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Abstract
Optimal performance in two-alternative, free response decision making tasks can be achieved by the
drift-diffusion model of decision making - which can be implemented in a neural network - as long
as the threshold parameter of that model can be adapted to different task conditions. Evidence exists
that people seek to maximize reward in such tasks by modulating response thresholds. However, few
models have been proposed for threshold adaptation, and none have been implemented using neurally
plausible mechanisms. Here we propose a neural network that adapts thresholds in order to maximize
reward rate. The model makes predictions regarding optimal performance and provides a benchmark
against which actual performance can be compared, as well as testable predictions about the way in
which reward rate may be encoded by neural mechanisms.
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1 Introduction and background
A tradeoff between speed and accuracy is one of the hallmarks of human performance in
cognitive tasks. Typically observed in controlled behavioral experiments in which participants
are encouraged to respond quickly, the concept formalizes the common sense notion that
rushing produces more mistakes. Despite the pervasive nature of this phenomenon and the
longstanding recognition of it, relatively little research has addressed how organisms address
the balance between speed and accuracy. Nevertheless, any successful model of the physical
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mechanisms underlying decision making will ultimately need to account for the speed-accuracy
tradeoff: why does a tradeoff occur at all, and how do organisms change that tradeoff as
conditions change?

In abstract models of decision making, especially those addressing two-alternative forced
choice (TAFC) tasks, the speed-accuracy tradeoff has traditionally been explained in terms of
a task-dependent decision criterion, or threshold for termination of the decision-making
process. This process is typically described as a progressive accumulation of evidence for each
of the alternatives, the decision being made when the evidence in favor of one alternative versus
the other exceeds the threshold (Laming, 1968; Luce, 1986; Ratcliff, 1978). If the threshold is
low, the decision will be made quickly, but will be subject to noise. If the threshold is high,
the decision process will take longer but will have greater time to ‘average out’ the effects of
noise and therefore be more accurate. While a number of neural network models have addressed
the mechanisms underlying TAFC task performance (e.g., Botvinick, Braver, Barch, Carter &
Cohen, 2001; Brody, Hernandez, Zainos & Romo, 2003; Grossberg & Gutowski, 1987; Usher
& McClelland, 2001; Wang, 2002), thresholds in these models have typically been modeled
simply as assigned parameters rather than as neural mechanisms in their own right.

Here we propose an explicit set of neural mechanisms by which thresholds may be implemented
and adapted to maximize reward rate. We do this by building on existing models of TAFC
decision making that involve competing accumulators of evidence, one for each possible
action. To each accumulator we add a mechanism for implementing a response threshold: a
unit with a high-gain, sigmoidal activation function that approximates a step function. We
propose that such units control response initiation, and that they are triggered by critical levels
of accumulated evidence in the accumulator units. We then define an algorithm for modulating
thresholds and describe its implementation using a neurally plausible mechanism. The model
consists of a set of stochastic differential equations that is equivalent to a classic connectionist
recurrent neural network with five units. In sections 2 and 3 we review relevant background
before describing the model in sections 4 – 6. We conclude with a discussion in Section 7.

2 The drift diffusion model (DDM)
Sequential sampling models of decision making have long provided accounts of many
regularities in response time (RT) and accuracy data in choice-reaction experiments (Luce,
1986). In sequential sampling, the stimulus is assumed to be a sequence of samples from one
of two possible distributions, as, for example, in Fig. 7.2A. To determine which distribution
is actually generating the stimulus, sampling is repeated and evidence in favor of one or another
hypothesis is accumulated until a response criterion has been reached. Speed-accuracy
tradeoffs can be explained in such models by shifts in the response threshold toward or away
from the starting points of the decision variables: closer thresholds mean shorter RTs and higher
error rates on average (Laming, 1968; Ratcliff, 1978).

In random walk versions of TAFC sequential sampling models, each evidential increment for
one hypothesis reduces the evidence in favor of the other so that there is only a single decision
variable: the difference in accumulated evidence for each hypothesis. (Fig. 7.2B shows this
variable plotted against time for four different decisions. Fig. 7.2C shows the resulting response
time distributions over many decisions.) Steps in the random walk are equivalent to increments
of the total log-likelihood ratio for one hypothesis over the other, making the model equivalent
to the sequential probability ratio test (SPRT) (Laming, 1968). This is theoretically appealing
as a starting point for investigating the role of reward in decision making, because the SPRT
is optimal in the sense that no other test can achieve higher expected accuracy in the same
expected time, or, conversely, reach a decision faster for a given level of accuracy (Wald &
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Wolfowitz, 1948). However, the SPRT does not specify the optimal threshold for maximizing
other values of potential interest, such as reward rate.

The drift-diffusion model (DDM) (Ratcliff, 1978; Smith & Ratcliff, 2004; Stone, 1960) is a
version of the SPRT in which stimuli are sampled continuously rather than at discrete intervals.
The difference between the means of the two possible stimulus distributions (see Fig. 7.2A),
imposes a constant drift of net evidence toward one threshold, and the variance imposes a
Brownian motion that may lead to errors. In monkeys, the continuously evolving firing rates
of neurons in the lateral intraparietal sulcus (area LIP) have been related to competing
accumulators that approximate the drift-diffusion process in oculomotor tasks (Gold &
Shadlen, 2001; Roitman & Shadlen, 2002, Shadlen & Newsome, 2001). Similar findings have
been reported for frontal structures responsible for controlling eye movements (Hanes &
Schall, 1996). Importantly, as shown in section 3, the expected reward rate can be computed
for the DDM (Gold & Shadlen, 2002), allowing learning mechanisms to be analyzed in terms
of a well-defined optimization problem (Bogacz, Brown, Moehlis, Holmes & Cohen, in
review).

The DDM is defined as the stochastic differential equation (SDE)

dx = A dt + c dW , (1)

where A is the signal strength, dW denotes increments of an independently and identically
distributed (i.i.d.) Wiener (white noise) process and factor c weights the effect of noise. At any
given moment, the distribution of possible positions of a particle moving in one dimension and
governed purely by a Wiener process is given by a Gaussian distribution whose mean is the
starting point of the particle (in our case, the decision variable), and whose variance is equal
to the time elapsed since the start of the process. Brownian motion of this type causes diffusion
of a substance within a liquid, from whence comes the term ‘diffusion’ in the name of the
model. Nonzero drift A contributes a tendency for trajectories to move in the direction of the
drift, producing a corresponding linear movement in the mean of the particle position
distribution over time. Below, we will use the terms ‘drift’ and ‘signal’ interchangeably.

For models of this type to explain effects that are observed in human performance - including
the speed-accuracy tradeoff, sequential effects such as post-error slowing, and speeded
response to frequent stimulus alternations and repetitions (Luce, 1986) - their parameters must
be adaptive on a short time-scale. Traditionally, parameters have been inferred by fits to
behavioral data, and additional degrees of freedom have been added to models to explain
different behavioral phenomena (e.g., Ratcliff & Rouder, 1998). However, in order to go
beyond identifying the relevant degrees of freedom and toward the principles that govern the
selection of specific parameter values, several questions left unanswered by this approach must
be addressed. For example, on what basis do subjects select particular parameter values of the
decision process (e.g., starting point or initial value of the decision variable, and threshold for
termination)? Are subjects behaving so as to minimize errors, to maximize reward rate, or to
do something else altogether? How are their parameters modified in response to ongoing
experience? Only a limited number of studies have addressed these questions and, to our
knowledge, none have addressed the question of neural implementation.

Below, we propose a neural network model that explains how the decision threshold can be
adapted (and a tradeoff between speed and accuracy chosen) in order to maximize reward rate
over multiple trials. This is based on a simple neural network model that implements the DDM,
as described in the next section.
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2.1 Neural implementation of the DDM
The accumulation of evidence in the DDM can be approximated by a simple neural network
with two ‘decision’ units, each of which is assumed to be preferentially sensitive to one of the
stimuli and also to be subject to inhibition from the other unit (see Fig. 7.2D), as proposed by
Usher & McClelland (2001) (cf. Bogacz et al., in review; Gold & Shadlen, 2002). Each unit
has a leak term, and therefore accumulates evidence for its corresponding stimulus subject to
decay over time, while competing with the unit representing the other decision alternative. We
and others have shown that, with suitable parameter choices, this model closely approximates
the DDM.

Specifically, the evolving activation of each unit (indexed by i) is determined by an SDE, the
deterministic part of which is:

ẏi = − yi − βy j + Ii, (2)

where Ii is the input, usually assumed to be a step function of time (corresponding to stimulus
onset) and −βyj represents inhibition from the other unit(s). With the stochastic component of
the activation function included, the pair of units is governed by;

dy1 = ( − y1 − βy2 + I1)dt + cdW1, (3)

d y2 = ( − y2 − βy1 + I2)dt + cdW2, (4)

Here we assume linear or piecewise linear activation functions for ease of analysis (we will
abandon this when we discuss threshold-crossing detectors, a case in which nonlinearity is
critical). This assumption provides a useful approximation to a more realistic, sigmoid function
(Cohen & Grossberg, 1983; Freeman, 1979) and is also consistent with the idea that attention
acts to place processing units in their central, approximately linear range, where they are most
sensitive to afferent input (Cohen, Dunbar & McClelland, 1990). Sigmoids saturate near 0 at
a small, positive baseline value, and also near a finite maximum which is typically rescaled to
1, thus avoiding the implausibilities of potentially unbounded or negative activations. For such
units each equation of (3–4) takes the form:

ẏi = − yi + σ( − βy j + Ii) + cdWi, where σ(s) = 1

1 + e−λ(s−γ)
. (5)

Summing the noise-free linearized equations (3) and (4), we find that solutions approach an
attracting line y1 + y2 = (I1 + I2)/(1 + β) exponentially fast at rate 1 + β. Differencing them
yields an Ornstein-Uhlenbeck process for the net accumulated evidence x = y1 − y2:

dx = (β − 1)x + I1 − I2 dt + cdW . (6)

If leakage and inhibition are balanced (β = 1) this becomes the DDM (Eq. 1) with A = I1 − I2
representing the difference in inputs. See Bogacz et al. (in review), Brown, Gao, Holmes,
Bogacz, Gilzenrat and Cohen (2005) and Holmes, Brown, Moehlis, Bogacz, Gao, Aston-Jones,
Rajkowski and Cohen (2005) for further details and verification that the nonlinear system
approximates this behavior.

Fig. 7.2F shows the evolution of the activations y1(t) and y2(t) over time. After stimulus onset,
the system state (y1, y2) approaches the attracting line along which slower, diffusive behavior
occurs as the state approaches one or another boundary under the influence of the noisy signal.
Projection of the state (y1, y2) onto this line yields the net accumulated evidence x(t), which
approximates the DDM as shown in Fig. 7.2B.
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3 A free-response, two alternative forced choice task
To investigate the hypothesis that speed-accuracy tradeoffs are driven by a process of reward
maximization, we consider an experiment in which subjects try to determine the direction of
motion of moving dots on a screen, as in Roitman & Shadlen (2002). They are free to respond
at any time after stimulus presentation, and a response terminates the stimulus. Initial results
from such an experiment suggest that people adapt their speed-accuracy tradeoffs in a manner
consistent with the goal of maximizing reward, and that this adaptation can happen quite
quickly (Bogacz et al., in review; Simen, Holmes & Cohen, 2005). People can also adapt their
speed-accuracy tradeoffs in similar tasks in response to explicit instructions (Palmer, Huk &
Shadlen, 2005).

To provide a benchmark against which to measure evidence of adaptive behavior, we first
describe optimal performance under this experimental paradigm. Assuming a constant rate of
trial presentation, the expected reward rate over a sequence of trials in which correct responses
are rewarded by 1 unit and errors by 0 can be expressed as follows (Gold & Shadlen, 2002):

RR = 1 − ER
DT + T0 + RSI

. (7)

Here ER is the expected error rate (proportion of errors), DT is the decision time, T0 is the
residual latency (non-decision-making component of response time comprising stimulus
encoding and motor execution times), and RSI is the response-stimulus interval (wait time from
the last response to the next stimulus onset).

For the DDM, ER and DT, and hence RR, depend only on the signal-to-noise ratio A/c and
threshold-to-signal ratio z/A, and we shall assume that these two parameters, as well as T0 and
the RSI, are held fixed within each block of trials. The following analytical expressions are
derived in Busemeyer & Townsend, 1993 (cf. Bogacz et al., in review; Gardiner, 1985):

ER = 1

1 + e 2Az/c 2
, (8)

DT = z
A tanh Az

c 2
, (9)

and substituting them into Eq. 7 gives:

RR( zA , A
c ) = 1

(T0 + RSI +
z
A ) + (T0 + RSI −

z
A ) exp ( − 2( A

2

c 2
) ⋅ z

A )

. (10)

Fig. 2 shows the expected reward rate given by Eq. 10 as a function of threshold z for various
values of RSI (Fig. 2A), noise (c; Fig. 2B) and drift rate (A; Fig. 2C) (Bogacz et al.., in review).
For all values of RSI, noise and drift, this function is smooth and has a unique maximum,
indicating that there is a single optimal threshold for maximizing reward rate, and that a gradient
ascent algorithm can be used to find this optimum (although this approach faces some problems
that we will consider below).

In each plot, a broken line connects the peaks of the reward rate curves, showing the reward
rate and corresponding thresholds associated with optimal performance for different values of
the DDM parameters (the ‘envelope of the optima’ in Fig. 2). Thus, any mechanism that seeks
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to optimize reward rate for this decision process must be able to adapt its threshold to the values
indicated in the plots in response to changes in task variables.

There is empirical evidence that human participants, performing well-practiced tasks, are
capable of such adaptation over relatively short intervals (e.g., in as few as 5–10 trials)
following a change in task conditions (Bogacz et al., in review; Ratcliff, VanZandt & McKoon,
1999). Several theories have been proposed for how such adaptations may occur (e.g.,
Busemeyer & Myung, 1992; Erev, 1998; Myung & Busemeyer, 1989). However, these have
typically been described in terms of discrete updating algorithms (for an example, see Table
1). While such algorithms provide a useful abstract specification of the component processes
required for threshold adaptation, several challenges arise when considering how they may be
implemented.

First, any reasonable reward rate estimation process takes time, but algorithms like that in Table
1 assume that threshold changes are made at discrete intervals. It is therefore undetermined
how long the system should wait at a given threshold in order to develop a reasonable estimate
of the associated reward rate before making a modification: with too few trials the estimate
will be poor; with too many, convergence will be slow. Second, there is the question of step-
size selection: step sizes that are too large cause oscillation of the threshold around the optimum
value; step sizes that are too small again cause slow convergence. This problem can be
addressed by introducing additional mechanisms that progressively reduce the step size, but
this adds complexity to the model. These algorithms also typically require a memory of old
reward rate values, and a means to compare new and old values in order to compute gradients.
In the sections that follow, we describe a neural network model that addresses these issues.
The model operates in continuous time, requires no explicit value comparison mechanisms,
and achieves rapid and stable adaptation to threshold values that approximate the optimal
reward rate.

We begin by describing an implementation of a neural network mechanism for detecting
threshold-crossing. We then describe a mechanism for reward estimation. Finally, we
demonstrate how the latter can be used to adapt the threshold mechanism in order to maximize
reward rate.

4 Thresholds as an affine function of reward rate
The threshold in the DDM is a step function applied to the accumulated evidence (for evidence
less than the threshold, the output is 0; for evidence greater than the threshold, the output is 1).
In order to implement such a crisp function in a neural network, a McCulloch-Pitts neuron
(McCulloch & Pitts, 1943) can be used, or an approximation based on a sigmoid unit with
strong gain (see Fig. 3A). Inputs that fall below the inflection point of the curve will fail to
activate the unit, while those that fall above it will activate the unit maximally. The effective
threshold can be manipulated by providing a constant input (or bias) to the unit, with a positive
bias in effect shifting the function to the left (decreasing the threshold), and a negative bias
shifting it to the right (increasing the threshold).

In our model, subthreshold levels of excitation provided to threshold units from non-evidence-
accumulating units will act to reduce the effective threshold with respect to the accumulators.
An input x > 0, scaled by a positive synaptic weight w, reduces the effective threshold by wx.
Thus, if a level zmax of evidence is required for threshold crossing in the absence of additional
excitation, the level drops to zmax −wx. This defines an affine function of x (a linear
transformation plus a constant): precisely the transformation required by the abstract threshold
adaptation algorithm described in section 6. Accordingly, our algorithm may be implemented
by connecting one or more additional units to the threshold detectors with appropriate synaptic
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weights w and by setting the bias (γ in Eq. 5) of the threshold detectors to zmax (see Fig. 9). We
shall further discuss implementation, and possible neural substrates, in sections 6–7.

5 Estimating reward rate
The threshold adaptation algorithm to be described in section 6 seeks to optimize performance
in the TAFC task by using a running estimate of the current reward rate to modulate behavior.
Here we show how that estimate of reward rate can be computed by a linear filter or ‘leaky
integrator’ that is incremented in response to reward impulses s(t) while decaying continuously
over time (as in, e.g., Sugrue, Corrado & Newsome, 2004a). The estimate, r(t), evolves
according to:

ṙ(t) = 1
k ⋅ (s(t) − r(t)). (11)

Thus, r(t) at a given time is an exponentially-weighted time-average of the instantaneous
reward signal s(t) in which the time constant k determines the speed of adaptation to changes
in s(t). Following a step change, r(t) approaches s(t) exponentially at rate 1/k. More generally,
large values of k attenuate high frequency fluctuations in s(t) (Oppenheim & Willsky, 1996).
Discrete rewards can be modeled in continuous time as a sequence of narrow pulses or Dirac-
delta impulses (see Fig. 4), in which case r(t) will approach the steady state mean of the reward
rate.

Eq. 11 computes a continuous version of the time-discounted averaging usually seen in
discrete-time reinforcement learning algorithms (cf. Doya, 2000). The averaging of Eq. 11 may
be computed exactly by a linearized connectionist unit (Eq. 5) in which recurrent self-excitation
of strength k − 1 is balanced against an activation function of slope 1/k, as can be seen by simple
algebra:

ẏ(t) = − y(t) + 1
k ⋅ s(t) + (k − 1) ⋅ y(t)

= ( k − 1
k − 1) ⋅ y(t) + 1

k ⋅ s(t)

= 1
k ⋅ (s(t) − y(t)).

(12)

A single unit can therefore compute the reward rate estimate required by the threshold
adaptation algorithm. The use of a sigmoid rather than a linear activation function would make
the relationship of Eq. 12 to Eq. 11 approximate rather than exact.

6 Threshold adaptation algorithm
We are now in a position to describe an algorithm that builds on the DDM of Eq. 1 and the
reward rate estimator of Eq. 11 by modeling threshold as an affine function of a continuously
evolving reward rate estimate, as suggested in section 4. This is implemented in a neural
network by exciting the threshold detector of Fig. 3 in proportion to the reward rate estimate.
The resulting system has an attractor near the optimal threshold across a range of RSI
conditions, and its large domain of attraction makes it robust to noise in reward rate estimates
and in the activation of threshold and accumulator units.

6.1 Discrete time description
The algorithm proposed below can be understood most easily by first considering the discrete-
time version illustrated in Fig. 5. Suppose one starts with an arbitrary threshold value,
Thresh1, as in Fig. 5A. The appropriate curve from Fig. 2 specifies the expected reward rate
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RR1 at that threshold value. After the first trial, Thresh1 is updated in response to a new estimate
of the reward rate (based on how long the trial took and whether it produced a reward or not)
by mapping RR1 to Thresh2 by the affine transformation. The process is repeated to compute
RR2, Thresh3, etc., and progress can be traced by a staircase or ‘cobweb diagram’ (cf. Jordan
& Smith, 1999), as indicated in Fig. 5B. Given the unimodal shape of the expected reward rate
function and the slope of the transformation line, rapid convergence to their unique intersection
occurs, and we note that step sizes adapt automatically, as shown by the decreasing width of
the staircase in Fig. 5B as the intersection is approached.

To obtain near-optimal performance, the transformation line must intersect the reward rate
curve at or near its apex. Further on, we suggest that this line can be chosen to approximate
the relationship between threshold and optimal reward rate over a range of task parameters
(see Fig. 6), and that this line itself may be subject to adaptation over longer time scales.

6.2 Continuous time system
We define the continuous time system as a set of SDEs augmented by conditions for threshold
crossing and decision variable resetting:

dx = {A dt + c1 dW if RSI(t) = 0

0 if RSI(t) = 1
(13)

x = 0 if RSI(t) = 1 (14)

dr = 1
k ⋅ ( − r(t) + R(t)) dt + c2 dW (15)

z(t) = max (0, zmax − w ⋅ r(t)) (16)

R(t) = {δ(t − t ′) if reward present at time t ′

0 otherwise
(17)

τ = time of last threshold crossing (18)

RSI(t) = {1 if | x | ≥ z or t − τ < RSImax
0 otherwise

(19)

Here x (Eqs. 13–14) is the decision variable in the DDM, r in Eq. 15 is the running estimate
of reward rate, and z in Eq. 16 is the threshold. Eqs. 13, 14 and 19 model the effects of RSI
(which impacts reward rate) as well as the assumption that the decision variable starts at the
origin on each new trial.1 Specifically, when a stimulus is present, the RSI variable is set to 0
(Eq. 19) and first-passage of the decision variable x beyond either threshold ±z is taken as the
time of decision, τ (Eq. 18). At this point, Eq. 19 specifies the response-stimulus interval
RSImax for the next trial, and Eq. 13 resets the decision variable to 0. For correct responses,
Eqs. 15 and 17 apply a Dirac-delta impulse to the reward rate estimator, which otherwise decays
exponentially (see Fig. 4). The threshold z is determined entirely by the reward rate estimate
r via the affine function of Eq. 16. In Section 6.4 we show that the continuous system (Eqs.
13–19) shares the property of rapid convergence to near-optimal thresholds of its discrete time
version.

1This last, rather unrealistic assumption implies a discontinuous decision variable trajectory over time, but it can be relaxed without loss
of generality by introducing a refractory period and modeling the system as a stable, rapidly decaying Ornstein-Uhlenbeck process during
the RSI, as done in Fig. 7; we use the simpler system here for ease of discussion.
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6.3 Robustness, generality and parsimony
Given the affine function z = zmax − wr relating threshold to reward rate, the continuous system
(Eqs. 13–19) accomplishes gradient ascent without explicit memory, reward-rate comparison
or step-size reduction mechanisms. It is also robust to estimation errors and noise, since the
intersection point of Fig. 5 is a global attractor. Furthermore, it can be used to adapt the
threshold to its optimal value across a range of task parameters. As noted earlier, behavioral
evidence suggests that human participants, performing well-practiced tasks, are capable of
adaptation over as few as 5–10 trials following a change in task conditions (Bogacz et al, in
review; Ratcliff, VanZandt & McKoon, 1999).

The method’s performance depends on the slope w and intercept zmax of the affine function.
This function defines a parsimonious linear approximation of the relationship between the
optimal threshold and reward rate across a range of task conditions, as in Fig. 2, provided that
the resulting line passes close to the reward rate maxima indicated by the dashed curve of Fig.
6.2 We shall assume that these parameters have been learned, for a given task, through practice
under different trial conditions (e.g., RSI or noise level). In Section 6.5 we indicate how this
can be done by reinforcement learning. First we demonstrate that, like the discrete time version
of the algorithm described in section 6.1, the continuous system (Eqs. 13–19) rapidly
convergences to near-optimal thresholds.

6.4 Simulations
Numerical simulations of the continuous-time algorithm demonstrate its effect on the
behavioral variables of interest: response time and accuracy. According to an optimal analysis
of the DDM in this task, thresholds should be set lower for faster RSI conditions, producing
faster mean RT and higher error rates. Fig. 7 shows representative timecourses of the decision
process variables for one parameterization of the abstract diffusion model in Eqs. 13–19, along
with the optimal thresholds and associated reward rates before and after a task condition switch.
Note how the system updates from arbitrary initial conditions and again following the switch.

The right panel of Fig. 8 shows RT distributions and error rates for the model of Eqs. 13–19,
illustrating a speed-accuracy tradeoff similar to tradeoffs seen in human behavioral data (left
panel, from a pilot study we conducted). In each panel, median and interquartile RTs are shown
on the left and error rates on the right. These demonstrate significantly faster RTs for shorter
RSIs (Wilcoxon rank-sum test, p < 0.01, each pairwise comparison), and also significantly
higher error rates for shorter RSIs (pairwise t-test, p < 0.001).

Finally, Fig. 9 shows the neural implementation of the abstract model (in which a single
decision variable and threshold are decomposed into two accumulators and two threshold
units), and Fig. 10 shows activation timecourses of its units in response to changing RSI
conditions. As pointed out in section 4, the slope w of the affine function (Fig. 3B) corresponds
to the connection weight from the reward rate estimator to the thresholding units, and the
intercept zmax can be interpreted as the bias (γ) of the sigmoid (Eq. 5), or as an additional input.

6.5 Learning the critical parameters
The model we have described thus far assumes a linear approximation of the relationship
between optimal threshold and reward rate. However, the best approximation differs
considerably across different ranges of task parameters (see Fig. 6). Here we consider the
possibility that this approximation - the affine function used to adapt the threshold - can itself

2Ideally one would use the envelope of optima - the dashed curve - to transform reward rate estimates into thresholds, but we are
constrained to linearity by the plausible neural mechanism assumed in section 4: superposition of synaptic inputs to the threshold units.
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be adapted through learning. To achieve this, reward rates must be experienced for different
values of task parameters, such as RSI and stimulus discriminability.

Noting that the reward rate of Eq. 10 depends on signal-to-noise ratio A/c, threshold-to-signal
ratio z/A, and RSI in a complex, nonlinear manner, it is clear that the slope and intercept
parameters w and zmax represent a substantial compression of information. However, this is
useful only insofar as the affine function z = zmax −wr (shown as the straight lines in Figs. 5
and 6) reasonably approximates the envelope of reward rate optima (shown as the dashed curves
in Figs. 2 and 6) over a given range of task conditions. For example, the best linear
approximation for 500 msec – 1 sec RSIs would significantly differ from the one for 1 – 2 sec
values (see Fig. 6). Since linearizations may provide good approximations only over limited
ranges of task parameters, it seems reasonable to assume that the approximation given by the
affine function may be tuned to accommodate different task environments. This can be
accomplished by generic reinforcement learning.

Our arguments supporting fast threshold convergence assume an affine function that is fixed
or that changes slowly in comparison to reward rate estimates. The affine function effectively
exploits knowledge about the shape of the reward rate curves, trading off generality for speed
and task-specificity. Learning the transformation requires exploration of a larger space of
possibilities. We therefore propose that such ‘environmental models’ are learned on a slow
time scale, and then used as described above to make rapid improvements to task performance
in ‘sub-environments.’

As an alternative to adapting the linear approximation, reinforcement learning could be applied
directly to threshold adjustment itself. That is, reinforcement learning could be used to produce
a full representation of the multi-parameter family of non-linear relationships between
thresholds and reward rates. Nevertheless, as with simple hill-climbing, general reinforcement
learning methods would still require annealing or step-size reduction schedules tuned to these
relationships (cf. Section 3) in order to adapt thresholds quickly to a train of incoming rewards,
while simultaneously settling securely on good parameter values in the face of noise (this is
another instance of a stability/plasticity tradeoff; Grossberg, 1987). Separating the time scales
allows us to obtain the best of both worlds in this task by applying the threshold update
algorithm over a time scale of 5–10 trials while simultaneously using reinforcement learning
in the background to adjust slope and intercept parameters over a time scale spanning multiple
blocks of trials.

In work referred to in Simen et al. (2005) and to be described in a future publication, we have
shown that parameters such as slope and intercept can be learned by continuous-time versions
of temporal difference algorithms such as the actor-critic method (cf. Doya, 2000). The
proposed method draws on the stochastic real-valued unit algorithm of Gullapalli (1990), and
is closely related to the Alopex algorithm of Harth & Tzanakou (1976) and a general class of
stochastic optimization algorithms (see Kushner & Yin, 1998). Specifically, connection
weights from the reward rate estimator to the threshold units of Fig. 9, which correspond to
slope, can be updated as in Eq. 15 of section 6.2, but at a much slower rate (larger k), and to
obtain the correct hill-climbing behavior, the input (−r(t) + R(t)) in Eq. 15 can be replaced by
a product of the derivatives of longer-term averages of reward rate and of the weight itself.
Thus, slopes are adjusted only when reward rates are consistently rising or falling, as they
would, for example, following a significant change of RSI range. We show that chains of first
order units can approximate derivatives, and also suggest a biologically-plausible neural
substrate that employs dopamine modulation of glutamatergic synapses in cortico-striatal
circuits.
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7 Discussion
We have demonstrated that very simple neural mechanisms can give rise to speed-accuracy
tradeoffs that maximize reward rate and that are similar to the tradeoffs exhibited by human
subjects. Our approach exploits attractor dynamics to deal with the challenges faced by
straightforward reinforcement learning and gradient ascent approaches to the threshold
adaptation problem, as well as more abstract algorithms (e.g., Busemeyer & Myung, 1992;
Erev & Barron, 2005). The model we describe operates in continuous time, is able to reliably
estimate reward rate, rapidly and stably converges on a threshold that optimizes reward rate to
a reasonable approximation, and does not require any additional apparatus for explicitly
remembering or comparing previous estimates of reward rate with current estimates.

A critical feature of the model is that it relies on a linear approximation of the relationship
between optimal threshold and reward rate across a range of task conditions. This serves two
purposes. First, it provides a representation of this relationship that is considerably simpler
than the actual curvilinear relationship (shown in Fig. 7.2) which is itself the solution to a
transcendental equation that can only be approximated numerically (Bogacz et al., in review).
Second, and perhaps more importantly, it allows the neural implementation of a threshold
adaptation algorithm that uses an affine function to achieve rapid convergence to a threshold
in close proximity to the optimal one. However, this use of a linear approximation also
represents a potential limitation of the model, insofar as the specific best approximation varies
as a function of task parameters (see Fig. 6). We have suggested how the parameters defining
the linear approximation could themselves be adapted using simple principles of reinforcement
learning, although this adaptation would need to occur on a significantly longer time scale than
that of threshold adaptation. The effects of these simultaneous adaptations at different times
scales, and their relationship to observations about human performance, remain to be explored
in future theoretical and empirical studies.

Previous non-neural modeling work has approached the issue of speed-accuracy tradeoffs from
the perspective that subjects try to minimize a cost consisting of a linear combination of speed
and accuracy, subject to information processing constraints (e.g., Maddox & Bohil, 1998;
Mozer, Colagrosso & Huber, 2000). This approach seems entirely consistent with an extended
version of our model that also maintains an estimate of error rate in the same manner as it
estimates reward rate. What is new here is the implementation of these processes using neurally
plausible mechanisms and a dynamical systems analysis of how and why they work. Reward
rate estimators, by directly exciting threshold readout units, can implement a speed-accuracy
tradeoff that is nearly optimal across a range of task conditions.

In this respect, our approach is similar to an existing neural model in which continuous feedback
in the form of motivational signals influences underlying decision making circuits based on
lateral inhibition (‘gated dipoles’) in order to change their stimulus sensitivity (Grossberg,
1982). To the best of our knowledge, however, that type of model has not been applied
specifically to the problem of estimating and responding to the rate of reward in a free response
task.

It is also worth noting the similarity of the reward rate estimate discussed in section 5 to an
‘accumulating’ eligibility trace as used in reinforcement learning (Sutton & Barto, 1998). The
two quantities are computed in the same way, but the purpose of the eligibility trace is typically
for changing weights in reinforcement learning, whereas in our case we simply feed the
equivalent quantity into the response units as an additional input. In this way, our approach
corresponds to an activation-based mechanism, whereas the traditional use of an eligibility
trace (as applied to brain modeling) is for governing synaptic plasticity. Combining both
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approaches should provide a means for optimizing performance at both short and long time
scales.

7.1 Implementation in the brain
Recent findings suggest that the components of our model may reflect the operation of specific
neural structures. Previous reports have suggested that areas of LIP as well as the frontal eye
field may correspond to the accumulators in the DDM (e.g., Gold & Shadlen, 2001; Hanes &
Schall, 1996; Shadlen & Newsome, 2001). Other findings have begun to identify neural
mechanisms that may be involved in reward rate estimation and the adaptation of decision
parameters. For example, given the role of orbitofrontal cortex (OFC) in encoding the reward
value of objects or actions (e.g., Rolls, 2000) and evidence that it may also encode the rate of
reward (Sugrue, Corrado & Newsome, 2004b), it is possible that the reward rate estimator unit
in Fig. 9 may serve as a simple, first-order approximation to OFC function in the type of
decision making task discussed here.

Further, activity in areas of monkey parietal cortex thought to be involved in sensorimotor
transformation has been shown to be sensitive to expected future reward (Platt & Glimcher,
1999) and the relative values of competing choices (Sugrue et al., 2004a) in occulomotor tasks.
Similar effects have been observed in other brain areas thought to be involved in the decision-
making process, such as the dorsolateral prefrontal cortex (Barraclough, Conroy & Lee,
2004; Leon & Shadlen, 1999). Thus it is possible that connections from OFC to threshold
detectors implemented in frontal and/or parietal cortex may implement something like our
threshold adaptation algorithm.

Given their role in reward processing, the basal ganglia are also promising candidates for
involvement in threshold modulation. Along these lines, Frank (2006) discusses a pattern of
anatomic connections and a possible role for the subthalamic nucleus (STN) that are consistent
with the mechanisms we have described. There, the proposed role of the STN is effectively to
increase the threshold when increased conflict is detected between competing responses in a
Go/No-Go task. In this way, emphasis shifts toward accuracy and away from speed when
response conflict is high. A shift in the opposite direction in response to reward rate might
similarly be achieved by connections from OFC to the striatum, given the role that the striatum
plays in promoting, rather than inhibiting, the propagation of activity through the basal ganglia
(as the STN does).

Our model assumes that speed-accuracy tradeoffs are implemented in the brain at a single stage
of processing (the threshold-crossing detection stage) through modulation by an estimate of
reward rate. However, neither reward rate estimation nor threshold-crossing detection are
functions that are likely to be discretely localized in the brain. As we have noted above, many
areas of the brain are sensitive to information about reward. Furthermore, the specific neural
mechanisms responsible for information accumulation and threshold adjustment are likely to
vary based on the demands of a given task (e.g., whether it involves visual or auditory
information, and a manual or occulomotor response). Presumably these are selected by frontal
control mechanisms for task engagement (e.g., Miller & Cohen, 2001). We propose, however,
that our model identifies fundamental principles of operation that may be shared in common
by the neural mechanisms involved in decision making across different processing domains.
Along these lines, it will be important to explore the relationship between these mechanisms
and others that have been proposed for the adaptive regulation of performance. This includes
the use of processing conflict to adapt threshold as well as attentional variables (e.g., Botvinick
et al., 2001), as well as the role of neuromodulatory mechanisms in adapting processing
parameters such as threshold and gain (e.g., Aston-Jones & Cohen, 2005).
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7.2 Extensions to a broader range of decision tasks
Our model has focused exclusively on free responding in the TAFC task. However, the basic
ideas should extend to address a broader range of more realistic tasks. For example, it should
be straightforward to incorporate our reward rate estimation and threshold adaptation
mechanisms into models for free responding in multi-alternative decision tasks (e.g., Bogacz
& Gurney, in review; McMillen & Holmes, 2006; Usher & McClelland, 2001), as well as Go/
No-Go tasks as discussed above. It should also be possible to address other response conditions,
such as deadlining, by elaborating the model to maintain an estimate of late-response rate, and
to use this in place of reward rate estimates to set an internal deadline for responding. Finally,
decision making tasks that also involve working memory over a delay period can be modeled
by implementing thresholds via detector units with strong, self-excitatory positive feedback -
as in the firing rate models of Nakahara & Doya (1998) and Simen (2004) and the spiking
model of Wang (2002) - rather than non-self-exciting units with very steep gain in their
activation functions (as in section 4). The analysis presented here in terms of units with
activation functions that are step functions carries over without loss of generality to such self-
exciting units (Simen, 2004).

We hope that this model helps extend the foundation that has begun to develop for formalizing
decision-making tasks, particularly those that integrate continuous time reward monitoring and
prediction with sensory mechanisms, and that it may serve as a bridge between psychological
function and neural implementation.
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Figure 1.
A: The two stimulus distributions; B: Sample paths of a drift-diffusion process; C: Long-tailed
analytical RT density (solid curve) and simulated RT histogram (top), correct RT histogram
(middle), error RT histogram (bottom); D: Time courses of noise-free, mutually inhibitory
evidence accumulation units with sigmoid activation functions; E: The sigmoid activation
function; F: A smoothed sample path of mutually inhibitory accumulator activations in the
(y1, y2)-phase space showing rapid attraction to a line (the ‘diffusion plane’) followed by drift
and diffusion in its neighborhood.
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Figure 2.
A: Expected reward rate as a function of threshold for three different RSI conditions, with noise
and drift held constant; B: Expected reward rate for several noise values, with RSI and drift
held constant; C: Expected reward rate for a range of drift values with RSI and noise held
constant.
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Figure 3.
A: Thresholds can be implemented by a simple step-function, or McCulloch-Pitts neuron
(McCulloch & Pitts, 1943), which in turn can be approximated by a sigmoid with strong gain.
A threshold can be reduced from zmax to zmax − wr by giving the unit additional excitation
wr, representing weighted reward rate, so that evidence need only be accumulated to this level
to produce a response; B: Threshold represented as a linear function of reward rate; C: By
exchanging the vertical and horizontal axes, this prescription for threshold setting based on
reward rate can be compared to the predicted reward rate as a function of threshold.
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Figure 4.
Reward rate estimate r(t) (sawtooth curve) in response to a sequence of short reward pulses s
(t) (gray rectangles). Here the rewards are pulses of height 1 and width 1. In both cases the
estimated reward rate oscillates around its true frequency, shown by the dotted line. Left panel:
slow pulse rate; Right panel: fast pulse rate.
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Figure 5.
A: Threshold selection after a single trial of the discrete-time description of the algorithm; B:
Convergence to nearly optimal threshold after 4 trials.
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Figure 6.
The affine function that translates reward rate estimates into threshold produces the best
performance when it approximates the envelope of optima (dashed curve), because it intersects
the expected reward rate curves near their peaks for a range of RSI conditions. Different ranges
of RSI conditions require different affine approximations, and the function is assumed to adapt
slowly in response to RSI conditions experienced over a longer time scale.
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Figure 7.
Timecourses of variables in a sample run of the algorithm. The DDM (Eq. 1) is simulated
directly in the top timecourse, where the decision variable traces out a trajectory within bounds
formed by the dynamic threshold (each point of contact between these represents a decision).
Optimum thresholds for the two RSI conditions simulated (0.5 sec RSI, until about t ≈ 42 secs;
2 sec RSI, from 42 secs to end) are shown as dashed lines. Second timecourse shows leaky
integrator estimate of reward rate (Eq. 11), superimposed on an estimate with added Gaussian
noise, plus dashed lines indicating the expected reward rate for the optimum threshold in each
RSI condition. Third plot shows signal direction (upward square pulse = left; zero = RSI;
downward square pulse = right; responses are dots plotted at height 1 for left and −1 for right;
dots at height 0 are premature responses occurring due to low threshold, and x’s denote errors.
Fourth plot shows RTs.
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Figure 8.
Speed-accuracy tradeoffs produced by a human subject (left panel) and by the algorithm (right
panel). The horizontal axis in all plots represents the RSI condition for blocks of trials (0.3, 1
or 2 seconds). Left plot in each panel shows a boxplot of RT, with median RT represented by
the middle notch, interquartile RT range (25th–75th percentile) denoted by height of box, and
outliers denoted by whiskers. Right plots in each panel show corresponding error rates.
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Figure 9.
A five-unit neural network that implements the decision mechanism. Mutually inhibiting
accumulator units in the first layer approximate a DDM, units with high gain and bias in the
second layer detect theshold crossings, and a reward rate estimator with balanced feedback and
gain modulates the detector thresholds according to z = zmax − wr.
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Figure 10.
Activations of all units in the network of Fig. 9 are plotted, the position of each plot
corresponding to the position of each unit in the circuit diagram. The top set of panels shows
a short timecourse, and the bottom set a longer one that illustrates fast threshold adaptation.
First column shows inputs to left and right channels. Second column plots left and right
accumulator activations and the log odds ratio of evidence derived from their difference. Third
column shows left and right threshold detectors. Top plot in the fourth column shows the reward
rate monitor, with dotted vertical lines marking stimulus onsets, showing that RSI was
decreased from 2 to 1 sec at about 30 secs, and increased from 1 to 3 secs at about 60 secs.
Response time (RT) is plotted below as asterisks. Note the similarity between the rate monitor
activity and the plots of threshold at bottom right.
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Table 1
Hill-climbing algorithm for threshold adaptation that maximizes reward rate, after Myung & Busemeyer
(1989).

Step Instruction

1. estimate the reward rate at an initial threshold
2. randomly take a step upward or downward in threshold value
3. estimate the reward rate at the new threshold
4. compute the difference in reward rate estimates
5. divide the difference by the size (or sign) of the change in threshold value to get an estimate of the gradient of the reward rate

curve
6. if the estimated slope is positive, take another step in threshold value in the same direction; else take a step in the opposite

direction; go to (3) and repeat.
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