riemannian metrics.
3. The learning metrics principle
3.1. Definition

We want to form a Riemannian metric that measures

only relevant differences between points of the data space.

The key assumption is that the data comes in pairs (x, c)

where c indicates what is relevant. In the same way as in

supervised learning, only those changes in x that cause

changes in c are assumed to be interesting. Here, x2R
n and

c is discrete-valued.1

Such a metric should measure changes in the distribution

of c, caused by changes in x. When the distances between

distributions are measured by the Kullback–Leibler diver-

gence DKL, it can be shown (CF. Kullback, 1959) that for a

differential dx,

d2
Lðx;xCdxÞhDKLðpðcjxÞjjpðcjxCdxÞÞZ

1

2
dxT JðxÞdx; (3)

where J(x) is the Fisher information matrix

JðxÞ Z EpðcjxÞ

v

vx
log pðcjxÞ

� �
v

vx
log pðcjxÞ

� �T� �
: (4)

This is the learning metrics principle: to use such

Riemannian distances dL as a metric of the data space.

In practice, the densities p(cjx) need to be estimated from

a finite data set {(x, c)}, and the minimal path integrals that

extend the local metric to longer distances need

J. Peltonen et al. / Neural Networks 17 (2004) 1087–1100 1089
computational approximations. In this paper, we present

new methods for these tasks.
3.2. Properties of the metric

Where can it be applied? The principle assumes that the

auxiliary data is well-chosen, in the sense that important

changes in the primary data correspond to changes in the

auxiliary data. In other words, the supervision of unsuper-

vised learning needs to be chosen as carefully as the

predicted variable in usual regression or classification tasks.

Why not normal supervised learning? If the task is pure

classification or regression, that is, the only answer that is

needed is the value of the dependent variable c, then normal

supervised learning is the right choice.

In this paper, the metric is supervised but the data

analysis method used in the new metric need not be. If the

goal is to make discoveries with unsupervised methods,

given the supervised metric, then the learning metric is the

right choice.2

Why preserve topology? An alternative to the Rieman-

nian metric would be to simply use the Kullback–Leibler

divergence in Eq. (3) globally, for any two points.

Alternatively, any other distributional distance measure

could be used. A lot of computation would be saved if the

approximation of path integrals could be skipped. However,

such global distance would not preserve the topology of the

data space, which may be important in data analysis.

The relative usefulness of this global metric and the

Riemannian metric depends on the application. The

difference will be demonstrated in Section 7.1.

Why not supervised feature extraction? A straightfor-

ward and often-used alternative is to preprocess the data by

a linear or non-linear transformation and then use the

standard Euclidean distance.

For local pairs of data points, this is expressible by the

Riemannian metric, which can be shown easily. If the

transformation of x is denoted by f(x), the distance between

differentially close-by points x and yZxCdx would be

d2
f ðx; yÞhjjfðxÞK fðyÞjj2 Z ðx KyÞT DfðxÞ

TDfðxÞðx KyÞ:

Here, Df(x) is the Jacobian matrix evaluated at x, and the

distance matrix A(x)hDf(x)TDf(x) defines the local metric.

For global distances, the correspondence does not hold,

and it ultimately depends on the application which approach

is better. The most obvious difference is that transformed

data, and hence data-analysis results, may be harder to

interpret, whereas the metric is computed of the original

data variables which may have domain-specific meaning.
2 The distinction is not clear-cut, however, since some supervised

methods can for instance make inferences about the relevance of input

variables to classification.
4. Computation of the metrics

Two approaches to computation. There are two main

approaches to constructing practical methods for learning

metrics. The first is to develop explicit approximations to

the distance dL, Eq. (3), and use them within an algorithm.

The second approach is only mentioned briefly here.

Discriminative methods for clustering (Kaski, Sinkkonen, &

Klami, 2003; Sinkkonen & Kaski, 2002) and projection

(Kaski & Peltonen, 2003) have been constructed by

selecting an objective function whose optimization

implicitly forces the solution to correspond to learning

metric distances. The connection to learning metrics is

asymptotic.

Both approaches are useful. Explicit computation is

generally applicable, while implicit optimization depends

on a specific objective function tailored to each method. On

the other hand, if such an objective function can be devised,

the method can be optimized in a single stage without

separate learning of the metric. In this paper, we focus on

explicit distance computation.

Practical approximations. In this work, we take the

‘engineering approach’ of developing general-purpose

approximations: we estimate the class density p(cjx), plug

it into Eq. (3), and approximate global distances computa-

tionally. The ultimate test of such approximations is in using

them in practice; empirical comparisons are presented in

Sections 5.3 and 6.2.
4.1. Estimation of conditional density

The Fisher information matrix in Eq. (4) is a function of

the conditional probabilities p(cjx) which must be estimated

from a finite data set fxi; cig
N
iZ1: We have used three kinds of

density estimates. Their generic form is

p̂ðcjxÞ Z

P
k jkcpk expðKjjx Kqkjj

2=2s2ÞP
k pk expðKjjx Kqkjj

2=2s2Þ
; (5)

that is, a mixture of a set of components indexed by k.

Here, jkc models the conditional density of c within

component k, pk the probability of the component, and the

exponentials the domain of the component. The parameters

fulfill jkc, pkR0,
P

c jkc Z1 and
P

k pk Z1:

The first two estimators were used in an earlier work

(Kaski et al., 2001) because they could be easily derived

from standard estimators. Both are optimized to model the

joint density p(x, c), and the conditional density in Eq. (5) is

derived from the result by the Bayes rule. The first option is

the mixture discriminant analysis (MDA2) (Hastie, Tib-

shirani, & Buja, 1995), where each mixture component

generates independently both the x and c. MDA2 is

optimized by an expectation maximization algorithm to

J. Peltonen et al. / Neural Networks 17 (2004) 1087–11001090
maximize the likelihood
QN

iZ1 p̂ðxi; ciÞ; and the number of

components is selected by using a validation set.

The second option is the standard Parzen non-parametric

estimator.The terms inEq. (5)comedirectly fromthe learning

data set, fxk; ckg
N
kZ1; by setting qkZxk, jkc Zdck ;c

; and pkZ1/

N.Here,dck ;c
is theKroneckerdelta, equal tozerounlessckZc,

whenitequals1.TheseParzenwindowestimatesareaccurate,

asymptoticallyconsistent (seeDevroye&Wagner(1980))but

computationally very expensive.

The third, new option is to estimate the conditional

density directly, by maximizing the conditional likelihoodQN
iZ1 p̂ðcijxiÞ of the model in Eq. (5). We set uniform

weights {pk}k for simplicity, optimize the parameters by a

conjugate gradient algorithm, and again select the number

of components by using a validation set. The model will be

called below the conditional mixture model (CMM).

For all these estimators of the form given by Eq. (5), the

Fisher information matrix becomes

JðxÞ Z
1

s4
Ep̂ðcjxÞfbðx; cÞbðx; cÞ

T g; (6)

where (see Kaski et al., 2001)

bðx; cÞ Z Exðkjx;c;qkÞ
fqkgKExðkjx;qkÞ

fqkg

xðkjx; c; qkÞ Z
jkcpk expðKjjx Kqkjj

2=2s2ÞP
j jjcpj expðKjjx Kqjjj

2=2s2Þ

xðkjx; qkÞ Z
pk expðKjjx Kqkjj

2=2s2ÞP
j pj expðKjjx Kqjjj

2=2s2Þ

:

8>>>>>><
>>>>>>:

(7)

The operators E in the topmost equation above denote

weighted sums where the weights are given by x(kjx, c; qk)

and x(kjx; qk), respectively. The weights sum to 1 but in

general they need not be probabilities.
4 This is not specific to our estimates. It is a general property of the way

conditional class distributions change locally: J(x) is a sum of NC outer

products vvT where v are gradients of the conditional class log-probabilities

(times scalars). Class probabilities sum to one, so the gradients are linearly
4.2. Approximations to path integrals

Even though the exact form of the density or its

estimate is known, in most cases it is too complex for

analytically computing the minimal path integral

between a pair of points x1 and x2. Hence, we must

approximate it.

Local distance. The least complex approximation is to

use the simple local distance definition Eq. (3) as such, for

any pair of points, even if they are far apart. This

corresponds to assuming that J(x) is constant, and hence

the shortest path is a line.

The distance between two points, x1 and x2, is then3

d2
1ðx1; x2Þ Z ðx1 Kx2Þ

T Jðx1Þðx1 Kx2Þ: (8)
3 We omit the factor1/2 in Eq.(3) for simplicity.
This approximation is called the local approximation

below, or the 1-point approximation since the metric is

computed at one point.

Linear piecewise distance. The local approximation

works close to the point x1 but neglects the changes in the

auxiliary data farther away. The approximation is obviously

not accurate over large distances. Note that the metric is

locally at most NCK1-dimensional, where NC is the number

of classes (possible values of the auxiliary variable).4 The

distribution of auxiliary data changes locally only along a

NCK1-dimensional subspace, and distances in all orthog-

onal directions are zero. Locally, this effective dimension-

ality reduction is the desired solution since it gets rid of the

uninteresting variation, but globally the solution is too

simplified.

A computationally manageable extension is to still

assume that the shortest path is a line but compute the

distances along several points on the line. Besides being

more accurate, this makes the distance measure symmetric

as the number of computation points increases. This will be

called the T-point approximation:

dT ðx1; x2Þ Z
XT

tZ1

d1 x1 C
t K1

T
d12; x1 C

t

T
d12

� �
; (9)

where d12Zx2Kx1.

Graph search distance. The T-point approximation

assumes the minimal path is a straight line. The last

improvement is to remove this assumption. Given a set of

points X, the pairwise distances along linear paths

(computed with the T-point method) are considered as

edges of a graph, and the minimal path between two vertices

is sought. This yields

dGðx1; x2Þ Z min
K;ðx0

1
;.;x0

K
Þ2X

dT ðx1; x
0
1Þ

C
XKK1

kZ1

dT ðx
0
k; x

0
kC1ÞCdT ðx

0
K ; x2Þ: (10)

This is called the graph approximation. It allows both

linear and piecewise linear minimal paths; therefore the

T-point distance is an upper bound to the graph distance.5

Standard graph search algorithms such as Floyd’s algorithm

can be used to find the minimum. An analogous graph

computation scheme has earlier been suggested for

distances computed from unsupervised generative models

(Rattray, 2000).

When should one use which approximation? In appli-

cations like the SOM, the distances are not used as such but
dependent and hence J(x) has at most NCK1 non-zero eigenvalues.
5 This holds when the number of computation ponts increases.

Table 1

How to compute the learning metrics

(1) Learn the CMM estimator in Eq. (5) by maximizing the conditional

likelihood LZ
P

ðx;cÞ log p̂ðcjxÞ:

(2) Choose (a) or (b) if distances have to be computed often, and (c) if only

once.

(a) For the 1-point approximation, compute the Fisher information

matrix from Eq. (6) and the distance from Eq. (8).

(b) For the T-point approximation, choose T according to computational

resources and compute Eq. (9).

(c) For the graph approximation, compute a pairwise distance matrix by

Eq. (9) and find the minimum in Eq. (10) by running Floyd’s algorithm

on the matrix.

J. Peltonen et al. / Neural Networks 17 (2004) 1087–1100 1091
are compared to find the smallest distance (although the

SOM adaptation does depend on the actual distance). In this

case, it is important to compute the close-by distances

accurately to determine which one is smallest, whereas the

larger distances can be allowed to be erroneous. In contrast,

in applications that directly use the distances, such as MDS

methods, it is important to preserve all the distances.

Another important factor in choosing the approxi-

mation is the available computation time. The 1-point

approximation is relatively fast, the T-point approxi-

mation is linear in T, and the graph approximation takes

the longest time (O(N3) where N is the number of

samples). The graph approximation is feasible for

methods where the set of points (and minimal paths)

does not change and hence the distances need to be

computed only once. Methods based on a pairwise

distance matrix are such. In SOM, the prototype vectors

change and distances from them need to be computed all

the time. Faster approximations are then required. In

Section 7.3, we compare approximations of varying

complexity.

Table 1 summarizes how to compute the distance

approximations. In the next sections, we apply the

approximations to unsupervised methods: in Section 5

the 1-point and T-point approximations will be applied to

the SOM, and in Section 6 the T-point and graph

approximations to Sammon’s mapping.
5. Application I: SOM in learning metrics

The self-organizing map (SOM; Kohonen, 2001) is one

of the best-known neural network algorithms. In this

section, we briefly review an earlier SOM that learns

metrics (Kaski et al., 2001), present an improved version,

and empirically compare the algorithms denoted by SOM-L

against classical SOM types.

5.1. Computing the SOM-L

Basics. The SOM is an ordered lattice of units i with

attached model vectors mi. The standard sequential

variant of the SOM training algorithm iterates two
steps: winner selection and adaptation. At each iteration

t the algorithm selects a best-matching (winner) node

w(t) whose model vector has the smallest distance from

the sample x(t). For the SOM-L, the distances are

naturally computed in the learning metric. In an earlier

work (Kaski et al., 2001), we used the 1-point distance

approximation d1, Eq. (8). The winner selection step

is then

wðtÞ Z arg min
i

d2
1ðxðtÞ;miðtÞÞ: (11)

In the second step, the model vectors are adapted

towards the sample, in the direction of steepest descent

of the distance function. For Riemannian metrics, the

steepest descent direction is given by the so-called

natural gradient (Amari, 1998). It turns out (Kaski et al.,

2001) that this yields the standard SOM adaptation

rule, i.e.,

miðt C1Þ Z miðtÞCaðtÞhwðtÞ;iðxðtÞKmiðtÞÞ; (12)

where a(t) is the learning rate and hw(t),i is the

neighborhood function around the winner. Kohonen

(2001) gives instructions on choosing neighborhood

functions, map topologies, and learning schedules.

Improvements. For more accurate distance computation,

the 1-point distance is replaced by the T-point distance,

Eq. (9), in the winner search. This implies more compu-

tation since the local approximation is computed at several

points along a line, separately for each model vector. Larger

values of T yield more accurate results but take longer. To

avoid excessive computation, a small set of W winner

candidates is first chosen by a faster approximation, the 1-

point or Euclidean distance; in this paper we will use the

former. In Section 7.3, the effect of the choice of T and W on

the results is studied empirically.

For the T-point approximation, the shortest path is still

assumed to be linear, so the direction of adaptation does not

change. Its magnitude may, however. In preliminary tests

taking the change into account did not improve results, so

the standard rule will be used for simplicity.
5.2. How does the metric affect the SOM-L objective?

As mentioned in Section 4, there are two possible

ways to apply learning metrics—explicit computation and

implicit optimization of a tailored objective function. In

this paper, we use the first approach. It would be

interesting to know whether the resulting algorithm can

be interpreted in terms of the second approach. That is,

what is the objective function of unsupervised learning

methods in the new metric? Here, we consider this

question for the SOM-L, with some simplifying

assumptions.

The basic SOM does not perform gradient descent on an

energy function, which makes the question difficult to

answer. However, Heskes has proposed a variant of

Table 2

The data sets used for empirical comparisons

Data set Dimensions Classes Samples

Landsat satellite

dataa

36 6 6435

J. Peltonen et al. / Neural Networks 17 (2004) 1087–11001092
the SOM with an energy function (Heskes, 1999). In the

Euclidean metric, the energy function is

E Z EpðxÞ min
i

X
j

hijd
2
I ðx;mjÞ

()
; (13)

where d2
I is the squared Euclidean distance. In the learning

metric, it is replaced by d2
L; the squared learning metric

distance.

Assume that dL can be computed with the simple local

form d2
Lðx;mjÞZDKLðpðcjxÞ; pðcjmjÞÞ: It can be shown

(Appendix A) that optimizing the cost function Eq. (13) is

equivalent to maximizing

Epðc;jÞflog pðcjmjÞg; (14)

where j indexes the SOM units, pðc; jÞZ
Ð

x pðjjx; cÞpðx; cÞdx

is the probability that a sample has class c and unit j is

picked from its winner neighborhood, and p(jjx, c)fhw(x),j.

The maximization is done over mj and the winner assign-

ment function w(x).

A quality measure. The above result motivates a measure

for the accuracy of the SOM results. We had earlier used a

heuristic measure defined as the class purity of auxiliary

(test) data on the SOM lattice, given byX
ðx;cÞ

log p̂ðcjhwðxÞÞ; (15)

where p̂ðcjhjÞh
P

ðx0;c0Þ:c0Zc hj;wðx0Þ

� �
=
P

ðx0;c0Þ hj;wðx0Þ

� �
is the

proportion of class c in the neighborhood hjZ{hji}i of unit j,

which is here Gaussian.

We will now motivate this quality measure through

the objective function, Eq. (14). We replace the

generally unknown distribution p(cjmj) at the model vectors

by p̂ðcjhjÞ; the distribution of samples of class c within the

lattice neighborhood. This change alone would yield I(C, J),

the mutual information between the classes and the (soft)

winner assignment. In addition, the average Ep(c, j) is taken

in the limit of zero neighborhood, to heuristically compen-

sate for the difference between winner selection in the

standard SOM algorithm and Heskes’ version. This finally

yields Eq. (15). If p̂ðcjhjÞ were estimated from learning data

instead of test data, the measure would further become a

conditional log-likelihood for predicting classes of test

samples from the SOM neighborhood; this would be a

reasonable alternative measure.

In conclusion, although the measure Eq.(15), was

heuristically derived, the connections to log-likelihood,

mutual information and the SOM-L objective make it

reasonable.

Letter Recognition

dataa

16 26 20,000

Phoneme datab 20 13 3656

TIMIT data from

TIMIT (1998)

12 41 14,994

a From the UCI Machine Learning Repository (Blake & Merz, 1998).
b From LVQ_PAK (Kohonen, Kangas, Laaksonen, & Torkkola, 1992).
5.3. Empirical comparisons

In this section, we present empirical comparisons

showing that the SOM-Ls are more informative about the

auxiliary data than Euclidean SOMs, and that SOM-L uses
the auxiliary data better than a simple supervised SOM

variant. These comparisons are sanity checks aimed to show

that the learning metric in fact does what it promises. We

additionally compare the different approximations of

learning metrics.

Test setup. Two approximations to path integrals are

included: the 1-point and T-point distances (TZWZ10).

For most experiments, the density is estimated by the CMM.

The main comparison method is the classical supervised

SOM, here SOM-S, where the class of the sample is

concatenated into the input vectors in a (weighted) 1-out-of-

NC class encoded form. The standard Euclidean SOM,

denoted here by SOM-E, is used as a baseline; it does not

use the auxiliary data at all.

The comparisons can be divided into two sets. First the

two SOM-L versions are compared to the other methods.

The choice of density estimator is next justified by

comparing SOM-Ls trained with the CMM and MDA2

estimators. The Parzen estimator was computationally too

complex, at least for these experiments with the T-point

distances. The choice of T and W is studied in Section 7.3.

The methods are compared on four standard machine

learning data sets (Table 2). A standard cross-validation

procedure and paired t-tests are used to verify the difference

between the methods.

SOM-L vs. classical SOMs. The SOM-L with the T-point

distance approximation is significantly better than the

traditional methods, SOM-E and SOM-S, on all four data

sets (Table 3). The faster 1-point distance approximation

provides good results on some of the data sets, but on some

others it is outperformed by SOM-S, and even by SOM-E on

one data set.

Note that SOM-S outperforms SOM-E on all data sets.

This gives additional empirical justification for the per-

formance measure Eq. (15), since the measure can detect the

intuitively clear difference between the supervised methods

and SOM-E which does not use auxiliary data.

Comparing SOM-L versions. The different methods of

approximating the learning metrics are compared in Table 4.

On all data sets, the combination of CMM and the T-point

distance approximation leads to significantly more accurate

maps than any other combination. With the rough 1-point

Table 3

Comparison of SOM that learns metrics (SOM-L) with supervised SOM (SOM-S) and Euclidean SOM (SOM-E)

Landsat Phoneme

1-point SOM-S SOM-E SOM-S SOM-E 1-point

T-point 4!10K4 10K5 3!10K8 T-point 0.03 2!10K6 9!10K7

1-point – 0.04 8!10K5 SOM-S – 0.008 0.001

SOM-S – – 10K4 SOM-E – – 0.20

Letter TIMIT

1-point SOM-S SOM-E SOM-S 1-point SOM-E

T-point 6!10K8 10K9 !10K10 T-point 2!10K5 3!10K6 3!10K9

1-point – 2!10K8 !10K10 SOM-S – 0.02 2!10K5

SOM-S – – !10K10 1-point – – 0.004

Two distance approximations (1-point and T-point) are used in SOM-L. The table shows p-values of paired t-tests between the row and column methods. If an

entry is present the method in that row is on the average better than the method in that column. Entries with p!0.01 have been underlined for convenience.

J. Peltonen et al. / Neural Networks 17 (2004) 1087–1100 1093
distance approximation there is no clear difference between

the two density estimators.

In conclusion, CMM is the better density estimation

method for learning metrics if the distance approximation is

accurate enough. Even with the 1-point distance approxi-

mation MDA2 is clearly worse on some data sets. Therefore,

CMM can be recommended, and it will be used in the

further tests in Section 7.
Table 4

Comparison of density estimators and distance approximation methods for

SOM-L

Landsat

CMM, 1-point MDA2, 1-point MDA2, T-point

CMM, T-point 4!10K4 6!10K7 8!10K7

K4
5.4. Visualizing the SOM-L

All standard SOM visualizations are applicable to SOM-

L as well. In addition, the relative importance of the

components (coordinates) of primary data can be visualized

on the SOM display. The relative importance of the ith

coordinate at x is (Kaski et al., 2001)

CMM, 1-point – 8!10 0.04

Letter

CMM, 1-point MDA2, 1-point MDA2, T-point

CMM, T-point 6!10K8 10K10 10K10

CMM, 1-point – !10K10 !10K10
riðxÞh
d2

1ðx; x CeiÞP
j d2

1ðx; x CejÞ

� �1=2

Z
eT

i JðxÞeiP
j eT

j JðxÞej

 !1=2

; (16)
Phoneme

CMM, 1-point MDA2, 1-point MDA2, T-point

CMM, T-point 9!10K7 2!10K8 0.003

CMM, 1-point – 0.02 10K4

TIMIT

CMM, 1-point MDA2, 1-point MDA2, T-point

CMM, T-point 3!10K6 2!10K5 0.001

CMM, 1-point – 0.03 5!10K5

The entries are p-values of paired t-tests, and values below 0.01 are

underlined for convenience. If an entry is present the method on that row is

on average better. The entries typed in boldface are exceptions; in those

cases the method on that column is better. CMM, conditional mixture

model; MDA2, mixture discriminant analysis 2. The distance approxi-

mations used are 1-point and T-point.
where d1 is the 1-point distance approximation, Eq. (8), and

ei is the unit vector with the ith element being equal to one

and others to zero. The relevance computed at model vector

mj will be visualized by a gray shade on top of SOM unit j.

The Letter Recognition data is visualized in Fig. 1. One

component plane and the corresponding importance plane

are shown, and simple conclusions are drawn to explain how

the visualizations could be used. The conclusions obtained

from this visualization are very simple because of the data

set, but they are intuitively clear.

Fig. 1 also demonstrates the difference between SOM-L

and SOM-E. The map units with the same label (chosen by

majority voting) are close-by on SOM-L, but on SOM-E

some of the labels (e.g. ‘I’ and ‘B’) are dispersed into a

number of locations on the map.
6. Application II: Sammon’s mapping

by learning metrics

Metric MDS methods (see Borg & Groenen (1997)) are

often used to visualize similarities of data samples; they

represent the data in a low-dimensional space that tries to

preserve pairwise distances. Sammon’s mapping (Sammon,

1969) is a well-known MDS method which emphasizes

preservation of small distances.

Fig. 1. Sample SOM-L visualizations for Letter Recognition data. (a) The component plane showing, with gray shades, the values of one of the components

(called ‘height of the centroid of mass’) in the map units, and (b) the importance of the component. The map has been computed with the T-point distance

approximation and the units have been labeled by majority voting (c). The feature has a high importance (light shade; large contribution to the local distance) in

two separate regions of the map. One region corresponds to the letter ‘L’ and the other to the letter ‘T’. The component plane reveals that in L the mass centroid

is low whereas in T it is high. The majority voting on SOM-E (d) is given for comparison; the labels are clearly more dispersed on the map compared to the

SOM-L.

J. Peltonen et al. / Neural Networks 17 (2004) 1087–11001094
We show next how to compute a Sammon’s mapping

based on learning metric distances. As in the SOM-L,

the aim is to study the primary data; the metric only

emphasizes relevant differences.
6.1. Computing the Sammon-L

Sammon’s mapping is based on the matrix of pairwise

distances between data points; there is no need to know

distances between arbitrary points. Therefore, the learning

metric is only needed in computing this matrix, after which

standard methods to compute the Sammon’s mapping can

be applied. The same approach works with any algorithm

operating on the pairwise distance matrix.

In principle, the distance matrix could be computed with

any of the distance approximations. The simple 1-point

approximation is likely to be too inaccurate here but the

T-point and graph approximations are suitable. Since the

distances need to be computed only once in the beginning,

the graph approximation is the preferred choice. Here, the

data points themselves form the vertices of the graph;

the distances are then computed more accurately where the

data is dense, which is sensible.
Table 5

Indirect measure of the goodness for the Sammon’s mappings

Data set Graph T-point Sammon-E

Landsat 88.95 87.49 82.69

Letter 59.26 56.15 14.29

Phoneme 90.77 90.48 80.38

TIMIT 40.00 39.96 30.40

Average percentage of correct KNN-classifications in the output space are

given over cross-validation folds for two Sammon-L variants and Sammon-

E. ‘Graph’, Sammon-L with graph search; ‘T-point’, Sammon-L without

graph search. The Sammon-L variants are both significantly better than

Sammon-E on all data sets.
6.2. Empirical comparisons

To our knowledge no ‘supervised’ variant of Sammon’s

mapping exists. The straightforward thought of concatenat-

ing the class to data vectors as in SOM-S would not tolerate

unlabeled data. Hence, we only perform a basic test to

ensure the Sammon-L finds class structure better than the

standard Sammon’s mapping that uses Euclidean distances,

here denoted Sammon-E.

Test setup. The two variants of Sammon’s mapping are

compared with t-tests in a standard 10-fold cross-validation

scheme. The data are described in Table 2. The tests are

similar to the SOM-L tests; the difference is that Sammon’s
mapping does not generalize to new data (aside from

heuristic generalizations). Hence, direct validation of a

computed mapping is not possible. However, the metric

does generalize, so it can be used to compute a distance

matrix for test data. The quality of the resulting Sammon’s

mapping, computed for test data but in a metric computed

from learning data, can then be evaluated.

The SOM-L quality measure, Eq. (15), is defined for a

discrete-valued mapping and cannot be used here. Instead,

the quality of the mappings is measured indirectly by the

performance of a non-parametric leave-one-out K-nearest

neighbor (KNN) classifier in the output space. Each sample

is classified based on K nearest samples; low error means

that samples of the same class have been mapped close-by.

For each method, the neighborhood size K was validated

from the range 1–100. For each distance matrix, the KNN

result was averaged over 20 restarts of the Sammon’s

mapping algorithm.

Two distance approximations, T-point (TZ10) and graph

distance, are used for Sammon-L. The latter yields better

approximations but is computationally heavier. The density

is estimated with the CMM with 30 kernels; the choice was

made because of its good performance in the SOM-L tests.

Results. The resulting Sammon-L mappings were

significantly more informative (t-test, p!0.01) than

Fig. 2. The learning metric used in Sammon-L leads to clearly more separated classes in contrast to the Sammon-E. For example, the letter ‘W’ is grouped into a

tight cluster at the bottom of the Sammon-L mapping, while in Sammon-E it is dispersed to a large area on the left side of the mapping. The letters are samples

of capital characters, which explains the similarity of e.g. ‘O’ and ‘Q’.

J. Peltonen et al. / Neural Networks 17 (2004) 1087–1100 1095
Sammon-E on all data sets (Table 5). The graph approxi-

mation further improved the results on Landsat and Letter

Recognition data sets; on the other two sets the difference

between the Sammon-L variants was insignificant.

The Sammon-L with the graph approximation is

illustrated in Fig. 2 on Letter Recognition data. The new

metric has emphasized differences where the class distri-

butions change, leading to increased class separation and

more distinctive clustering of classes. The class structure is

hardly visible in the Sammon-E mapping shown for

comparison, whereas some classes can easily be separated

in the Sammon-L.
7. Why is this metric useful?

In Section 3, the metric was claimed to have useful

properties. In this section, we take a closer look at the two

most important ones. We illustrate why topology preser-

vation is useful in data exploration, and study empirically

how well the metric distinguishes between relevant and

irrelevant variation in data.

Finally, we study the tradeoff between complexity and

accuracy of the introduced approximation methods for the

metric. The question is how complex approximations are

needed in practice for good results.
6 Jensen–Shannon distance would probably be a better choice since it is

symmetric.
7.1. Topology preservation

The learning metric is first defined locally, and the local

definition is extended by path integrals to the whole space.

This has a rigorous interpretation: it is a Riemannian

metric studied for instance in the information geometry

literature.

The procedure is somewhat complicated, which may

bring up the question of why not simply use the local

definition globally. Distances between any two points would
be measured by the Kullback–Leibler divergence in Eq. (3),

or any other distributional distance measure.6

Both choices are sensible but the results will be very

different. In particular, the globally defined metric would

not be able to distinguish modes of multimodal (class)

distributions, simply because points having the same class

distribution would be considered identical. This tears the

topology of the data space.

We argue that preserving the topology by defining the

metric locally is important for instance for identifying

subcategories of the classes, and for analyzing the structure

and relationships of the classes in the primary data space.

A toy example. We illustrate the difference between the

Riemannian distance and the Kullback–Leibler divergence

on artificial data. The data are uniformly distributed over a

square. One of the classes (labeled ‘effect’) is bimodal and

the other class forms the background.

This artificial data is effectively one-dimensional by both

the Kullback–Leibler divergence and the Riemannian

metric. Therefore, one-dimensional Sammon’s mappings

were computed to visualize their difference (Fig. 3).

Both mappings group the ‘background’ into one

connected area. The Kullback–Leibler divergence does

not distinguish the two ‘effect’ clusters, since they have

identical class distributions. The mapping based on the

Riemannian metric, however, preserves the multimodality.

Euclidean Sammon’s mapping is included for comparison;

naturally, it cannot separate the categories of the uniformly

distributed data.
7.2. Ability to focus on important variation

Although the learning metric theoretically depends only

on changes that affect the auxiliary variable C, the

approximations used in practical computation are not

J. Peltonen et al. / Neural Networks 17 (2004) 1087–11001096
perfect. Approximation of the distances from finite data

becomes the more difficult the more unimportant variation

(noise) there is in the data. Here, we empirically study how

increasing the amount of unimportant variation affects the

organization of SOM-L.

Test setup. To create unimportant variation in a dataset

while keeping its other properties as constant as possible, we

randomly picked one of the dimensions (variables) of

primary data and randomly permuted the values of that

dimension among the data samples. This removes

statistical dependency between the selected variable

and the remaining (primary and auxiliary) variables, but

otherwise preserves the data distribution. More noise is

added by repeating the procedure for more variables.

The quality measure Eq. (15) will be used to evaluate the

overall quality of the SOMs. The quality will naturally drop

when more dimensions are permuted, for two reasons: (i)

information about auxiliary data is lost simply because

fewer informative dimensions are left, and (ii) the noise may

disturb distance approximation. We are interested in (ii),

and hence introduce a new complementary measure that

focuses on it.

If the unimportant dimensions do not affect the distances

in the learning metric, winner search is determined by the

remaining dimensions. Therefore, the data won by each map

node should have the same distribution over the unimportant

dimensions, and each model vector should converge to the

same value (the mean) along them. We can then measure the

noise caused by the unimportant dimensions by the average

(Euclidean) variance of the model vectors along them.

Data. Two data sets are used: Letter Recognition data

(Table 2) and a new gene expression data (Su et al., 2002).

The gene data are derived from sample pairs (x, y) of

expression level vectors of human genes and corresponding

(in the sense of having similar DNA sequences) mouse

genes in a set of their respective tissues. Human expressions

are regarded as primary data and mouse tissues are used as
Fig. 4. Replacing interesting with uninteresting variation decreases the accuracy o

(left), even when half of the dimensions are permuted, SOM-L performs as well

permuting roughly 10 out of 42 dimensions reduces the SOM-L performance to
categories of an auxiliary variable: if the expression in a

mouse tissue is high after preprocessing (over one standard

deviation above the gene-wise average), the corresponding

human gene was assigned to that category. Up to 16

dimensions were permuted for gene data (out of 42) and up

to 8 for Letter Recognition (out of 16).

Results. As expected, the performance of both SOM-L

and SOM-E decreases when uninteresting variation (num-

ber of permuted dimensions) increases. The SOM-L seems

to lose performance roughly at the same rate as SOM-E

(Fig. 4), but the performance is clearly better at any given

point, and even with a few permuted dimensions the SOM-L

outperforms the SOM-E that was computed using the

intact data.

The effect of unimportant variation on the approximation

errors is visualized in Fig. 5, which shows average variances

for the permuted SOM-L dimensions, relative to the

variance of the same dimensions in the SOM-L of original

data. SOM-E results are again included for comparison;

SOM-E variances change because permutation removes

dependencies between permuted and non-permuted primary

variables.

The SOM-L variance for permuted dimensions is close to

zero, and clearly smaller than the SOM-E variance on both

sets. Therefore, the permutation does not seem to cause

significant noise for SOM-L training.
7.3. Complexity vs. quality

The complexity–quality tradeoff. To apply explicit

learning metrics in practice, we need to estimate the density

and approximate the distances, as described in Section 4.

Here, we study the complexity–quality tradeoff, that is, how

much the accuracy improves by increasing the complexity

of the computation (of the estimates and approximations).

This is done in order to provide a practical recommendation

for ‘sufficient’ complexity. The experiments also justify
f both SOM-L and SOM-E at a similar rate. On the Letter Recognition data

as the SOM-E for the original (unpermuted) data. On the gene data (right)

the level of a SOM-E for original data.

Fig. 5. Effect of irrelevant variation on SOM-L, measured by variances of model vectors along permuted dimensions relative to variances in the original data.

Solid line, SOM-E; dashed, SOM-L.

J. Peltonen et al. / Neural Networks 17 (2004) 1087–1100 1097
the earlier heuristic choices. The density estimators were

already compared in Section 5.3, and here we focus on the

distance approximation.

Previous choices. For the tests in Sections 5.3 and 6.2,

the distance approximations were fixed. For the density

estimate, the number of mixture components was chosen by

preliminary SOM-L experiments. The variance of Gaussian

components was validated separately in each cross-

validation fold by dividing the training data into learning

and validation subsets. The best variance for SOM-L

training seems to be somewhat larger than the maximum

likelihood value (best density estimator), especially for

SOM-Ls trained with the 1-point approximation. Hence,

good candidate variances can be picked near the maximum

likelihood value.

The tests. We studied how the complexity parameter T

used for the T-point and graph approximations affects

SOM-L and Sammon-L performance.

For SOM-L we in practice must also consider

the speedup parameter W. For the fastest value WZ1,
Fig. 6. SOM accuracy for Landsat (left) and Phoneme (right) data as a function of

altogether clear, but in general the larger W work better. On the Landsat data, the

SOM-E), but on the Phoneme data the least accurate approximations are not accu
the distance approximation equals the simpler speedup

approximation (here 1-point distance); the other extreme of

W equal to the number of SOM nodes implies no speedup.

We tested the effect of increasing the computational

complexity on two data sets (Landsat and Phoneme),

by computing SOM-Ls and Sammon-Ls for a range of

parameter values, and measuring their goodness on a

separate test set. SOM-E, SOM-S, and Sammon-E are

used as baselines.

For SOM-L the parameter s of the CMM density

estimator is validated for each value of T and W. For

SOM-S, the class weight is validated. For Sammon-L, s and

the neighborhood of the KNN-classifier (performance

measure) are validated for each value of T. For Sammon-

E, the KNN neighborhood is validated.

The results. Fig. 6 shows the SOM-L performances

and Fig. 7 the Sammon-L performances on the data sets.

The SOM-L performance varies somewhat but the SOM-

L is better than the other methods for all values TR5,

WR10. For both SOM-L and Sammon-L,
the computational complexity. The effect of the speedup parameter W is not

SOM-L results are always better than the comparison methods (SOM-S and

rate enough.

Fig. 7. The KNN-classification accuracy of Sammon-L mapping increases rather quickly with the distance parameter T on both the Landsat (left) and Phoneme

(right) data sets. The difference to Sammon-E performance is clear already with TZ2 and using values larger than TZ5 seems unnecessary. The local

approximation (TZ1) is not sufficient, as was to be expected.

J. Peltonen et al. / Neural Networks 17 (2004) 1087–11001098
the performance increases with the complexity, but

compared to the increase in computation time the gain

is small already with quite low values. The SOM-L

computation time is proportional to TW, whereas the

Sammon-L distance computation is linear in T. The

values TZWZ10 used in Section 5.3 seem sufficient

with both methods and on both data sets; performance

does not increase markedly for larger values.
8. Conclusions and discussion

The learning metrics principle addresses the garbage

in—garbage out problem of unsupervised learning, by using

auxiliary data to separate the important variation from

unimportant variation. Choosing auxiliary data specifies

what is important; this is often easier than hand-tuning

the features.

The learning metrics share one aspect with supervised

learning: both use auxiliary data. The difference is that here

only the metric is supervised; the data analysis task itself

can be unsupervised. Note also that analyzing partially

labeled data is easy; after the metric has been estimated it

applies to all data, labeled or not.

In a sense, the concept of learning metrics is comp-

lementary to so-called semi-supervised learning, where

unlabeled samples are used to help in a supervised task.

Here, auxiliary labels are used to help in unsupervised

data analysis.

The choice of auxiliary data is important. It specifies

everything that is relevant, and may suppress unknown

but possibly interesting properties of the data. In a

knowledge discovery task one could ‘regularize’ the

learning metrics by the Euclidean distance as suggested

in Kaski et al. (2001), allowing effects that are strong

enough to turn up even when considered irrelevant with

respect to the auxiliary data.
The learning metrics have a flexible Riemannian form,

and are well suited for data analysis since they do not

tear the topology of the data space. Data analysis can

even provide new insights into the importance of the

features. Such metrics are also more general than those

found by extracting a smaller set of features. The

downside is that computing the metrics analytically is

usually not possible, and approximations must make a

tradeoff between quality and computational complexity.

In this paper, we presented generally applicable,

practical approximations to computing the metrics and

showed that they improved the performance of two well-

known unsupervised methods, the self-organizing map and

Sammon’s mapping. We also demonstrated and studied

properties of the metrics.

Based on the results the following guidelines for

approximating the metrics computationally can be given.

For self-organizing maps, use the T-point approximation

with speedup. For Sammon’s mappings, use either the

T-point or graph approximation, depending on compu-

tational resources. For both methods, approximate

densities by the Conditional Mixture Model (CMM).

Although the metric was applied here to only two data

analysis methods, it is more general. In particular, the

method of computing pairwise distances between all data

pairs for Sammon’s mapping (Section 6) is readily

applicable to a variety of methods such as other MDS

methods or hierarchical clustering algorithms.

The main unsolved theoretical question in the

current approach is how to combine the density

estimation and distance approximation steps of

computing the metrics, in other words, what is the

optimal density estimator for a particular distance

approximation. In this paper, we presented practical

tools that clearly improve data analysis methods but still

leave room for further work.

J. Peltonen et al. / Neural Networks 17 (2004) 1087–1100 1099
Appendix A. Heskes’ cost function in learning metrics

We consider two cases: one where the conditional class

probabilities are known and one where they are not. We

derive a direct cost function for the first case and an upper

bound for the second case.

Known class probabilities. The learning metrics version

of the energy function in Eq. (13) can be rewritten as

E Z EpðxÞ min
i

X
j

hijd
2
Lðx;mjÞ

()

Z min
w

EpðxÞ

X
j

hwðxÞ;jd
2
Lðx;mjÞ

()
; (A1)

where the minimum on the right is taken over all functions

w(x) that output an index of a SOM node; they are here

denoted winner assignment functions.

Assuming the local distance definition (Kullback–

Leibler divergence) can be used, the function can be further

rewritten as

E Z min
w

EpðxÞ

X
j

hwðxÞ;jDKLðpðcjxÞ; pðcjmjÞÞ

()

Z min
w

EpðxÞ

X
j

hwðxÞ;j

X
c

pðcjxÞlog
pðcjxÞ

pðcjmjÞ

()

Z C1 Kmax
w

EpðxÞ

X
j;c

hwðxÞ;jpðcjxÞlog pðcjmjÞ

()

Z C1 Kmax
w

Epðx;cÞ

X
j

hwðxÞ;j log pðcjmjÞ

()
; (A2)

where we assumed a fixed neighborhood total
P

j hwðxÞ;jZ
C0 and denoted C1ZKC0$Ep(x){H(Cjx)}ZKC0$H(CjX),

which is constant with respect to the map parameters (model

vectors mj). Therefore, minimizing E with respect to the

map parameters is equivalent to maximizing

Epðx;cÞ

X
j

hwðxÞ;j log pðcjmjÞ

()
; (A3)

with respect to both the prototype vectors and the

winner assignment function w(x). Denoting p(jjx, c)Z
p(jjx)hhw(x),j/C0 this further simplifies to

C0Epðx;c;jÞflog pðcjmjÞg Z C0Epðc;jÞflog pðcjmjÞg; (A4)

where pðc; jÞZ
Ð

x pðjjx; cÞpðx; cÞdx and C0 is constant. This

yields Eq. (14).

Unknown class probabilities. When the class probabil-

ities are not known, an upper bound for Eq. (14) can be

derived as follows. The above can be rewritten using an

estimate p̂; as
Epðc;jÞflog pðcjmjÞg

Z Epðc;jÞflog p̂ðcjmjÞgCEpðc;jÞ log
pðcjmjÞ

p̂ðcjmjÞ

� �
: (A5)

The first term is maximized with respect to the class

estimate when p̂ðcjmjÞZpðcjjÞ; the proportion of samples

having class c and assigned to j, where again p(jjx, c)hhw(x),j/

C0. In that case, the first term is simply KH(CjJ) the second

term is KEp(j){DKL(p(cjj), p(cjmj))}, and we may maximize

the upper bound

KHðC=JÞ Z Epðc;jÞ log pðcjmjÞCEpðjÞfDKLðpðcjjÞ; pðcjmjÞÞg

REpðc;jÞ log pðcjmjÞ: (A6)

The ‘tightness’ of the bound depends on the average

Kullback–Leibler divergence; it is small when Eq. (A1)

is small.

Notice that KH(CjJ) is just a constant H(C) away from

I(C, J), the mutual information between a (soft) winner

assignment and the auxiliary variable. Maps with a high

I(C, J) can therefore be called informative.
References

Amari, S. (1998). Natural gradient works efficiently in learning. Neural

Computation, 10, 251–276.

Becker, S. (1996). Mutual information maximization: Models of cortical

self-organization. Network: Computation in Neural Systems, 7, 7–31.

Becker, S., & Hinton, G. E. (1992). Self-organizing neural network that

discovers surfaces in random-dot stereograms. Nature, 355, 161–163.

Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning

databases. http://www.ics.uci.edu/~mlearn/MLRepository.html.

Borg, I., & Groenen, P. (1997). Modern multidimensional scaling. New

York: Springer.

Devroye, L. P., & Wagner, T. J. (1980). Distribution-free consistency

results in non-parametric discrimination and regression function

estimation. The Annals of Statistics, 8(2), 231–239. March.

Friedman, N., Mosenzon, O., Slonim, N., & Tishby, N. (2001). Multivariate

information bottleneck. In Proceedings of the 17th conference on

uncertainty in artificial intelligence (UAI) (pp. 152–161). San

Francisco, CA: Morgan Kaufmann Publishers.

Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector

quantization. Neural Networks, 15, 1059–1068.

Hastie, T., Tibshirani, R., & Buja, A. (1995). Flexible discriminant and

mixture models. In J. Kay, & D. Titterington (Eds.), Neural networks

and statistics. Oxford: Oxford University Press.

Heskes, T. (1999). Energy functions for self-organizing maps. In E. Oja, &

S. Kaski (Eds.), Kohonen maps (pp. 303–316). Amsterdam: Elsevier.

Jaakkola, T. S., & Haussler, D. (1999). Exploiting generative models

in discriminative classifiers. In M. S. Kearns, S. A. Solla, & D. A.

Cohn, Advances in neural information processing systems (Vol. 11)

(pp. 487–493). San Mateo, CA: Morgan Kaufmann Publishers.

Kaski, S., & Peltonen, J. (2003). Informative discriminant analysis. In

Proceedings of the 20th international conference on machine learning

(ICML-2003) (pp. 329–336). Menlo Park, CA: AAAI Press.

Kaski, S., & Sinkkonen, J. (2004). Principle of learning metrics for data

analysis. The Journal of VLSI Signal Processing-Systems for Signal,

Image, and Video Technology, 37, 177–188 (Special Issue on Data

Mining and Biomedical Applications of Neural Networks).

http://www.ics.uci.edu/~mlearn/MLRepository.html

J. Peltonen et al. / Neural Networks 17 (2004) 1087–11001100
Kaski, S., Sinkkonen, J., & Klami, A. (2003). Regularized discrimina-

tive clustering. In C. Molina, T. Adali, J. Larsen, M. Van Hulle, S.

Douglas, & J. Rouat (Eds.), Neural networks for signal processing

XIII (pp. 289–298). New York, NY: IEEE.

Kaski, S., Sinkkonen, J., & Peltonen, J. (2001). Bankruptcy analysis with

self-organizing maps in learning metrics. IEEE Transactions on Neural

Networks, 12, 936–947.

Kohonen, T. (2001). Self-organizing maps (3rd ed). Berlin: Springer.

Kohonen, T., Kangas, J., Laaksonen, J., & Torkkola, K. (1992). LVQ_PAK:

A program package for the correct application of learning vector

quantization algorithms. In Proceedings of IJCNN’92, international

joint conference on neural networks (Vol. I) (pp. 725–730).

Kullback, S. (1959). Information theory and statistics. New York: Wiley.

Rattray, M. (2000). A model-based distance for clustering. In Proceedings

of IJCNN-2000, international joint conference on neural networks

(pp. 4013–4016). Piscataway, NJ: IEEE Service Center.

Sammon, J.W., Jr. (1969). A non-linear mapping for data structure analysis.

IEEE Transactions on Computers, C-18, 401–409.

Sinkkonen, J., & Kaski, S. (2002). Clustering based on conditional

distributions in an auxiliary space. Neural Computation, 14, 217–239.
Su, A. I., Cooke, M. P., Ching, K. A., Hakak, Y., Walker, J. R., Wiltshire,

T., Orth, A. P., Vega, R. G., Sapinoso, L. M., Moqrich, A., Patapoutian,

A., Hampton, G. M., Schultz, P. G., & Hogenesch, J. B. (2002). Large-

scale analysis of the human and mouse transcriptomes. PNAS, 99,

4465–4470.

TIMIT (1998). TIMIT. CD-ROM prototype version of the DARPA TIMIT

acoustic–phonetic speech database.

Tishby, N., Pereira, F. C., & Bialek, W. (1999). The information bottleneck

method. In 37th annual Allerton conference on communication, control,

and computing, Urbana, Illinois (pp. 368–377).

Torkkola, K. (2003). Feature extraction by non-parametric mutual

information maximization. Journal of Machine Learning Research, 3,

1415–1438.

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., & Müller, K.-R.

(2002). A new discriminative kernel from probabilistic models. Neural

Computation, 14, 2397–2414.

Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (2003). Distance metric

learning, with application to clustering with side information. In S.

Becker, S. Thrun, & K. Obermayer, Advances in neural information

processing systems (Vol. 15). Cambridge, MA: MIT Press.

