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Abstract

We present a neurobiologically–inspired stochastic cellular automaton

whose state jumps with time between the attractors corresponding to a

series of stored patterns. The jumping varies from regular to chaotic

as the model parameters are modified. The resulting irregular behavior,

which mimics the state of attention in which a systems shows a great

adaptability to changing stimulus, is a consequence in the model of short–

time presynaptic noise which induces synaptic depression. We discuss

results from both a mean–field analysis and Monte Carlo simulations.

1 Introduction

Analysis of electroencephalogram time series, though perhaps not conclusive
yet, suggest that some of the brain high level tasks might require chaotic ac-
tivity and itinerancy (Barrie et al., 1996; Tsuda, 2001; Korn and Faure, 2003;
Freeman, 2003). As a matter of fact, following the observation of construc-
tive chaos in many natural systems (Kiel and Elliot, 1996; Kaneko and Tsuda,
2001; Strogatz, 2003), it has been reported some evidence that chaos may, for
example, enhance sensitivity by inducing a critical state of synchronization dur-
ing expectation and attention (Hansel and Sompolinsky, 1996), and perhaps
provide an efficient means to discriminate different (e.g.) olfactory stimuli
(Ashwin and Timme, 2005). Consequently, there has recently been some effort
in incorporating constructive chaos in neural network modeling (Wang et al.,
1990; Bolle and Vink, 1996; Dominguez and Theumann, 1997; Caroppo et al.,
1999; Poon and Barahona, 2001; Mainieri and Jr., 2002; Katayama et al., 2003).
Concluding on the significance of chaos in neurobiological systems is still an open
issue (Rabinovich and Abarbanel, 1998; Faure and Korn, 2001; Korn and Faure,
2003), however.
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As a new effort towards better understanding this problem, in the present
paper we present, and study both analytically and numerically, a neural au-

tomaton which exhibits chaotic behavior. More specifically, it shows sort of
dynamic associative memory, consisting of chaotic hopping between the stored
memories, which mimics the brain states of attention and searching. The model
is a neurobiologically inspired cellular automaton, in which dynamics concerns
the whole, which is simultaneously updated —instead of sequentially updating
a small neighborhood at each time step. This automaton (or Little dynamics)
strategy has already revealed efficient in modeling several aspects of associa-
tive memory (Ganguly et al., 2003; Cortes et al., 2004). Interesting enough,
concerning this property, neural automata often exhibit more interesting be-
havior than their Hopfield–like, sequentially–updated counterparts, in spite of
the fact that any two successive states are stronger correlated in the sequential
case. Therefore, we extend here to cellular automata our recent study of the ef-
fects of synaptic “noise” on the stability of attractors in Hopfield–like networks
(Cortes et al., 2006). We demonstrate that, in our automaton, a certain type
of synaptic fluctuations determine an interesting retrieval process. The model
synaptic fluctuations are coupled to the presynaptic activity in such a way
that synaptic depression occurs. This phenomenon, which has been observed
in actual systems, consists in a lowering of the neurotransmitters release af-
ter a period of intense presynaptic activity (Tsodyks et al., 1998; Pantic et al.,
2002). Our model fluctuations happen to destabilize the memory attractors
and are shown to induce, eventually, regular and even chaotic dynamics be-
tween the stored patterns. Confirming expectations mentioned above, we also
show that our model behavior implies a high adaptability to a changing environ-
ment, which seems to be one of the nature strategies for efficient computation
(Lu et al., 2003; Schweighofer et al., 2004).

2 The model

Let a set of N binary neurons, S ={si = ±1; i = 1, . . . , N}, connected by
synapses of intensity:

wij = wL
ijxj , ∀i, j. (1)

Here, xj stands for a random variable, and wL
ij is an average weight. The

specific choice for the latter is not essential here but, for simplicity and reference
purposes, we shall consider a Hebbian learning rule (Amit, 1989). That is, we
shall assume in the following that synapses store a set of M binary patterns,
ξµ = {ξµi = ±1; i = 1, . . . , N} , µ = 1, ...,M, according to the prescription, wL

ij =

M−1
∑

µ ξ
µ
i ξ

µ
j .

The set X ={xj} of random variables is intended to model some reported
fluctuations of the synaptic weights. To be more specific, the multiplicative
noise in (1), which was recently used to implement a variation of the Hopfield
model (Cortes et al., 2006), may have different competing causes in practice,
ranging from short–length stochasticities, e.g., those associated with the opening
and closing of the vesicles and with local variations in the neurotransmitters
concentration, to time lags in the incoming long–length signals (Franks et al.,
2003). These effects will result in short–time, i.e., relatively fast microscopic
noise. As a matter of fact, the typical synaptic variability is reported to occur on
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a time scale which is small compared with the characteristic system relaxation
(Zador, 1998). Therefore, as far as X corresponds to microscopic fast noise,
neurons will evolve as in presence of a steady distribution, say P st(X|S). It
follows that such noise will modify the local fields, hi(S,X) =

∑

j 6=i wijxjsj ,
i.e., the total presynaptic current which arrives to the postsynaptic neuron si,
which one may assume to be given in practice by

hi(S) =

∫

X

hi(S,X)P st(X|S)dX. (2)

This, which is a main feature of our automaton, amounts to assume that each
neuron endures an effective field which is, in fact, the average contribution of
all possible different realizations of the actual field (Bibitchkov et al., 2002).
This situation has been formally discussed in detail in Refs.(Torres et al., 1997;
Marro and Dickman, 1999). It may be noticed that, consistently with the choice
of a binary, ±1 code for the neurons activity, we are assuming zero thresholds,
θi = 0, ∀i, in the following; this is relevant when comparing this work with some
related one, as discussed below.

Next, one needs to model the noise steady distribution. Motivated by some
recent neurobiological findings, we would like this to mimic short–term synaptic

depression (Tsodyks et al., 1998; Pantic et al., 2002). This refers to the obser-
vation that the synaptic weight decreases under repeated presynaptic activation.
The question is how such mechanism may affect the automata (and, in turn,
actual systems) dynamics. For simplicity, we shall assume factorization of the
noise distribution, i.e., we assume the simplest case P st(X|S) =

∏

j P (xj |S),
and

P (xj |S) = ζ (~m) δ(xj +Φ) + [1− ζ (~m)] δ(xj − 1). (3)

Here, ~m = ~m(S) stands for the overlap vector of componentsmµ(S) = N−1
∑

i ξ
µ
i si,

and ζ (~m) is an increasing function of ~m to be determined. The choice (3)
amounts to assume that, with probability ζ (~m) , i.e., more likely the larger ~m
is, which implies a larger net current arriving to the postsynaptic neurons, the
synaptic weight will be depressed by a factor −Φ. Otherwise, the weight is given
the chosen average value, see equation (1). Interesting enough, (3) clearly in-
duces some non–trivial correlations between synaptic noise and neural activity.
This is an additional bonus of our choice, as it conforms the general expectation
that processing of information in a network will depend on the noise affecting
the communication lines and vice versa (Cortes et al., 2006). Looking for an
increasing function of the total presynaptic current with proper normalization,
a simple choice for the probability in (3) is ζ (~m) = (1 + α)

−1 ∑

µ [m
µ (S)]

2
,

where α = M/N is the load parameter or network capacity. It then follows
after some simple algebra that the resulting fields are

hi(S) =

{

1− γ
∑

µ

[mµ (S)]
2

}

∑

ν

ξνi m
ν (S) , (4)

where γ ≡ (1 + Φ) (1 + α)
−1

. Notice that this precisely reduces for Φ → −1
to the local fields in the Hopfield model in which the synaptic weights do not
fluctuate but are constant in time (Amit, 1989).

Time evolution is due to competition between these fields, which contain
the effects of synaptic noise, and some additional natural stochasticity of the

3



neural activity. In accordance with a familiar hypothesis, we shall assume this
stochasticity controlled by a “temperature” parameter, T, which characterizes
an underlying “thermal bath” (Marro and Dickman, 1999). Consequently, evo-
lution is by the stochastic equation Πt+1(S) =

∑

S′ Πt(S
′)Ω(S′ → S), where the

probability per unit time of a transition is

Ω(S′ → S) =

N
∏

i=1

ω(s′i → si). (5)

For simplicity and concreteness, we take ω(s′i → si) ∝ Ψ [βi (s
′
i − si)] , where

βi ≡ T−1hi(S
′), and hi(S

′) independent of s′i, which is a good approxima-
tion for a sufficiently large network (technically, this is an exact property in
the thermodynamic limit N → ∞). The function Ψ is arbitrary except that,
in order to obtain well defined limits, we require that Ψ(u) = Ψ(−u) exp(u),
Ψ(0) = 1 and Ψ(∞) = 0, which holds for a normalized exponential function
(Marro and Dickman, 1999). Then, consistent with the condition

∑

S
Ω(S′ →

S) = 1, we take

ω(s′i → si) = Ψ[βi(s
′
i − si)] [1 + Ψ (2βis

′
i)]

−1
. (6)

3 Main results

It is obvious that the above may be adapted to cover other, more involved
cases (Cortes et al., 2006), but this is enough to our purposes here. In fact,
Monte Carlo simulations reveal some new interesting facts as compared with
the case of sequential updating (Cortes et al., 2006). To begin with, figure
1 illustrates a much varied landscape, namely, the occurrence of fixed points,
cycles, regular and irregular hopping between the attractors. This may also
be obtained analytically in the mean–field approximation si = 〈si〉 ∀i (Amit,
1989). We then obtain for M = 1 a discrete map which describes time evolution
of the overlap m ≡ m1 as

mt+1 = tanh{T−1mt[1−m2
t (1 + Φ)]}. (7)

As one varies here the “temperature” T and the depressing parameter Φ, it
follows a varying situation in perfect agreement with the Monte Carlo simula-
tions, as one should have expected for a fully connected network. In particular,
figure 2 shows the occurrence of chaos in a case in which thermal fluctuations
are small compared to the synaptic noise. That is, the Lyapunov exponent, λ,
corresponding to the dynamic mean–field map shows different chaotic windows,
i.e., λ > 0, as one varies Φ for a fixed T. As illustrated also in figure 2, dynamics
is stable for Φ = −1, i.e., in the absence of any synaptic noise, and the only
solutions then correspond to the ones that characterize the familiar Hopfield
case with parallel updating. As Φ is increased, however, the system tends to
become unstable, and transitions between m = 1 and m = −1 then eventually
occur that are fully chaotic.

There is also chaotic hopping between the attractors when the system stores
several patterns, i.e., for M > 1. In this case, we obtain the more complex,
multidimensional map:

mν(S)(t+ 1) =
1

N

∑

i

ξνi tanh[βhi(S)(t)] ∀ν = 1, . . .M. (8)
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This is to be numerically iterated. The simplest order parameter to monitor
this is:

ζ =
1

1 + α

∑

µ

(mµ(S))
2
. (9)

This is shown in figure 3 as a function of Φ. The graph clearly illustrates a region
of irregular behavior which has a width ∆Φc defined as the distance, in terms of
Φ, from the first bifurcation to the last one. Interesting enough, we find that the
width of this region is practically independent of the number of patterns; that
is, we find that ∆Φc = 0.575±0.005 asM is varied within the rangeM ∈ [1, 50] .
This suggests that the chaotic behavior which occurs for depressing fast synaptic
fluctuations, i.e., for any Φ > −1, does not critically depend on the automaton
capacity but the model properties are rather robust and perhaps independent of
the number of stored patterns within a wide range. One may expect, however,
that some of the interesting model properties will tend to wash out as the load
parameter increases macroscopically, i.e., as M → ∞.

4 Discussion and further results

Motivated by the fact that analysis of brain waves provides some indication
that the chaos–theory concept of strange attractor may be relevant to describe
some of the neural activity, we presented here a neurobiologically–inspiredmodel
which exhibits chaotic behavior. The model is a (microscopic) cellular automa-
ton with only two parameters, T and Φ, which control the thermal stochasticity
of the neural activity and the depressing effect of (coupled) fast synaptic fluc-
tuations, respectively. Our system reduces to the Hopfield case with Little
dynamics (parallel updating) only for Φ = −1.

Our main result is that, as described in detail in the previous section, the
automaton eventually exhibits chaotic behavior for Φ 6= −1, but not for Φ = −1,
nor in the case of sequential, single–neuron updating irrespective of the value
of Φ (Cortes et al., 2006). It also follows from our analysis above that further
study of this system and related automata is needed in order to determine
other conditions for chaotic hopping. For example, one would like to know
if synchronization of all variables is required, and the precise mechanism for
moving from regular to irregular behavior as Φ is slightly modified. We are
pursuing the present effort along this line (Cortes et al., 2006), and present
some related preliminary conclusions below.

This is not the first time in which chaos is reported to occur during the re-
trieval process in attractor neural networks; see, for instance, (Wang et al., 1990;
Bolle and Vink, 1996; Dominguez and Theumann, 1997; Poon and Barahona,
2001; Caroppo et al., 1999; Mainieri and Jr., 2002; Katayama et al., 2003). One
may say, however, that we provide in this paper a more general and microscopic
setting than before and, in fact, the onset of chaos here could not be phe-
nomenologically predicted. That is, the same microscopic mechanism, namely
(1) and (3), does not imply chaotic behavior if updating is by a sequential
single–variable process (Cortes et al., 2006). Another possible comparison is by
noticing that, in any case, whether one proceeds more or less phenomenologi-
cally, the result is a map mt+1 = G(mt). We obtained the gain function G after
coarse graining of (4)–(6), and the Monte Carlo simulations fitting the map be-
havior just involve neurons subject to the local fields (2), so that we are only

5



left in the two cases with the noise parameter Φ to be tuned. In contrast, some
related works, in order to deepen more directly on the possible origin of chaos,
use the gain function itself as a parameter. It is also remarkable that, e.g.,
in (Dominguez and Theumann, 1997) and some related work (Caroppo et al.,
1999; Mainieri and Jr., 2002; Katayama et al., 2003), the gain function is phe-
nomenologically controlled by tuning the neuron threshold for firing, θi. The
threshold function thus becomes a relevant parameter, and it ensues that any
meaningful chaos in this context requires non–zero threshold. This is because,
in these cases, the local fields and, consequently, the overlaps, are lineal, which
forces one to induce chaos by other means. Interesting enough, our gain function
in (7) has either a sigmoid shape or an oscillating one, as illustrated for T = 0
in figure 4. Only the latter case allows for hopping between the attractors and,
eventually, for chaotic behavior.

Finally, we demonstrate an interesting property of our automaton during
retrieval. This is the fact that, in the chaotic regime, the system is extremely
susceptible to external influences. A rather stringent test of this is its behavior
concerning mixture or spin–glass steady states, which are unsuited in relation
with associative memory. Even though these states may occur at low T, this
system —unlike other cases— easily escapes from them under a very small
external stimulus. This is illustrated in figure 5 which also demonstrates a
general feature, namely, some strong correlation between chaos and a vivid
response to the environment. This nicely conforms expectations mentioned
above, in the introduction of this paper, that chaotic itinerancy might be a
rather general strategy of nature.
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Figure Captions

Figure 1: Monte Carlo time–evolution of the overlap between the automaton

current state and the given stored pattern forM = 1, N = 104 neurons, T = 0.1,
and different values of Φ, as indicated. This illustrates, from top to bottom,
the fixed point solution in the absence of any synaptic noise, i.e., Φ = −1, a
cyclic behavior, the onset of irregular periodic behavior, and fully irregular and
regular jumping between the two attractors corresponding, respectively, to the
given pattern, m ≡ m1 = 1, and its anti–pattern m = −1 —the only possibili-
ties in this case with M = 1.

Figure 2: Bifurcation diagram and associated Lyapunov exponent demonstrat-
ing chaotic activity for some (but not all) values of the depressing coefficient
Φ. The upper graph shows, for M = 1, the steady overlap between the cur-
rent state and the given pattern as a function of Φ. This is from Monte Carlo
simulations of a network with N = 104 neurons. The bottom graph depicts
the corresponding Lyapunov exponent, λ, as obtained from the map (7). This
confirms the existence of chaotic windows, in which λ > 0. The temperature

parameter is set T = 0.1 in both cases; this is low enough so that the effect of
thermal fluctuations is negligible compared to that of synaptic noise.

Figure 3: The function ζ (Φ) , as defined in the main text, obtained from
Monte Carlo simulations at T = 0.15 for N = 104 neurons and M = 20 stored
patterns generated at random. A region of irregular behavior which extends for
∆Φc, as indicated, is depicted. The insets show the time evolution of four out
of the 20 overlaps within the irregular region, namely, for Φ = 0.11.

Figure 4: The gain function in (7) versus mt for T = 0 and different val-
ues of Φ, as indicated. It is to be remarked that this function is non-sigmoidal,
namely, oscillatory, which allows for hopping between the attractors for Φ > 0,
while it is monotonic in the Hopfield case Φ = −1.

Figure 5: Time evolution of the overlap mµ in a Monte Carlo simulation with
N =104 neurons, M = 4 stored (random) patterns, T = 0.05, and, from top
to bottom, Φ = −0.2, −0.1, 0.12, and 0.2. This illustrates that, under regular
behavior (as for the first two top graphs and the bottom one), the system is un-
able to respond to a week external stimulus. This is simulated as an extra local
field, hexti = δξµi , where δ = 0.05 and µ changes (µ = 1, 2, 3, 4, 1) every 40 MCS
as indicated by Pµ above the top graph. The situation is qualitatively different
when the regime is chaotic, as for Φ = 0.12 in this figure. After some wandering
in the evolution that we show here, the system activity is trapped in a mixture
state around t = 80 MCS. However, the external stimulus induces jumping to
the more correlated attractor, and so on. That is, chaos importantly enhances
the network sensitivity. To obtain a similar behavior during the regular regimes,
one needs to increase considerably the external force δ.

9



-1

 0

 1

 500  525  550  575  600

m

Φ=-1.00

-1

 0

 1

 500  525  550  575  600

m
Φ=-0.10

-1

 0

 1

 500  525  550  575  600

m

Φ=-0.02

-1

 0

 1

 500  525  550  575  600

m

Φ=0.03

-1

 0

 1

 500  525  550  575  600

m

time (MCS)

Φ=0.05

Figure 1:

10



-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

m

-20

-16

-12

-8

-4

 0

 4

-1 -0.5  0  0.5  1

λ

Φ

Figure 2:

1

0.5

0

-1 -0.5  0  0.5

ζ

Φ

∆Φc

Φ=0.11

-1
 0
 1

 0  1  2  3  4  5

m
1

time (102 MCS)

-1
 0
 1

m
6

-1
 0
 1

m
11

-1
 0
 1

m
20

Figure 3:

11



-1

 0

 1

-1  0  1
G

(m
,Φ

)

Φ=-1.00

-1

 0

 1

-1  0  1

G
(m

,Φ
)

Φ=0.05

-1

 0

 1

-1  0  1

G
(m

,Φ
)

m

Φ=1.00

Figure 4:

1

0

-1
 0  2.5  5  7.5

m
µ

time (40 MCS)

1

0

-1

m
µ

1

0

-1

m
µ

1

0

-1

m
µ

δ=0 P1 P2 P3 P4 P1 δ=0

Figure 5:

12


	Introduction
	The model
	Main results
	Discussion and further results
	Acknowledgments

