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Abstract

A network with local dynamics of logistic type is considered. We implement a

mean-field multiplicative coupling among first-neighbor nodes. When the coupling

parameter is small the dynamics is dissipated and there is no activity: the network

is turned off. For a critical value of the coupling a non-null stable synchronized

state, which represents a turned on network, emerges. This global bifurcation is

independent of the network topology. We characterize the bistability of the system

by studying how to perform the transition, which now is topology dependent, from

the active state to that with no activity, for the particular case of a scale free network.

This could be a naive model for the wakening and sleeping of a brain-like system.
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1 Introduction

Understanding the brain is a formidable challenge. A multidisciplinary effort is required to
enlighten how it works, how it processes information and how it takes decisions. Further-
more, the brain behaviors which are considered far from those commonly accepted, that is,
the mental illnesses or the degenerative cerebral evolutions, are important problems that
are under constant investigation. The different approaches from the most diverse fields,
i.e., medicine, psychiatry, neurobiology, chemistry and neural computation, should com-
bine their particular visions for trying to reach the collective goal of creating an artificial
brain-like system or, at least, in order to reach solutions to the most diverse dysfunction
symptoms which are found in its behavior.

Different models have been proposed to catch the computational principles of mental
processes. Neural networks are considered as a paradigmatic model alternative to the more
traditional models such as finite automata, Turing machines and Boolean circuits. In fact,
neural nets have an inspiration more grounded in the neurophysiological structure of the
neuronal system. A survey of the underlying results concerning the computational power
and complexity issues of neuronal network models can be found in (Sima, & Orponen,
2003) and references therein.

In a certain sense and from a physical point of view, brain can be considered as a clock
controlled by the internal circadian rhythm. Hence, it is synchronized with the day/night
cycle (Winfree, 1986). Roughly speaking, two states can be associated with this cycle:
awake and sleep. This property is universally observed in all animals. The cerebral activity
is dissociated from the sensory and motor neurons in the sleep state. This dissociation
is not complete and the brain can still respond to some sensory stimuli. In fact there
are qualitatively different patterns of neural activity between different stages of sleep.
Basically, two levels, a deepest one and a shallowest one, alternate during the sleep. The
deepest level of sleep is attained rapidly and, as sleep progresses, the average level becomes
shallower. The substances that control the connection among neurons or synopsis monitor
theses changes in the neural activity, which is formed out of composite states occurring in
disconnected brain subdivisions. When the full connections are restablished, the waking
state of the brain is recovered (Bar-Yam, 1997).

So, as it is suggested by real measurements of the electrical brain activity, synchrony
seems to be a key concept to explain different aspects of neuronal behavior. The activities
of two or more neurons, which we call a functional unit, are said to be synchronized when
some kind of temporal correlations exists among them. The conditions for the emergence
of these states are a central issue in the research of neuronal activity (Borgers, & Kopell,
2003; Hansel, & Mato, 2003). It has been recently argued (Eguiluz, Chialvo, Cecchi,
Baliki, & Apkarian, 2003) that the distribution of functional connections in the human
brain follows the same distribution of a scale-free network. This finding means that there
are regions in the brain that participate in a large number of tasks while most of the other
functional units are only involved in a tiny fraction of the brain’s activities. The previous
network adds to many examples of such a distribution found in the last few years in fields
as diverse as biological, technological and social systems (Strogatz, 2001; Dorogovtsev, &
Mendes, 2003; Bornholdt, & Schuster, 2002; Pastor-Satorras, & Vespignani, 2004). They
have been termed scale-free networks because the probability of finding an element with
k connections to other elements of the network follows a power-law P (k) ∼ k−γ , where γ
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usually lies between 2 and 3.

In this work we propose a naive approach to mimic the brain bistability between the
sleep and the awake states, and to explain how to perform the transition between those
two basic configurations, namely the switched on and the switched off states. In section
2, a model for a general network showing bistability is proposed and analyzed. In section
3, the transition between the active and the non active states is studied. As our model
is thought of as a system made up of functional units and they seem to be distributed
according to a power law, we focus our attention in the on-off transition for the case of a
random scale-free network. The last section contains our discussion and conclusions.

2 The Model

Brain is a complex network. Millions of neurons are unidirectionally and locally inter-
connected there. In a first and simple approach one can consider a functional unit, i.e.
a neuron or group of neurons (in the following, neuron or functional unit are used indis-
tinctly), as a discrete dynamical system with two possible states: one active state and
another one with no activity. Let xin be, with 0 < xin < 1, a measurement of the ith

network neuron activity at time n. Take, for instance, a logistic evolution (May, 1976) for
the local neuronal activity:

xin+1 = p̄ xin(1− xin). (1)

It presents only one stable state for each p̄. For p̄ < 1, the dynamics dissipates to zero,
xin = 0, then it can represent the functional unit with no activity. For 1 < p̄ < 4, the
dynamics is non null and it would represent an active neuron. This local transition is
controlled by the parameter p̄. The functional dependence of this local coupling on the
neighbor states is essential in order to get a good brain-like behavior of the network.
It seems reasonable to take p̄ as a linear function (that we call the Alesves coupling)
depending on the actual mean value, Xi

n, of the neighboring signal activity and expanding
the interval (1, 4) in the form:

p̄ = p (3Xi
n + 1), (2)

with

Xi
n =

1

Ni

Ni
∑

j=1

xjn. (3)

Ni is the number of neighbors of the ith neuron, and p, which gives us an idea of the neuron
interaction with its first-neighbor neurons, is the control parameter. This parameter runs
in the range 0 < p < pmax, where pmax � 1. Let us observe that there is an unrealistic
bi-directionality in the local neuronal connectivity in this naive approach to brain-like
systems. This is not a drawback since networks built under this insight show an interesting
bistability which can mimic the brain behavior. Hence, they present an attractive global
null configuration that will be identified as the turned off state of the network. Also
they show a completely synchronized non-null stable configuration that we identify as the
turned on state of the network. Thus, it is necessary a critical level of noise to transit
from the turned off state to the turned on one for a given p. The different sleep states,
including dreams in human brain, can be interpreted as a noisy neuronal activity which
does not reach that critical value. The transition from the awake to the sleep state can
be performed either by decreasing the coupling p or by making zero the activity of some
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units. All these dynamical properties are universal for different kinds of local evolution of
the same type as equation (1), the so-called unimodal maps.
Let us mention at this point that phase synchronization and cluster formation in coupled
maps on different networks has been studied, for instance, in (Jalan & Amritkar, 2003).
The results exposed in that work are very different from those here explained. Concretely,
they find that perfect synchronization leads to clusters with very small number of nodes.
On the contrary, a robust bistability between two perfect synchronized states is obtained
in our system, as it is shown in the next sections.

2.1 Two-neuron system

Let us start with the simplest case of two interconnected functional units. The dynamics
is given in this case by the coupled equations:

x1n+1 = p (3x2n + 1) x1n(1− x1n), (4)

x2n+1 = p (3x1n + 1) x2n(1− x2n). (5)

Depending on the coupling p different dynamical regimes are obtained (see the details
and nomenclature in references (Lopez-Ruiz, & Fournier-Prunaret, 2004; Lopez-Ruiz, &
Fournier-Prunaret, 2003), pmax = 1.0843 in this case):

• For 0 < p < 0.75, the dynamics vanishes. The two-neuron network does not have
long-term activity. The whole square [0, 1]× [0, 1] of initial conditions shrinks to the
turned off configuration, that is, the fixed point xθ = (0, 0).

• For 0.75 < p < 0.86, the synchronized state, x+ = (x̄, x̄), with x̄ = 1

3
{1 + (4− 3

p
)
1

2 },
which arises from a saddle-node bifurcation for the critical value p0 = 0.75, is a stable
turned on state. This state coexists with xθ. The system presents now bistability
and depending on the initial conditions, the final state can be xθ or x+. Switching
on the system from xθ requires a level of noise in both neurons sufficient to render
the activity on the basin of attraction of x+. On the contrary, switching off the
two-neuron network can be done, for instance, by making zero the activity of one
neuron, or by doing the coupling p lower than p0.

• For 0.86 < p < 0.95, the active state of the network is now a period-2 oscillation.
This new dynamical state bifurcates from x+ for p = pc = 0.86. A smaller noise is
necessary to activate the system from xθ. Making zero the activity of one neuron
continues to be a good strategy to turn off the network.

• For 0.95 < p < 1, the active state acquires a new frequency and presents quasiperi-
odicity. It is still possible to switch off the network by putting to zero one of the
neurons.

• For 1 < p < 1.03, bistability is lost. When p = pf = 1 the turned off state xθ
loses stability and the only stable dynamical state for p > pf is now the turned on
network. The network stores the information in a quasiperiodic state.

• For 1.03 < p < 1.08, a more complex active state is obtained. In this range, the
network can store more complicated information in the stable chaotic state, which
is now present in the system.
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• For p > 1.0843, the network loses stability and it can not store information anymore.

Let us remark that the two-neuron system exhibits, from a qualitative point of view,
the properties desirable for a brain-like system: bistability between an active state and
another one with no activity in the range p0 < p < pf , a necessary noisy level to attain
the activation of the network from the switch off state, and two different possible strategies
to turn off the system from the active state, by decreasing the synaptic coupling under a
critical value or by putting to zero one of the neurons.
We proceed now to show that those properties are still present in a general complex
network.

2.2 Many neuron system

The complete synchronization (Boccaletti, Kurths, Osipov, Valladares, & Zhou, 2002) of
the network means that xin = xn for all i , with i = 1, 2, . . . , N and N ≫ 1. Hence, we
also have Xi

n = xn. The time evolution of the network on the synchronization manifold is
then given by the cubic mapping:

xn+1 = p (3xn + 1) xn(1− xn). (6)

The fixed points of this system are found by solving xn+1 = xn. The solutions are xθ = 0

and x± = 1

3
{1±(4− 3

p
)
1

2 }. The first state xθ is stable for 0 < p < 1 and x± take birth after
a saddle-node bifurcation for p = p0 = 0.75. The node x+ is stable for 0.75 < p < 1.157
and the saddle x− is unstable. Therefore bistability between the states

xin = xθ, ∀i −→ TURNED OFF STATE, (7)

xin = x+, ∀i −→ TURNED ON STATE, (8)

seems to be also possible for p > p0 in the case of many interacting units. But stability
in the synchronization manifold does not imply the global stability. Small transverse
perturbations to this manifold can make unstable the synchronized states. Let us suppose
then a general local perturbation δxin of the element activity,

xin = x∗ + δxin, (9)

with x∗ representing a synchronized state. We define the perturbation of the local mean-
field as

δXi
n =

3

Ni

Ni
∑

j=1

δxjn. (10)

If these expressions are introduced in equation (1), we find the time evolution of the local
perturbations:

δxin+1 = p (3x∗ + 1)(1 − 2x∗)δx
i
n + p x∗(1− x∗)δX

i
n. (11)

The dynamics for the local mean-field perturbation is derived by substituting this last
expression in relation (10). We obtain:

δXi
n+1 = p (3x∗ + 1)(1 − 2x∗)δX

i
n + 3p x∗(1− x∗)

1

Ni

Ni
∑

j=1

δXj
n. (12)
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We express now the local mean-field perturbations of the first-neighbors as function of the
local mean-field perturbation δXi

n by defining the local operational quantity σn
i ,

1

Ni

Ni
∑

j=1

δXj
n = σi

n δXi
n, (13)

which is determined by the dynamics itself. If we put together the equations (11-12), the
linear stability of the synchronized states holds as follows:
(

δxin+1

δXi
n+1

)

=

(

p (3x∗ + 1)(1 − 2x∗) p x∗(1− x∗)
0 p (3x∗ + 1)(1− 2x∗) + 3p σi

n x∗(1− x∗)

)(

δxin
δXi

n

)

.

(14)
Let us observe that the only dependency on the network topology is included in the
quantity σi

n. The rest of the stability matrix is the same for all the nodes and therefore it
is independent of the local and global network organization.

The turned off state is x∗ = xθ = 0. The eigenvalues of the stability matrix are in this
case λ1 = λ2 = p. Thus, this state is an attractive state in the interval 0 < p < 1. It loses
stability for p = 1, then the highest value pf of the parameter p where bistability is still
possible satisfies pf ≤ 1.

The turned on state x+ verifies x∗ = x+ = 1

3
{1 + (4 − 3

p
)
1

2}. If we suppose σi
n = σ,

the eigenvalues of the stability matrix are λ1 = 2 − 2p − p(4 − 3

p
)
1

2 and λ2 = λ1 +
σ
3
(3 −

2p+ p(4− 3

p
)
1

2 ). Let us observe that λ1 = −1 for p = 1. This implies that the parameter
pc for which the synchronized state x+ looses stability verifies pc ≤ 1. Depending on the
sign of σ, we can distinguish two cases in the behavior of pc:

• If 0 < σ < 1, we find that | λ2 |< 1. Then x+ bifurcates through a global flip
bifurcation for p = pc = 1. In this case, the bifurcation of the synchronized state
x+ for pc = 1 coincides with the loss of the network bistability for pf = 1. Hence
pc = pf = 1 for this kind of networks, and the bistability holds between xθ and x+
in the parameter interval p0 = 0.75 < p < pc = pf = 1. As an example, an all-to-all
network shows this behavior because σ = 1. This is represented in the inset of Fig.
1.

• If −1 < σ < 0, then λ2 = −1 is obtained for a p = pc smaller than 1. Therefore it is
now possible to obtain an active state different from x+ in the interval pc < p < pf .
For instance, simulations show that the global flip bifurcation of the synchronized
state for a scale free network occurs for pc = 0.87 ± 0.01. A value of p = 0.866 is
obtained from the stability matrix by taking σ = −1. For this particular network
it is also found that pf = 1. Then, bistability is possible in the range p0 = 0.75 <

p < pf = 1 for this kind of configuration. But now an active state with different
dynamical regimes is observed in the interval pc = 0.87 < p < pf = 1. If we identify
the capacity of information storing with the possibility of the system to access to
complex dynamical states, then, we could assert, in this sense, that a scale free
network has the possibility of storing more elaborated information in the bistable
region that an all-to-all network.

Let us note that σ also indicates a different behavior of local dissipation, as expression (13)
suggests. A positive σ means a local in-phase oscillation of the node signal and mean-field
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perturbations. A negative σ is meaning a local out of phase oscillation between those
signal perturbations. Hence, σ also brings some kind of structural network information.
In all the cases the stability loss of the completely synchronized state is mediated by a
global flip bifurcation. The new dynamical state arising from that active state for p = pc
is a periodic pattern with a local period-2 oscillation. The increasing of the coupling
parameter monitors other global bifurcations that can lead the system towards a pattern
of local chaotic oscillations.

3 Transition between On-Off States

We proceed now to show the different strategies for switching on and off a random scale free
network. The choice of this network is suggested by the recent work (Eguiluz et al., 2003;
Buzsàki, Geisler, Henze, & Wang, 2004) on the connections distribution among functional
units in brain. They find it to be a power-law distribution. Following this insight, we
generate a scale-free network following the Barabási-Albert (BA) recipe (Barabasi, &
Albert, 1999). In this model, starting from a set of m0 nodes, one preferentially attaches
each time step a newly introduced node to m older nodes. The procedure is repeated
N − m0 times and a network of size N with a power law degree distribution P (k) ∼
k−γ with γ = 3 and average connectivity 〈k〉 = 2m builds up. This network is a clear
example of a highly heterogenous network, in that the degree distribution has unbounded
fluctuations when N → ∞. The exponent reported for the brain functional network
has γ < 3. However, studies of percolation and epidemic spreading (Pastor-Satorras, &
Vespignani, 2004; Callaway, Newman, Strogatz, & Watts, 2000; Moreno, Pastor-Satorras,
& Vespignani, 2002; Vazquez, & Moreno, 2003) on top of scale-free networks has shown
that the results obtained for γ = 3 are consistent with those corresponding to lower values
of γ > 2. Therefore, we expect that the results shown henceforth are not biased by the
use of a different exponent. As explained before, network bistability between the active
and non active states is here possible in the interval p0 = 0.75 < p < pf = 1 (Fig. 1).

3.1 Switching off the network

Two different strategies can be followed to carry the network from the active state to that
with no activity (Fig. 1).

• Route I: By doing the coupling p lower than p0. This is the easiest and more
natural way of performing such an operation. In our brain-like interpretation, it
could represent the decrease (or increase, it depends on the specific function) of the
synaptic substances that provokes the transition from the awake to the sleep state.
The flux of these chemical activators is controlled by the internal circadian clock,
which is present in all animals, and which seems to be the result of living during
millions of years under the day/night cycle.

• Route II: By switching off a critical fraction of neurons for a fixed p. This is done
by looking over all the elements of the network, and considering that the element
activity is set to zero with probability λ (which implies that on average λN elements
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are reset to zero). The result of this operation is shown in Fig. 2. Here, it is
plotted for different p’s the relative size of the biggest (giant) cluster of connected
active nodes in the network versus λ. Note that this procedure does not take into
account the existence of connectivity classes, but all nodes are equally treated. The
procedure is thus equivalent to simulations of random failure in percolation studies
(Callaway et al., 2000). The strategy in which highly connected functional units are
first put to zero is more aggressive and leads to quite different results.

Each curve presents three different zones depending on λ:

- the robust phase: For small λ, the network is stable and only those
states put to zero have no activity. There is a linear dependence on the
giant cluster size with λ. In this stage, the switched off nodes do not
have the capacity to transmit its actual state to its active neighbors.

- the weak phase: For an intermediate λ, the nodes with null activity can
influence its neighborhood and switch off some of them. The linearity
between the size of the giant cluster and λ shows a higher absolute value
of the slope than in the robust zone.

- the catastrophic phase: When a critical λc is reached, the system under-
goes a crisis. The sudden drop in this zone means that a small increase of
the non active nodes leads the system to a catastrophe; that is, the null
activity is propagated through all the network and it becomes completely
down.

It is worth noticing that when the system is outside the bistability region for p > 1, the
catastrophic phase does not take place. Instead, the turned off nodes do not spread its
dynamical state and the neighboring nodes do not die out. This is because the dynamics of
an isolated node is self-sustained when p > 1. Consequently, we observe that the network
breaks down in many small clusters and the transition resembles that of percolation in
scale free nets (Callaway et al., 2000; Vazquez, & Moreno, 2003).

3.2 Switching on the network

Two equivalent strategies can be followed for the case of turning on the network (Fig.
3): (I) For a fixed p, we can increase the maximum value ǫ of the noisy signal, which is
randomly distributed in the interval (0, ǫ) over the whole system. When ǫ attains a critical
value ǫc, the noisy configuration can leave the basin of attraction of xθ, which seems to
have the form in phase space of a “hollow cane” (canuto) around it, and then the network
rapidly evolves toward the turned on state; (II) If this operation is executed by letting ǫ

to be fixed and by increasing the coupling parameter p, the final result of switching on the
network is reached when p takes the value for which ǫ = ǫc. The final result is identical in
both cases.

Let us remark that the strategy equivalent to the former Route II is not possible in
this case. It is a consequence of the fact that a switched off neuron can not be excited by
its neighbors and it will maintain indefinitely the same dynamical state (xi = 0).
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4 Conclusions

One of the most challenging scientific problems today is to understand how the millions
of neurons of our brain give rise to the emergent property of thinking. Different aspects
of neurocomputation take contact on this problem: how brain stores information and how
brain processes it to take decisions or to create new information. These are characteristics
more or less accepted and observed in all the brains.

Other universal properties of this system are more evident. One of them is the existence
of a regular daily behavior: the awake and the sleep. The internal circadian rhythm is
closely synchronized with the cycle of sun light. Roughly speaking and depending on the
particular species, the brain is awake during the day and it is slept during the night, or
vice versa. Hence, this evident bistability does not depend on the precise architecture of
a special brain.

In this work, we have studied a general network with local logistic dynamics that
presents global bistability between an active synchronized state and another synchronized
state with no activity. This property is topology and size independent. This is a direct
consequence of the local mean-field multiplicative coupling among the first-neighbors (the
Alesves coupling). Different routes to transit from one state to the other have been ex-
plored for the important case of a scale free network. If a formal relationship is established
between the switched on and switched off states of that network, and the awake and sleep
states of a brain, respectively, one would be tempted to assert that this model is a good
qualitative representation for explaining that specific bistable behavior. Other analogies
could be suggested in reference to the usual functioning and the failures of a power line, or
also the brain bistability in pattern recognition is another intriguing neural phenomenon.
Furthermore, we are convinced that this model, regardless of its simplicity, can bring new
qualitative insights on how the brain works.
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Figure 1: Stable states (xθ, x+) of the network for 0 < p < 1. Let us observe the
two zones of bistability: p0 < p < pc and pc < p < pf . The main figure correspond
to a scale free network made up of N = 104 elements: p0 = 0.75, pc = 0.87 ± 0.01
and pf = 1. The inset shows the same graph but in an all-to-all network of the
same size: p0 = 0.75, pc = pf = 1. Initial conditions for the xi’s were drawn from a
uniform probability distribution in the interval (0, 1).
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Figure 2: Turning off a scale free network. Three different phases in the behavior of
the giant cluster size versus λ (fraction of switched off nodes) are observed. These
three phases are illustrated for p = 0.96: the robust phase, the weak phase and the
catastrophic phase (see the text). Other network parameters are as those of Fig. 1.
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Figure 3: Turning on a scale free network. For a fixed p, a noisy signal randomly
distributed in the interval (0, ǫ) is assigned to every node. When ǫ reaches the
critical level ǫc the network becomes switched on. Other network parameters are as
those of Fig. 1.
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