
Evolutionary product unit based neural networks for regression

Alfonso Martı́nez-Estudillo a, Francisco Martı́nez-Estudillo a,*, César Hervás-Martı́nez b,

Nicolás Garcı́a-Pedrajas b

a Department of Applied Mathematics, ETEA, 14004 Córdoba, Spain
b Department of Computing and Numerical Analysis, University of Córdoba, 14071 Córdoba, Spain

Received 9 January 2004; accepted 25 November 2005

Abstract

This paper presents a new method for regression based on the evolution of a type of feed-forward neural networks whose basis function units are

products of the inputs raised to real number power. These nodes are usually called product units. The main advantage of product units is their

capacity for implementing higher order functions.

Nevertheless, the training of product unit based networks poses several problems, since local learning algorithms are not suitable for these

networks due to the existence of many local minima on the error surface. Moreover, it is unclear how to establish the structure of the network

since, hitherto, all learning methods described in the literature deal only with parameter adjustment. In this paper, we propose a model of evolution

of product unit based networks to overcome these difficulties. The proposed model evolves both the weights and the structure of these networks by

means of an evolutionary programming algorithm.

The performance of the model is evaluated in five widely used benchmark functions and a hard real-world problem of microbial growth

modeling. Our evolutionary model is compared to a multistart technique combined with a Levenberg–Marquardt algorithm and shows better

overall performance in the benchmark functions as well as the real-world problem.

q 2006 Elsevier Ltd. All rights reserved.

Keywords: Product units; Regression; Evolutionary computation
1. Introduction

In the area of neural network application, one of the most

interesting fields is function regression (Hwang, Lay,

Maechler, Martin, & Schimert, 1994). The fact that a neural

network with sigmoidal transfer functions can approximate any

given continuous function with the desired accuracy (Hornik,

1989) is a powerful basis for the application of neural networks

to regression.

Neural network regression is an instance of model-free or

non-parametric regression. We can state a model-free

regression problem as follows (Hwang et al., 1994). Given n

pairs of vectors

ðxl;yÞZ ðxl1;.;xlk;yÞ; l Z 1;2;.;n; (1)
0893-6080/$ - see front matter q 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2005.11.001

* Corresponding author.

E-mail addresses: acme@etea.com (A. Martı́nez-Estudillo), fjmestud@

etea.com (F. Martı́nez-Estudillo), chervas@uco.es (C. Hervás-Martı́nez),

ngpedrajas@ieee.org (N. Garcı́a-Pedrajas).
that have been generated from unknown models

y Z gðxlÞC3l; l Z 1;2;.;n; (2)

where y is the response variable and xl are the independent

variables. g is an unknown smooth non-parametric function

from p-dimensional Euclidean space to R

g : Rk/R: (3)

3l are random variables with zero mean, E[3l]Z0, and

independent of xl. The aim of the regression is to construct

an estimator ĝ, which is a function of the data (xl,y), to

approximate the unknown function g, and use this estimation to

predict a new y given a new x

ŷ Z ĝðxÞ: (4)

Neural networks can be considered similar to basis function

models (Denison, Holmes, Mallick, & Smith, 2002). These

models assume that g is made up of a linear combination of

basis functions and corresponding coefficients. Hence, g can be

written

gðxÞZ
Xm

jZ1

bjBjðxÞ; x2R
k; (5)
Neural Networks 19 (2006) 477–486
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet

A. Martı́nez-Estudillo et al. / Neural Networks 19 (2006) 477–486478
where bZ(b1,.,bm)
0 is the set of coefficients corresponding to

basis functions BZ(B1,.,Bm). Typically, the basis functions

of (5) are non-linear transformations. Methodologically, there

is a major separation in neural network approach, as the

combination of the basis functions is not always linear, as in

(5), and additional sets of basis functions, represented by

hidden layers, can be constructed.

Let us consider a feedforward neural network with k inputs

and a hidden layer with m nodes. The hidden layer carries out a

non-linear projection of input vector x to a vector h where

hj Z f
Xk

iZ1

wjixi

 !
; j Z 1;.;m: (6)

As we have stated, each node performs a non-linear

projection of the input vector. So, hZf(x), and the output

layer obtains its output from vector h. Moreover, the projection

performed by the hidden layer of a multilayer perceptron

distorts the data structure and inter-pattern distances (Lerner,

Guterman, Aladjem, & Dinstein, 1999) in order to achieve a

better approximation.

If the function f in (6) is of sigmoid type, e.g. logistic or

hyperbolic tangent functions, we obtain the standard multilayer

perceptron.

Nevertheless, due to the lack of transparency of the

sigmoidal functions in several regression problems, different

alternative basis functions have been proposed. Among others,

we can mention Gaussian functions (Kosko, 1991), radial basis

functions (Lee & Hou, 2002), projection pursuit learning (Zhao

& Atkeson, 1996) and general regression networks (Tomandl

& Schober, 2001). In the same way, new models of networks

have recently been proposed for regression and classification

(Arulampalam & Bouzerdoum, 2003; Specht, 1991).

Among the most interesting models are the multiplicative

neural networks that contain nodes that multiply their inputs

instead of adding them and thus allow inputs to interact non-

linearly. This class of multiplicative neural networks comprises

such types as sigma-pi networks and product unit networks. A

multiplicative node is given by

yj Z
Yk

iZ1

x
wji

i ; (7)

where k is the number of inputs. If the exponents are {0,1} we

obtain a higher-order unit, also well-known under the name of

sigma-pi unit. In contrast to the s–p unit, in the product unit

(PU) the exponents are not fixed and may even take real values.

Product units were introduced by Durbin and Rumelhart

(1989). They suggested two types of network incorporating

PUs. In the first network type, each additive unit is connected to

a group of dedicated PUs. The second type consists of alternate

layers of product and summation units, terminating the network

with an additive unit. This paper used three-layer networks,

where only the hidden layer consists of PUs, while the output

layer has additive units. Both layers use linear activation

functions.
Advantages of product unit based neural networks (PUNNs)

are increased information capacity and the ability to form

higher-order combinations of the inputs. Durbin and Rumelhart

(1989) determined empirically that the information capacity of

product units (measured by their capacity for learning random

Boolean patterns) is approximately 3N, compared to 2N of a

network with additive units for a single threshold logic

function, where N denotes the number of inputs to the network.

As well as this, it is possible to obtain upper bounds of the VC

dimension of product unit neural networks similar to those

obtained for sigmoidal neural networks (Schmitt, 2001).

From the point of view of the analytical structure of the

product units, it is interesting to note that the partial derivatives

of the function implemented by a product unit are again a

function of the same type. This fact makes it easier to study the

change rate of the function with respect to the variables.

Furthermore, we show in this paper that product units can

approximate any function with a given accuracy as well as

sigmoidal neural networks (see proof in Section 3.2).

Despite these obvious advantages, product unit based

networks have a major drawback. Their training is more

difficult than the training of standard sigmoidal based networks

(Durbin & Rumelhart, 1989). The main reason for this

difficulty is that networks based on product units have more

local minima and more probability of becoming trapped in

them (Ismail & Engelbrecht, 2000). It is a well known issue

(Janson & Frenzel, 1993) that back-propagation is not efficient

in training product units. Several efforts have been made to

develop learning methods for product units (see Section 2).

In this paper, we propose a model of evolutionary

programming for automatically obtaining the structure and

weights of a neural network based on product units. We apply a

population-based evolutionary algorithm for architectural

design and the estimation of weights in the neural network.

The algorithm begins the search with an initial population and

on each iteration the population is updated. It uses the

operations of replication and two types of mutation: structural

and parametric. The structural mutation implies a modification

of the structure of the function performed by the network and

allows an exploration of different regions of the search space.

The parametric mutation modifies the coefficients of the model

using a simulated annealing algorithm.

In order to test the performance of the model, it is applied to

five benchmark functions and a real-world problem of

estimation of parameters in microbial growth.

This paper is organized as follows: Section 2 reviews the

related work on product unit based neural networks; Section 3

explains the proposed model in depth; Section 4 describes the

experiments carried out; and Section 5 states the conclusions of

our paper.
2. Related work

As we have said, back-propagation is not efficient in training

product units. The large number of local minima makes

gradient based algorithms inefficient. Different attempts have

A. Martı́nez-Estudillo et al. / Neural Networks 19 (2006) 477–486 479
been made in order to obtain useful algorithms for training

product unit based networks.

Janson and Frenzel (1993) developed a genetic algorithm

for evolving the weights of a network based on product units

with a predefined architecture. The major problem of this kind

of algorithm is how to obtain the optimal architecture

beforehand.

Leerink, Giles, Horne, and Jabri (1995) tested different local

and global optimization methods for product unit networks.

Their results show that local methods, such as backpropaga-

tion, are prone to be trapped in local minima, and that global

optimization methods, such as simulated annealing and random

search, are impractical for larger networks. They suggested

some heuristics to improve backpropagation, and the combi-

nation of local and global search methods.

Ismail and Engelbrecht (1999, 2000) applied four different

optimization methods to train product unit neural networks:

random search, particle swarm optimization, genetic algor-

ithms, and leapfrog optimization. They concluded that random

search is not efficient in training these types of networks, and

that the other three methods show an acceptable performance

in three problems of function approximation with low

dimensionality. In a posterior paper (Ismail & Engelbrecht,

2002) they used a pruning algorithm to develop the structure as

well as the training of the weights of a product-unit based

neural network. Nevertheless, the methods proposed in these

papers are only for parametric learning.

Thework carried out onPUNNshas not tackled theproblemof

the design of both the structure and weights of this kind of neural

network, either using classic or evolutionary based methods.
3. Neural networks based on product units

In this section, we explain the proposed evolutionary

algorithm in depth. We begin with the definition of the family

of functions used in the modelling process and its represen-

tation by means of a neural network structure.
3.1. Function typology and associated network

Let us consider the functional model

f ðx1;x2;.;xkÞZ b0 C
Xm

jZ1

bj

Yk

iZ1

x
wji

i

 !

obtained from a product unit neural network. If we expand the

second-term, the model can be depicted (Engelbretch, 2003)

equivalent to

f ðx1;x2;.;xkÞZb0 C
Xm

jZ1

bj exp
Xk

iZ1

wji lnjxij

 !

! cos p
Xk

iZ1

wjiIi

 !
C i sin p

Xk

iZ1

wjiIi

 !" #
;

xis0

(8)
where

Ii Z
0; if xiO0;

1; if xi!0:

(
(9)

A problem arises with networks containing product units

that receive negative inputs and have weights that are not

integers. A negative number raised to some non-integer power

yields a complex number. Since, neural networks with complex

outputs are rarely used in applications, Durbin and Rumelhart

(1989) suggest discarding the imaginary part and using only the

real component for further processing. This manipulation

would have disastrous consequences for the VC dimension

when we consider real-valued inputs. No finite VC dimension

bounds can in general be derived for networks containing

such units (Schmitt, 2001). To avoid this problem, the input

domain is restricted, and we consider the set AZ fðx1;x2;.;xkÞ

2R
k: xiO0; iZ1;2;.;kg.

We define the family of real functions F as

FZ g
m2N

Fm

Z g
m2N

f :A3R
k/R:f ðx1;x2;.;xkÞZb0C

Xm

jZ1

bj

Yk

iZ1

x
wji

i

 !()
;

(10)

where b0, bj2R;wji2R, iZ1,2,.,k, jZ1,2,.,m. Each function

of the family can be seen as a polynomial expression of several

variables, where the exponents are real numbers.

It is interesting to note that this family of functions can be

considered as a generalization of response surfaces (Buchanan,

Bagil, Goins, & Philips, 1993; Myers & Montgomery, 2002).

For instance, if in (10) the exponents are chosen conveniently,

wji2{0,1,2}, we obtain a quadratic response surface of the

form

f ðx1;x2;.;xkÞZ c0 C
Xk

iZ1

cixi C
Xk

iZ1

ciix
2
i C

Xk

i!j

cijxixj: (11)

Every function of the family can be represented as a neural

network. The network must have the following structure: an

input layer with a node for every input variable, a hidden layer

with several nodes, and an output layer with just one node. The

nodes of a layer have no connections among them, and there

are no connections between the input and output layers. Fig. 1

shows the structure of such a network.

The network has k inputs that represent the independent

variables of the model, m nodes in the hidden layer, and one

node in the output layer. The activation of the jth node in the

hidden layer is given by

fj Z
Yk

iZ1

x
wji

i ; (12)

where wji is the weight of the connection between input node i

and hidden node j. The activation of the node in the output

layer is given by

Fig. 1. Model of a product unit based neural network.

A. Martı́nez-Estudillo et al. / Neural Networks 19 (2006) 477–486480
b0 C
Xm

jZ1

bjfj; (13)

where bj is the weight of the connection between the hidden

node j and the output node. The transfer functions of each node

in the hidden layer and the output node are the identity

function. In this way, each function of the F family is

represented by the structure of the network.

3.2. Approximation by product units

Let Rn be the dimensional Euclidean space and let K be a

compact subset of A3R
n. The space of continuous functions

on K is denoted by C(K) and we use kfk to denote the

supremum (or uniform) norm of f2C(K). We represent by F

the family of functions f :K3Rn/R given by (10). Clearly f is

continuous on K and therefore F is a subset of C(K).

The main goal of this section is to prove that F is a dense

subset of C(K) with respect to the supremum norm, that is, an

arbitrary continuous function on K can be approximated by a

function of family F. Theorem 1 is a straightforward

consequence of the Stone–Weierstrass theorem (Rudin, 1973).

Theorem 1. The family of functions F is a dense subset in C(K).

In other words, given any function g2C(K) and eO0, there

exists a function f2F such that

jf ðxÞKgðxÞj!e; cx2K: (14)

Proof 1. The family of continuous functions F is a subalgebra

of C(K): if f1 and f2 belong to F the sum f1Cf2, the product f1f2,

and cf1 with c2R are functions of F. Moreover, the family F

verifies the two conditions: constant functions belong to F, and

if x, y2F there exists f2F such that f(x)sf(y). Taking into

account that F is a subalgebra of C(K) and that F verifies the

previous two conditions, the theorem follows from direct

application of the Stone–Weiertrass theorem. ,
3.3. Evolutionary algorithm

The population-based evolutionary algorithm for architec-

tural design and estimation of real-parameters has common

points with other evolutionary algorithms in the bibliography

(Angeline, Saunders, & Pollack, 1994; Garcı́a-Pedrajas,

Hervás-Martı́nez, & Muñoz-Pérez, 2002; Yao & Liu, 1997).
It begins the search with an initial population, and on each

iteration the population is updated using a population-update

algorithm. The population is subject to the operations of

replication and mutation. Crossover is not used due to its

potential disadvantages in evolving artificial networks

(Angeline et al., 1994). With these features the algorithm

falls into the class of evolutionary programming. The general

structure of the algorithm is the following:

(1) The initial population B of size NR is generated.

(2) Repeat until the stopping criterion is fulfilled

(a) Calculate the fitness of every individual in the

population.

(b) Rank the individuals regarding their fitness.

(c) The best individual is copied into the new population.

(d) The 10% percent of best individuals of the population

are replicated and substitute the 10% of worst

individuals.

(e) Apply parametric mutation to the 10% of best

individuals.

(f) Apply structural mutation to the rest of the 90% of

individuals.

Sections 3.3.1–3.3.5 explain in depth all the aspects of this

algorithm.
3.3.1. Generation of the initial population

The algorithm begins with the generation of a larger number

of networks than the number used during the evolutionary

process. We generate 10NR networks, where NR is the number

of networks of the population during the evolutionary process.

For the generation of a network, the number of nodes in the

hidden layer is taken from a uniform distribution in the interval

(0, m/2], where m is the maximum number of hidden nodes in

any network of the population. In this way, the initial

population is formed by models simpler than the most complex

model possible. The number of connections between each node

of the hidden layer and the input nodes is determined from a

uniform distribution in the interval (0,k], where k is the number

of independent variables. There is always at least one

connection between the hidden layer and the output node.

Once the topology of the network is defined, each connection is

assigned a weight from a uniform distribution in the interval

[KL, L] for the weights between the input and hidden layers,

and in the interval [KM, M] for the weights between the hidden

layer and the output node. Finally, the initial population that

constitutes the base solution B is obtained selecting the best NR

among the 10NR generated.
3.3.2. Fitness assignment

Let D ={(xl, yl): lZ1,2,.,n} be the training data set, where

n is the number of samples. Here, we assume that each training

sample is independent and identically distributed. We consider

the mean squared error (MSE) of an individual g of the

population

A. Martı́nez-Estudillo et al. / Neural Networks 19 (2006) 477–486 481
MSEðgÞZ
1

n

Xn

lZ1

ðylKŷlÞ
2 (15)

where the ŷl are the predicted values. We define the fitness

function A(g) by means of a strictly decreasing transformation

of the mean squared error

AðgÞZ
1

1CMSEðgÞ
: (16)
3.3.3. Parametric mutation

Parametric mutation consists of a simulated annealing

algorithm (Geyer & Thompson, 1996; Kirkpatrick & Vecchi,

1983; Otten & Ginneken, 1989), a strategy which proceeds by

proposing jumps from the current model according to some

user-designed mechanism. The severity of a mutation to an

individual g is dictated by the temperature, T(g), given by

TðgÞZ 1KAðgÞ; 0%TðgÞ!1: (17)

Thus, the temperature is determined by the closeness of the

function to any solution of the problem.

Parametric mutation is accomplished for each parameter wji,

bj of (10) with Gaussian noise, where the variance of the

normal distribution depends on the temperature. This allows an

initial coarse-grained search, and a progressively finer-grained

search, as a model approaches a solution to the problem. The

exponents of the function, which represent the weights of the

connections from an input node to a hidden node, are modified

as follows

wjiðt C1ÞZwjiðtÞCx1ðtÞ; i Z 1;.;k; j Z 1;.;m (18)

where x1(t)2N(0, a1(t)T(g)) represents a one-dimensional

normally distributed random variable with mean 0 and variance

a1(t)T(g).

The coefficients bj, which represent the weights of the

connections from a hidden node to the output node, are

modified as follows

bjðt C1ÞZ bjðtÞCx2ðtÞ; j Z 1;.;m (19)

where x2(t)2N(0, a2(t)T(g)) represents a one-dimensional

normally distributed random variable with mean 0 and variance

a2(t)T(g). The modifications of each term are performed step-

wise, modifying one term at a time.

Once the mutation is performed, the fitness of the individual

g is recalculated and the usual simulated annealing criterion is

applied. Thus, if DA is the difference in the fitness function

before and after the random step, the criterion is: if DAR0 the

step is accepted, if DA!0 the step is accepted with a

probability exp(DA/T(g)). It should be pointed out that the

modification of the exponents, wji, is different from the

modification of the coefficients bj, a1ðtÞ/a2ðtÞ;ct. More-

over, they are adaptively changed in every generation by some

predefined rule. The parameters a1, a2, that determine together

with the temperature the variance of the distribution, change

throughout the evolution, allowing the learning process to

adapt. In other papers (Angeline et al., 1994; Garcı́a-Pedrajas,

Hervás-Martı́nez, & Muñoz-Pérez, 2003) the parameters of the
evolution are fixed during the evolutionary process. The

adaptation of the parameters tries to avoid being trapped in

local minima and to speed up the evolutionary process when

the conditions of the searching are suitable. The adaptation of

a1,a2 is given by

akðtÞZ

ð1ClÞakðtÞ if AðgsÞOAðgsK1Þ;cs2ft;tK1;.;tKrg

ð1KlÞakðtÞ if AðgsÞZAðgsK1Þ;cs2ft;tK1;.;tKrg

akðtÞ; otherwise

8><
>:

(20)

where k2{1, 2}, A(gs) is the fitness of the best individual, gs, in

generation s, l and r must be set by the user. In our case we

have considered a1(0)Z1, a2(0)Z5, lZ0.1, and rZ10.

A generation is defined as successful if the best individual of

the population is better than the best individual of the previous

generation. If many consecutive successes are observed, this

indicates that the best solutions are residing in a better region in

the search space. In this case, we increase the mutation strength

hoping to find even better solutions closer to the optimum

solution. If the fitness of the best individual is constant for

several consecutive generations, we decrease the mutation

strength. Otherwise, the mutation strength is constant.
3.3.4. Structural mutation

Structural mutation is more complex because it implies a

modification of the structure of the function. Structural

mutation allows the exploration of different regions of the

search space and helps to keep the diversity of the population.

There are five different structural mutations: node addition,

node deletion, connection addition, connection deletion, and

node fusion. These five mutations are applied sequentially to

each network. The first four are similar to the mutations of the

GNARL model (Angeline et al., 1994). The mutations are

performed as follows:

† Node addition. One or more nodes are added to the hidden

layer. The connection with the output node has a random

value. The connections from the input layer are chosen

randomly and its values are also random.

† Node deletion. One or more nodes are selected randomly

and deleted together with their connections.

† Connection addition. One or more connections, with

random weights, from an input node to a hidden node are

added to randomly selected nodes.

† Connection deletion. One or more connections between

hidden nodes and input nodes are selected and removed.

† Node fusion. Two randomly selected nodes, a and b, are

replaced by a node c, which is a combination of both. The

connections that are common to both nodes are kept, with a

weight given by

bc Z ba Cbb; wic Z
wia Cwib

2
: (21)

The connections that are not shared by the nodes are

inherited by c with a probability of 0.5 and its weight is

unchanged.

Table 1

Parameters common to all the experiments

Parameter Value

Population parameters

Population size NR 1000

Maximum number of terms m 8

Exponent interval [KL, L] [K5,5]

Coefficient interval [KM, M] [K5,5]

Parametric mutation parameters

a1(0) 1

a2(0) 5

b 0.1

r 10

Structural mutation’s parameters: interval [DMIN, DMAX]

Node addition [1,2]

Node deletion [1,3]

Connection addition [1,2k]

Connection deletion [1,2k]

A. Martı́nez-Estudillo et al. / Neural Networks 19 (2006) 477–486482
For each mutation (excepting node fusion) there is a

minimum value, DMIN, and a maximum value, DMAX, and the

number of elements (nodes or connections) involved in the

mutation is calculated as

DMIN C b uTðgÞðDMAXKDMINÞ c (22)

where u is a random uniform variable in the interval [0,1]. For

the parametric mutation, the nodes and connections are chosen

sequentially in the given order, with probability T(g) in the

same generation on the same network. In the structural

mutation, the nodes and connections are selected randomly,

where the maximum and minimum number of mutations in

every case are given by (22).

Table 1 shows the parameters used in the experiments. The

algorithm is quite robust regarding small variations in these

parameters.
Table 2

Definition of the benchmark functions and their domains

Definition

f1ðxÞZ10 sinðpx1x2ÞC20ðx3K0:5Þ2C10x4C5x5Ce1

f2ðxÞZ x21C x2x3K
1

x2x4

� �2� �1=2

Ce2

f3ðxÞZ tanK1 x2x3Kð1=x2x4Þ
x1

� �
Ce3

ch10ðxÞZexpð2x1 sinðpx4ÞÞCsinðx2x3ÞCe4

ch11ðxÞZ4ðx1K0:5Þðx4K0:5Þsinð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22Cx23

p
ÞCe5

Friedman’s functions #1, #2, and #3: f1, f2, and f3, and Cherkassky’s functions #10

Table 3

Results of MSEG of the evolutionary model for Friedman #1, #2, and #3 functions

Training

Mean SD Best Worst

f1 1.1848 0.1340 0.9941 1.4632

f2 41,569.61 1196.68 39,451.80 44,771.48

f3 0.2697 0.0031 0.2657 0.2808

ch10 0.1122 0.0007 0.1111 0.1140

ch11 1.9380 0.1443 1.6482 2.3197
3.3.5. Stop criterion

The stop criterion is reached whenever one of the following

three conditions is fulfilled: (i) the algorithm achieves a given

fitness; (ii) the values of a1(t) and a2(t) are less than 10
K4; (iii)

there is no improvement for 20 generations either in the

average performance of the best 20% of the population or in the

fitness of the best individual.
4. Experiments

In the first set of experiments we test our model for five

functions. These functions are Friedman’s functions #1, #2,

and #3, widely used in the literature, and Cherkassky’s

functions #10 and #11, which are very difficult to approximate

with standard sigmoidal neural networks (Cherkassky, Gehring

& Mulier, 1996).

Friedman’s functions were used by Friedman (1991) in his

work on multiplicative adaptive regression splines (MARS).

Cherkassky’s benchmark functions (Cherkassky, 1996) are

high-dimensional functions that include intrinsically low-

dimensional functions that can be easily estimated from data.

Table 2 shows the definition of these functions.

The evolutionary algorithm was run 30 times with the

parameters in Table 1. The number of generations was 2000,

800, 1200, 1000, and 1200, for f1, f2, f3, ch10, and ch11,

respectively. The training set has 200 instances randomly

generated within the domain defined in Table 2 where 3i2N(0,

s). The standard deviation is sZ1 for Friedman #1; for the rest

of the functions it is set so that the noise is adjusted to give a 3:1

ratio of signal power to noise power, SNRZ3. The

generalization set has 1000 instances randomly generated

without noise. This experimental design is made to be as

similar as possible to other papers to give a fair comparison

with their results. For f2, f3, ch10, and ch11 functions the inputs
Domain

xi2(0,1), iZ1,.,5

x12[0,100], x22[40p, 560p], x32[0, 1], x42[1, 11]

x12[0,100], x22[40p, 560p], x32[0, 1], x42[1, 11]

xi2[K0.25,0.25], iZ1,.,4

xi2[K1, 1], iZ1,.,5

and #11: ch10 and ch11.

, and Cherkassky #10 and #11 functions

Generalization

Mean SD Best Worst

0.9360 0.7885 0.1697 3.2444

5538.50 2858.95 1851.39 12,685.90

0.0500 0.0321 0.0098 0.1023

0.0151 0.0016 0.0126 0.0179

2.9957 0.0946 2.8122 3.1846

Table 4

MSEG results in Roth (2004) for Friedman’s functions

SVM RVM LASSO

f1 2.92 2.80 2.84

f2 4140 3505 3808

f3 0.0202 0.0164 0.0192

A. Martı́nez-Estudillo et al. / Neural Networks 19 (2006) 477–486 483
variables are scaled in the interval [0.1, 0.9], and the output

variables in the interval [1,2].

Table 3 shows the learning and generalization results,

MSEG, of the evolutionary model for 30 runs of the algorithm.

For each function we show the mean, standard deviation, and

best and worst results.

Although comparison with previous results in the literature

must be made cautiously, we think it is interesting to show the

results using these functions in some previous works to get a

clearer idea of the performance level of our model. For f1,

Vapnik (1999) using bagging techniques obtains MSEGZ2.20,

with boosting MSEGZ1.65, and with a Support Vector

Machine (SVM) MSEGZ0.67. Roth (2004) used a training

set of 240 instances and a testing set of 1000 noiseless

instances. Their results (mean prediction error averaged over

100 randomly generated 240/1000 training/test splits) using a

SVM, a Relevance Vector Machine (RVM), and LASSO

regression are shown in Table 4.

Drucker (1997) used 200 training noisy instances and 5000

testing noiseless instances. Results for 10 and 100 runs, using

single trees, bagged trees, and boosted trees are shown in

Table 5.

Cherkassky (1996) used three different sizes of the training

and testing sets. We compare with the medium size, which uses

100 instances. Moreover, they used three different types of

noise: no noise, noise with SNRZ2, and noise with SNRZ4. A

single data set was generated for each of the two functions, ch10
and ch11, consisting of 961 examples randomly sampled in the

domain xi. The performance index used to compare predictive

performance (generalization capability) of the methods is the
Table 6

MSEG results of the L–M algorithm using a multistart technique for Friedman #1,

Threshold Failed/all Generalizati

Mean

f1 3.5 15/30 2.231

f2 13,000 16/30 7879.43

f3 0.3 8/30 0.032

ch10 0.25 1/30 0.019

ch11 3.5 13/30 3.061

Table 5

MSEG results in Drucker (1997) for Friedman’s functions

10 runs

Single Bagging Boost L B

f1 3.58 2.20 1.65 1

f2 29,310 11,463 11,684 1

f3 0.0491 0.0312 0.0218 0
normalized root mean square error, NRMS, which represents

the fraction of unexplained standard deviation. Hence, a small

value of NRMS indicates good predictive performance,

whereas a large value indicates poor performance (the value

NRMSZ1 corresponds to the mean response model).

Cherkassky using a constrained topological mapping, CTM,

and K-nearest neighbors regression, KNN, with generalized

memory-based learning, GMBL, obtained values of NRMSZ
0.224 for ch10 and NRMSZ0.971 for ch11. The values obtained

by our model are NRMSZ0.984 for ch10 and NRMSZ1.019

for ch11, which shows that these functions are very difficult to

be modeled using a neural network.

4.1. Comparison with a multistart Levenberg–Marquardt

method

In order to test the efficiency of our algorithm we carry out

an experiment to compare it to the performance of the proposed

algorithm. We combine a multistart technique with a local

search procedure. Thousand random starting points are

generated in the search space (the same number as networks

of the population of the evolutionary algorithm). The points

generated are used as inputs into the local search, and the best

solution is recorded. The local search method used is the

Levenberg–Marquardt (L–M) algorithm, designed specifically

for minimizing a sum-of-squares error. Table 6 shows the

results obtained with this method. In several runs the L–M

algorithm converged to very poor local minima. These poor

local minima have not been considered when averaging the

results, as the obtained values would be very large. The table

shows the threshold to include a result and the number of times

the L–M algorithm failed to reach a useful local minima.

In order to verify whether the differences in mean and

variance between the two methodologies are significant we

performed three statistical tests using the SPSS (1999)

statistical package. A normal distribution can be assumed for

all the variables to contrast, except in ch10, because the

p-values of a standard Kolmogorov–Smirnov test is greater
#2, and #3 functions, and Cherkassky #10 and #11 functions

on

SD Best Worst

0.854 0.856 3.107

3194.27 4044.42 11,467.34

0.0135 0.015 0.060

0.002 0.010 0.023

0.163 2.838 3.496

100 runs

oost E Boost S Bagging Boosting

.67 1.73 2.26 1.74

0,980 15,615 10,093 10,446

.0213 0.0202 0.0303 0.0206

Table 7

p values of the statistical tests for the comparison of the two methodologies

Levene t or U-test

f1 0.472 0.000

f2 0.170 0.019

f3 0.000 0.009

ch10 – 0.000

ch11 0.156 0.084

Table 8

Models of the best network evolved for each function

f1 yZ5:248K9:122x0:5653 C9:046x1:0634 C5:359x0:8285 K

22:755x3:1791 x3:1442 C9:075x3:2223 x0:0414 C21:618x0:7561 x0:7332 x0:0214

f2 yZ0:972C0:022x3:8571 C0:060x4:4161 x4:4542 x0:6783 C0:539xK0:132
1

x0:9312 x1:0893 x0:0184

f3 yZ1:457C0:478x0:8591 x0:9642 x0:4533 x0:5044 C0:037x0:8021 xK0:773
2

xK0:696
3 x4:5534 C0:723xK1:093

1 x4:0982 x7:6413 x2:2514

ch10 yZ1:447K0:057x4:2581 x0:1772 xK1:009
4 C0:193x1:9631 xK0:792

2 x0:1503

x3:3654

ch11 yZ1:398C0:269x0:5474 K0:197x0:5691 x3:2184 K0:380x2:0862 x0:4303

0:400xK0:702
1 x4:5422 x4:1523 K0:374x4:8351 x0:6262 x0:0393 C0:626x1:8931

x1:4132 x0:1973 xK0:113
4

A. Martı́nez-Estudillo et al. / Neural Networks 19 (2006) 477–486484
than 0.05. A Student’s t-test or non-parametric Mann–

Whitney’s U-test was performed for each pair of variables to

ascertain whether the differences, in mean or median, among

the MSEG obtained with each methodology were significant.

Previously we performed a Levene test for equality of

variances. The p-values provided by these tests are shown in

Table 7. From these results we can see that the differences

between the performance of the two algorithms are significant

for functions f1, f2, f3, and ch10. In all of them, with the

exception of f3, the evolutionary algorithm outperforms the L–

M algorithm. This result is very good, if we take into account

that we removed the worst runs of the L–M experiments, but

we considered all the runs of the evolutionary algorithm.

As a final result, we show in Table 8 the equation of the best

network for each function.

4.2. Application to microbial growth

As we have stated, our major aim is the development of an

evolutionary model of product unit networks that could be

successfully applied to regression. Such a network can only be

thoroughly evaluated, when it is applied to a complex real-

world problem. We have chosen a problem of predictive
Table 9

SEP values for the three predicted variables for the evolutionary algorithm (EA) m

Training

Mean SD Best W

EA Grate 4.428 0.874 3.388

ln lag 4.965 0.444 4.316

yend 18.204 1.835 15.677 2

Grate 6.104 1.262 3.660

L–M ln lag 5.534 0.348 4.828

yend 20.286 2.741 16.267 2
microbiology with real-world data. This is a very complex task

(Baranyi & Roberts, 1995).

Acid lactic bacteria (ALB) are considered the main

microorganisms responsible for the deterioration of precooked

packed meat products. These bacteria produce lactic acid,

slime, and CO2, which causes strange odors and tastes and

affects the product acceptance (Huis in’t Veld, 1996). In this

work, we study the growth of the ALB microorganism

Leuconostoc Mesenteroides, which has been frequently

isolated as being responsible for different alterations in meat

products (Björkroth & Korkeala, 1996; Mäkelä, 1993).

The collected data consist of 210 curves (Garcı́a, Hervás,

Rodrı́guez, & Zurera, 2005 Zurera, Garcı́a, Rodrı́guez, &

Hervás, 2005), representing the growth of the microorganism

against time. These curves were adjusted to an exponential

model (Baranyi & Roberts, 1994) with the program DMFit 1.0

(József Baranyi, Institute of Food Research, Norwich Research

Park, Norwich NR4 7UA, UK). The models that describe the

response of one or more kinetic parameters from the primary

model are called secondary models. Typically there are three

parameters that are interesting from the point of view of the

biologist: lag time, growth rate and yend.

The growth rate (grate) is the maximum value of the growth

curve slope. The lag-time (lag) is the instant in which the

intersection between the line of the maximum slope and the

lower asymptote of the growth curve is produced; yend is the

value of the asymptote to the curve when the value of t is large

enough to be considered as infinite.

We must predict three different dependent variables: lag

time (ln lag), growth rate (grate), and the asymptotic signal

value (yend). We have four input variables: temperature, pH,

NaCl concentration, and NaNO2 concentration. In order to

normalize all the variables of the models, we scaled the inputs

in the interval [0.1, 0.9] and the outputs in the interval [1,2].

For the comparison of the models, we have used the

standard error of prediction (SEP). This is a relative error that is

expressed by percentage, and has the advantage of being

dimensionless. Its expression is the following

SEPZ
100

j �yj

ffiPN
lZ1

ðylKŷlÞ
2

N

vuuut
(23)

where yi is the observed value, ŷi is the predicted value, and N

is the number of samples in the training set. We use SEPT for
odel and the L–M algorithm

Generalization

orst Mean SD Best Worst

6.680 4.550 0.897 3.620 6.891

6.007 5.827 0.285 5.363 6.692

1.788 21.374 1.298 19.221 25.281

8.456 5.779 1.394 3.813 8.778

6.095 6.243 0.313 5.808 6.891

7.034 22.872 2.014 19.388 27.564

Table 10

p-values of Levene and t tests

Levene t

ln lag 0.013 0.000

Grate 0.788 0.000

yend 0.028 0.001

A. Martı́nez-Estudillo et al. / Neural Networks 19 (2006) 477–486 485
the SEP over the training set and SEPG for the set over the

generalization set.

Table 9 shows the SEP values of the models obtained with

the two methods previously used for Friedman and Cherkass-

ky’s functions, our evolutionary algorithm and a multistart

algorithm together with L–M. We can see how our model

obtains better results for all the predicted variables.

In order to verify the true difference in performance between

the two models, we conducted the same three statistical tests of

the previous experiments. The tests (see Table 10) used in the

difference between the performance of the two models are

statistically significant for the prediction of the three variables.
5. Conclusions

In this paper, we have introduced a model for evolving both

the weights and the structure of product unit based neural

networks. We have applied this model to the problem of

function regression. It is well known that these networks can

implement higher order functions and we have shown that they

are able to approximate any continuous function to an arbitrary

degree of accuracy.

Its major disadvantage is that classical local optimization

algorithms are very inefficient in optimizing the weights of this

kind of network. The error surface is usually extremely

convoluted with an increased number of local minima, deep

ravines, and wide valleys. The shape of the surface is due to the

fact that small changes in the exponents of a given model can

cause large changes in the error function. Our model is a valid

alternative to these local gradient methods. Moreover, the

structure is also optimized during the evolutionary process.

The proposed model for the evolution of this type of

networks has the following advantages over the previous

models for training this kind of neural network:

† It can obtain both the structure and weights of the neural

network. It is very difficult to know beforehand the most

suitable structure of the network for a given problem. We

usually need a long process of trial and error to obtain a

good structure. The evolution of the structure partially

alleviates this problem.

† It is a global optimization algorithm. This feature is very

interesting as these networks are prone to be trapped in local

minima.

† The algorithm does not need a derivable error function, so it

can be applied to problems where such an error function is

not available.

We have applied our model to five benchmark functions and

a real-world problem of prediction of microbial growth. The
statistical tests show that the evolved product unit networks

obtain better overall results than those obtained with the same

type of networks with weights optimized by means of a

multistart methods together with a Levenberg–Marquardt

algorithm.
Acknowledgements

The authors would like to acknowledge HIBRO Research

Group of the University of Córdoba, which obtained the

experimental data used in this paper. This work has been

supported in part by the Projects TIC2002-04036-C05-02 and

TIN2005-08386-CO5-02 of the Spanish Comisión Interminis-

terial de Ciencia y Tecnologı́a and FEDER funds.
References

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary

algorithm that constructs recurrent neural networks. IEEE Transactions on

Neural Networks, 5(1), 54–65.

Arulampalam, G., & Bouzerdoum, A. (2003). A generalised feedforward neural

network architecture for classification and regression. Neural Networks, 16,

561–568.

Baranyi, J., & Roberts, T. (1995). Response surface model for predicting the

effects of temperature, pH, sodium chloride content, nitrate concentration

and atmosphere on the growth of Listeria monocytogenes. Journal of Food

Microbiology, 26, 199–218.

Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting

bacterial growth in food. International Journal of Food Microbiology, 23,

277–294.

Björkroth, K., & Korkeala, H. (1996). Evaluation of lactobacillus sake

contamination in vacuum packaged sliced cooked meat products by

ribotyping. Journal of Food Protection, 59, 398–401.

Buchanan, R., Bagil, K., Goins, R., & Philips, J. (1993). Response surface

analysis for the growth kinetics of Escherichia coli. Food Microbiology, 10,

303–315.

Cherkassky, V., Gehring, D., & Mulier, F. (1996). Comparison of adaptive

methods for function estimation from samples. IEEE Transactions on

Neural Networks, 15(4).

Denison, D. G. T., Holmes, C. C., Mallick, B. K., & Smith, A. F. M. (2002).

Bayesian methods for nonlinear classification and regression. West Sussex,

England: Wiley.

Drucker, H. (1997). Improving regressors using boosting techniques. In D. H.

Fisher (Ed.), Proceedings of the 14th international conference on machine

learning (pp. 107–115). San Mateo, CA: Morgan Kaufmann.

Durbin, R., & Rumelhart, D. (1989). Product units: A computationally

powerful and biologically plausible extension to backpropagation net-

works. Neural Computation, 1, 133–142.

Engelbretch, A. P. (2003). Computational intelligence: An introduction. New

York: Wiley.

Friedman, J. (1991). Multivariate adaptive regression splines (with discussion).

Annals of Statistics, 19, 1–41.

Garcı́a, R. M., Hervás, C., Rodrı́guez, M. R., & Zurera, G. (2005). Modelling

the growth of Leuconostoc mesenteroides by means of an artificial neural

network. International Journal of Food Microbiology, 105, 317–332.

Garcı́a-Pedrajas, N., Hervás-Martı́nez, C., & Muñoz-Pérez, J. (2002). Multi-

objective cooperative coevolution of artificial neural networks. Neural

Networks, 15(10), 1255–1274.

Garcı́a-Pedrajas, N., Hervás-Martı́nez, C., & Muñoz-Pérez, J. (2003).

COVNET: A cooperative coevolutionary model for evolving artificial

neural networks. IEEE Transactions on Neural Networks, 14(3), 575–596.

Geyer, C. J., & Thompson, E. A. (1996). Annealing Markov chain Montecarlo

with applications to ancestral inference. Journal of the American Statistical

Association, 909–920.

A. Martı́nez-Estudillo et al. / Neural Networks 19 (2006) 477–486486
Hornik, K. (1989). Multilayer feedforward neural networks are universal

approximators. Neural Networks, 2(5), 359–366.

Huis in’t Veld, J. H. J. (1996). Microbial and biochemical spoilage of foods: An

overview. International Journal of Food Microbiology, 33, 1–18.

Hwang, J. N., Lay, S. R., Maechler, M., Martin, D., & Schimert, S. (1994).

Regression modeling in backpropagation and projection pursuit learning.

IEEE Transactions on Neural Networks, 5(3), 342–353.

Ismail, A., & Engelbrecht, A. P. (1999). Training product units in feedforward

neural networks using particle swarm optimisation. In V. B. Bajic & D. Sha,

(Eds.), Development and practice of artificial intelligence techniques.

Proceeding of the international conference on artificial intelligence

(pp. 36–40). Durban, South Africa.

Ismail, A., & Engelbrecht, A. P. (2000). Global optimization algorithms for

training product unit neural networks. In IEEE international conference on

neural networks. Como, Italy: IEEE Press.

Ismail, A., & Engelbrecht, A. P. (2002). Pruning product unit neural networks.

In IEEE international joint conference on neural networks. Honolulu,

Hawai.

Janson, D. J., & Frenzel, J. F. (1993). Training product unit neural networks

with genetic algorithms. IEEE Expert, 8(5), 26–33.

Kirkpatrick, S., Jr. Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by

simulated annealing. Science, 220(4598), 671–680.

Kosko, B. (1991). Neural networks and fuzzy systems: A dynamical systems

approach to machine intelligence. Englewood Cliffs, NJ: Prentice-Hall.

Lee, S.-H., & Hou, C.-L. (2002). An ART-based construction of RBF networks.

IEEE Transactions on Neural Networks, 13(6), 1308–1321.

Leerink, L. R., Giles, C. L., Horne, B. G., & Jabri, M. A. (1995). Learning with

product units. In Advances in neural information processing systems 7 (pp.

537–544). Cambridge, MA: MIT Press.
Lerner, B., Guterman, H., Aladjem, M., & Dinstein, I. (1999). A comparative

study of neural networks based feature extraction paradigms. Pattern

Recognition Letters, 20(1), 7–14.

Mäkelä, P. (1993). Lactic acid bacterial contamination at meat processing

plants. Unpublished doctroal dissertation, College of Veterinary Medicine,

Helsinki.

Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology.

New York: Wiley.

Otten, R. H. J. M., & Ginneken, L. P. P. P. (1989). The annealing algorithm.

Boston, MA: Kluwer.

Roth, V. (2004). The generalized lasso. IEEE Transactions on Neural

Networks, 15(1).

Rudin, W. (1973). Functional analysis. New York: McGraw-Hill.

Schmitt, M. (2001). On the complexity of computing and learning with

multiplicative neural networks. Neural Computation, 14, 241–301.

Specht, D. F. (1991). A general regression neural network. IEEE Transactions

on Neural Networks, 2(6), 568–576.

SPSS, I. (1999). SPSS q9.0 advanced models. Chicago, IL: SPSS Inc.

Tomandl, D., & Schober, A. (2001). A modified general regression neural

network (MGRNN) with new efficient training algorithms as a robust ‘black

box’—tool for data analysis. Neural Networks, 14, 1023–1034.

Vapnik, V. (1999). The nature of statistical learning theory. Berlin: Springer.

Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving artificial

neural networks. IEEE Transactions on Neural Networks, 8(3), 694–713.

Zhao, Y., & Atkeson, C. G. (1996). Implementing projection pursuit learning.

IEEE Transactions on Neural Networks, 7(2), 362–373.

Zurera, G., Garcı́a, R. M., Rodrı́guez, M. R., & Hervás, C. (2006). Performance

of response surface model for prediction of Leuconostoc mesenteroides

growth parameters under different experimental conditions. Food Control

17, 429–438.

	Evolutionary product unit based neural networks for regression
	Introduction
	Related work
	Neural networks based on product units
	Function typology and associated network
	Approximation by product units
	Evolutionary algorithm

	Experiments
	Comparison with a multistart Levenberg-Marquardt method
	Application to microbial growth

	Conclusions
	Acknowledgements
	References

