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Abstract

We present and study a probabilistic neural automaton in which the
fraction of simultaneously–updated neurons is a parameter, ρ ∈ (0, 1) .
For small ρ, there is relaxation towards one of the attractors and a
great sensibility to external stimuli and, for ρ ≥ ρc, itinerancy among
attractors. Tuning ρ in this regime, oscillations may abruptly change
from regular to chaotic and vice versa, which allows one to control the
efficiency of the searching process. We argue on the similarity of the
model behavior with recent observations and on the possible role of
chaos in neurobiology.

1 Introduction

Attractor neural networks (ANN) are a paradigm for the property of associa-
tive memory (Hopfield, 1982; Amit, 1989). Nevertheless, concerning practi-
cal applications, and also when trying to mold the essence of actual systems,
the utility of ANN is severely limited, mainly by the fact that they can only
retrieve one memory at the time. In this note we show that such a limita-
tion may be systematically overcome by simply generalizing familiar model
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situations. More specifically, we here extend some of our recent work on
ANN with fast pre–synaptic noise (Cortes et al., 2006; Torres et al., 2007;
Marro et al., 2007). The result is a novel mathematically–tractable ANN
whose activity eventually describes heteroclinic paths among the attractors.
This illustrates, in particular, the possibility of a constructive role of chaos
during searching processes.

Our previous related studies essentially considered the same model sys-
tem but two different ways of updating it, namely, (i) sequential and (ii)
parallel updating. Interesting enough, the ensuing behavior was qualita-
tively, even dramatically different. That is, the main observation was, re-
spectively, (i) a great enhancement of the system sensibility to external
stimuli as a consequence of rapid synaptic fluctuations which simulate facil-
itation and/or depression (Cortes et al., 2006; Torres et al., 2007), and (ii)
chaotic behavior while the system spontaneously visited all the available
attractors (Marro et al., 2007). Each of these two regimes of behavior is
to be associated with a different functionality of an essential dynamic in-
stability. Such an important dependence on the updating process is rather
unexpected. For instance, we checked that it does not occur in a recent
model (Pantic et al., 2002; Pantic et al., 2003) which is based on a different
depression mechanism. This situation motivated us to study in detail the
changeover between (i) and (ii) as a modification of our previously proposed
ANN (Cortes et al., 2006; Marro et al., 2007). That is, we here present neu-
ral automata in which the number or density ρ of neurons that are updated
at each time step is a parameter. The resulting behavior as one modifies ρ
is varied and intriguing. It leads us to argue on the possible relevance of our
observations to interpret neurobiological experiments.

2 Definition of model

Let the sets of neuron activities σ ≡ {σi} and synaptic weightsw ≡{wij ∈ R} ,
where i, j = 1, . . . , N, and assume a presynaptic current hi (σ,w) on each
neuron due to the weighted action of the others. At each time unit, one
updates the activity of n neurons, 1 6 n 6 N. This induces evolution in
discrete time, t, of the state probability distribution according to

Pt+1(σ) =
∑

σ
′

R
(

σ′→σ
)

Pt(σ
′), (1)
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where the transition rate is a superposition:

R
(

σ→σ′
)

=
∑

x

pn(x)
∏

{i|xi=1}

ϕ̃n

(

σi → σ′
i

)

∏

{i|xi=0}

δσi,σ
′

i
. (2)

Here, ϕ̃n (σi → σ′
i) ≡ ϕ (σi → σ′

i)
[

1 +
(

δσ′

i
,−σi

− 1
)

δn,1

]

and we denote x ≡

{xi = 0, 1} an extra set of indexes which helps one in selecting the desired
subset of neurons. The above thus describes parallel updating, as in familiar
cellular automata (Chopard and Droz, 1998), for n = N or, macroscopically,
ρ ≡ n/N → 1, while updating proceeds sequentially, as in kinetic Ising-like
models (Marro and Dickman, 1999), for n = 1 or ρ → 0.

We shall consider explicitly the simplest version of this model which
happens to be both interesting and mathematically tractable. First, we as-
sume binary neurons, so that σi = ±1, which is known to be sufficient in
order to capture the essentials of cooperative processes (Pantic et al., 2002;
Marro and Dickman, 1999; Abbott and Kepler, 1990). The elementary rate
ϕ is an arbitrary function of βσihi (with β an inverse “temperature” or
stochasticity parameter) which we assume to satisfy detailed balance. This
property is not fulfilled by the superposition (2) for n > 1, however. Conse-
quently, the resulting steady states are generally out of equilibrium, which is
more realistic in practice than thermodynamic equilibrium (Marro and Dickman, 1999).
On the other hand, we shall only illustrate the case in which the n neurons
are chosen at random out from the set of N, so that one has pn (x) =
(

N
n

)−1
δ (

∑

i xi − n) in (2). For the sake of simplicity, we also need to as-

sume that the currents are such that hi (σ,w) = h [π (σ) , ξi] , where ξi ≡
{ξµi = ±1;µ = 1, . . . ,M} are some given, stored patterns (realizations of the
set of activities) and π ≡ {πµ (σ)} . Here, πµ (σ) = N−1

∑

i ξ
µ
i σi measures

the overlap between the current state and pattern µ. For N → ∞ and finite
M, i.e., in the limit α ≡ M/N → 0 (which is not the interesting case, but
may serve first for illustrative purposes) the resulting time equation under
these conditions is πµ

t+1 (σ) = ρN−1
∑

i ξ
µ
i tanh

(

hti
)

+ (1− ρ) πµ
t (σ) , where

hti ≡ βhi [πt (σ) , ξi] , for any µ. The above result is general and valid for any
type of patterns. It is to be noticed that the sum over i in this map can be
replaced by an average over the distribution of patterns p(ξµi ). This permits
a simple derivation of mean-field dynamical equations for the overlaps, at
least for finite M. Note also that Monte Carlo simulations do not require
restriction concerning the nature of the stored patterns.

The above allows for different relations between the currents hi and the
weights wij, and between these and other system properties. The simplest
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realization corresponds to the Hopfield case (Hopfield, 1982) which follows
from the map above for ρ → 0 and currents given by hi (σ,w) =

∑

j 6=iwijσj
with the weights fixed according to the Hebb prescription, namely, wij =
N−1

∑

µ ξ
µ
i ξ

µ
j . The symmetry wij = wji then assures Pt→∞ (σ) ∝ exp (β

∑

i hiσi)
and, for high enough β, the stored patterns ξ are attractors of dynam-
ics (Amit, 1989). We checked that, in agreement with some indications
(Herz and Marcus, 1993), the Hopfield–Hebb network exhibits associative
memory for any ρ > 0. However, the situation is more complex, e.g., it
depends on ρ, as one goes beyond Hopfield–Hebb, as we show in the next
section.

It is well documented that transmission of information and computa-
tions in the brain are correlated with activity–induced fast fluctuations of
synapses, i.e., our wij’s (Ferster, 1996; Dobrunz and Stevens, 1997; Abbott and Regehr, 2004).
More specifically, it has been observed that there is some efficacy lost af-
ter heavy work, so that synapses suffer from depression; it is claimed that
repeated activation decreases the neurotransmitter release which depresses
the synaptic response (Tsodyks et al., 1998; Thomson and Deuchars, 1994;
Abbott et al., 1997; Thomson et al., 2002; Cook et al., 2003). The conse-
quences of this have already been analyzed in various contexts (Pantic et al., 2002;
Cook et al., 2003; Bibitchkov et al., 2002; Cortes et al., 2006; Marro et al., 2007;
Torres et al., 2007), and a main general conclusion from these studies is that
depression importantly affects a network performance reducing, in particu-
lar, the stability of the attractors. Motivated by these facts, we shall adopt
here the Hopfield currents and the following prescription for the synaptic
weights:

wij = [1− (1− Φ) q (π)]N−1
∑

µ
ξµi ξ

µ
j , (3)

where q (π) ≡ 1
1+α

∑

µ π
µ (σ)2 . Note here that, in addition of static quenched

disorder as in the standard Hopfield model, the weights (3) include a time
dependence through the overlap vector π which is a measure of the network
firing activity. These weights, which reduce to the Hebb prescription for
Φ = 1, amount to assume short–term fluctuations which change synapses by
a factor Φ on the average with a probability q (π). Therefore, any positive
Φ < 1 simulates synaptic depression if q (π) is large. This is in agreement
with the fact that, the greater π is, more activity will in the average arrive
to a particular postsynaptic neuron i in the network and, therefore, this
neuron will be more depressed. Although the magnitude q (π) involves a
sum over all stored patterns, this will only affect neurons that are active
in a particular pattern for not too high correlated patterns. More details
concerning these assertions are in (Cortes et al., 2006; Marro et al., 2007).
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Our setting here is rather close to the one in previous treatments of
depressing synapses in a cooperative environment. As a matter of fact, one
may show after some simple algebra that the model in (Pantic et al., 2002;
Torres et al., 2002; Pantic et al., 2003) corresponds to certain choices of Φ
and q (π) in (3) concerning steady states. For instance, a possible choice

for M = 1 and ρ = 1 is Φ = 1 − γ/γ0 and q(π) = γ0[γ(1−π2)+4]
γ2(1−π2)+4γ+4

where

γ is the depression parameter defined in (Torres et al., 2002) and γ0 is the
value for that parameter at which Φ = 0. This type of nonlinearity in q (π) ,
however, induces less susceptibility than the choice we are using here (see
next section).

For the sake of completeness, we shall be concerned in this paper with
both positive and negative values of Φ. A result is that the behavior we are
looking for ensues in any of these cases (but only for certain values of Φ).

3 Some main results

In the limite N → ∞ the (nonequilibrium) stationary state follows from
the map for M = 1 as π∞ = F (π∞; ρ,Φ) , and local stability requires that
|∂F/∂π| < 1; F (π; ρ,Φ) ≡ ρ tanh

{

βπ
[

1− (1− Φ) π2
]}

+ (1− ρ) π. The
fixed point is therefore independent of ρ, but stability demands that ρ < ρc
with

ρc = 2

{

3βπ2
∞

[(

4

3
−Φ

)

− (1−Φ) π2
∞

]

− β + 1

}−1

(4)

(a condition that cannot be fulfilled in the Hopfield, Φ = 1 case). As Fig. 1
shows, ρ = ρc marks the period-doubling route to chaos in the saddle–point
map. This behavior is confirmed numerically for M ≫ 1 stored arbitrary
patterns, as shown numerically below.

Fig. 2 shows some typical stationary Monte Carlo runs, i.e., from bot-
tom to top: (a) convergence towards one attractor —in fact, one of the
antipatterns, namely, the negative of one of the given patterns— for small
ρ; (b) fully irregular behavior with positive Lyapunov exponent for ρ > ρc;
(c) regular oscillation between one attractor and its negative for ρ > ρc; (d)
onset of chaos as ρ is further increased; and (e) rapid and ordered periodic
oscillations between one pattern and its antipattern when, finally, all the
neurons are active. The cases (b) and (d) are examples of instability–induced
switching phenomena, in which the system activity chaotically visits differ-
ent attractors by describing heteroclinic paths and remaining different time
intervals in the neighborhood of each attractor. This kind of behavior was
previously observed for ρ → 1 at certain values of Φ (Cortes et al., 2006).
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The interesting new facts are that this requires a minimum of synchronized
neurons, that this minimum —as well as many other details— depend on
Φ, and that, as we show in the caption of figure 1, varying ρ above ρc (Φ)
seems to induce further intriguing qualitative changes.

It is also to be remarked that chaotic switching or itinerancy requires that
the system is in a specially susceptible state first described in (Cortes et al., 2006;
Torres et al., 2007). This is accomplished in the present case by means of
the activity–dependent fast noise modelled in (3). One should expect that
variations of this assumption on the weights may result in an equivalent
susceptible state. As a matter of fact, we found that changing the sign
of Φ does not affect our main observations. However, the case Φ = 1, in
which the weights are fixed, does not exhibit interesting behavior, and ρ
turns then into an irrelevant parameter. On the other hand, the model in
(Pantic et al., 2002; Torres et al., 2002; Pantic et al., 2003) does not seem
to involve sufficient susceptibility for the purpose (see figure 3), in spite of
the fact that it includes an activity–dependent depression mechanism. The
explanation is the following. Assuming that the dynamics can be writen as
πt+1 = G(πt), the gain function G(π) in the model in (Torres et al., 2002) is
a nonlinear one which behaves monotonically for all values of the depression
parameter. In our case, however, a non-monotonic type of gain function
occurs for some values of Φ and ρ (see comparison in figure 4). This has
been reported to be important to originate a chaotic dynamics among the
attractors (Dominguez and Theumann, 1997; Caroppo et al., 1999).

Monitoring activity trajectories as one varies ρ in the case of several
stored patterns provides the following qualitative picture for arbitrary pat-
terns. As far as ρ < ρc, the activity remains wandering around one of the
patterns. The pattern selected depends on the initial condition, and the tra-
jectory visits a neighborhood of it whose volume increases slightly with ρ.
The trajectory seems to tend to densely fill this volume with time. Increas-
ing ρ, however, the system may escape from the initially chosen pattern and,
eventually, will tend to visit all the patterns. In addition, one observes that
the trajectory is rather structured. That is, there are many jumps between
the more correlated patterns but only very few to the less correlated ones
if the system is close to the edge of chaos, and the system attention to all
the patterns tends to be balanced as ρ is increased within a chaotic window.
Increasing ρ further, the network surpasses equiprobability of patterns and,
eventually, abandons the chaotic regime to fall into a limit cycle, where pe-
riodically oscillates between a pattern and its antipattern. This confirms
and details the behavior shown in figure 1.

This behavior, which is clearly observed in Monte Carlo simulations, can
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also be obtained under a mean field theory. Assume, for instance, random
patterns with p(ξνi ) =

1+a
2 δ(ξµi − 1) + 1−a

2 δ(ξµi +1) where 〈ξν〉 = a, even for
0 < |a| ≪ 1. In the simplest case of two patterns this mean field dynamics
is determined by

π1
t+1 = ρ

1 + a2

2
tanh[B(πt)(π

1
t +π2

t )] + ρ
1− a2

2
tanh[B(πt)(π

1
t −π2

t )]

+ (1− ρ) π1
t

π2
t+1 = ρ

1 + a2

2
tanh[B(πt)(π

1
t +π2

t )]− ρ
1− a2

2
tanh[B(πt)(π

1
t −π2

t )]

+ (1− ρ) π2
t ,

(5)
where B(π) ≡ β[1 − (1 − Φ)q(π)]. It may be noticed that only in the non-
interesting case of orthogonal patterns, namely a = 0, the mean field dy-
namics (5) gives chaotic switching between a particular pattern and its an-
tipattern but not between different patterns. Otherwise, the situation is of
chaotic switching among the stored patterns.

4 Discussion

This paper deals with ANN in which the density ρ of neurons that are
updated at each time step is a parameter, so that the limit ρ → 0 (1) corre-
sponds to sequential (parallel) updating. Our main motivation is that previ-
ous studies of ANN in these limits revealed qualitatively different behavior,
and that analysis in which the number of updated neurons is systematically
varied are rare in the literature, e.g., (Herz and Marcus, 1993). It is worth to
remark also that there are several arguments which suggest studying changes
with ρ. One is simply the suspicion, born outside biology, that a network
could perhaps like to maintain inert some of the nodes during operation,
and not necessarily for economy but in order to gain efficiency. As a matter
of fact, as one may get convinced by oneself by looking at our expressions
for the currents hi, hushing some of the nodes may be equivalent to mod-
ifying the wiring topology, and this is recognized as a method to enhance
a network efficiency (Torres et al., 2004). More specifically within biology,
one may notice that assuming cells that are stimulated only in the presence
of a neuromodulator such as dopamine, ρ could stand for the fraction of
neurons modulated each cycle. There is no input on the other 1− ρ, so that

7



information from the previous state is maintained, which was argued to be
a basis for working memories (Egorov et al., 2002; LeBeau et al., 2005). On
the other hand, varying ρ may also be relevant to simulate various situa-
tions of persistent activity (Wagenaar et al., 2006), the observed variability
of the neurons threshold (Azouz and Gray, 2000), and the possible existence
of silent neurons (Olshausen and Field, 2004; Shoham et al., 2006), for in-
stance.

The fact is that varying ρ in our model turns out to be very intriguing.
However, ρ is relevant only if the network is susceptible. Such a condition
occurs in our case as a consequence of activity–dependent fast synaptic noise
as modelled in (3). The parameter ρ is irrelevant in other cases as, in
particular, for the model in (Pantic et al., 2002; Pantic et al., 2003) which
is based on the depression mechanism introduced in (Tsodyks et al., 1998),
and also when the synaptic weights are fixed, even heterogeneously as in
a Hopfield–Hebb network. On the contrary, the model here exhibits kind
of dynamic association, namely, the activity either goes to one attractor or
else, for large enough ρ, visits possible attractors. The visits may abruptly
become chaotic. Besides synchronization of a minimum of neurons, this
requires careful tuning of ρ. As a matter of fact, as shown by equation (4)
and figure 1, a complex situation makes it difficult to predict the result for
slight changes of ρ.

Another interesting feature of our model is illustrated in figure 5. This
shows time series of the mean firing rate, m = 1

2N

∑

i (1 + σi) , in a case
study with six patterns exposed to two different stimuli of the same intensity
and duration (between 3000 and 4000 n Monte Carlo trials). Each pattern
is a string of N bits. Three patterns are randomly generated with 40, 50
and 60% of the bits set to 1, and the other three with the 1s at the first
70, 50 and 25% positions, respectively; the rest of the bits are set to −1.
The bottom graph shows the baseline activity without stimulus (BS) and
the activity level under stimulus µ = 1 (SA1) and µ = 2 (SA2), i.e., two of
the patterns. The behavior which exhibits the system in this case (which we
found for other parameter values as well) is amazingly alike to observations
in a comparable (but true, not computer) experimental setting concerning
the odor response of the projection neurons in the locust antennal lobe
(Rabinovich et al., 2001; Mazor and Laurent, 2005).

Interesting enough, the switching which shows our model due to stim-
ulus destabilization in the simulation of figure 5 occurs for ρ < ρc. In fact,
a similar phenomenon was observed also for ρ → 0 (Cortes et al., 2006).
This shows that, at least in this case, an efficient adaptation to a changing
environment does not require chaos. However, the chaotic itinerancy we de-
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scribed above allows for a more efficient search of the attractors space in a
way that was believed to hold in relevant systems under a critical condition
(Chialvo, 2006). Our model thus illustrates a mechanism that makes chaos
extremely beneficial. This confirms expectations (Korn and Faure, 2003;
Glass, 2002; Ashwin and Timme, 2005) that the instability inherent to chaos
facilitates moving to any pattern at any time. The present model system
illustrates a specific mechanism which allows for this. As ρ increases in a
chaotic region, it is more likely that the activity will visit all the attractors,
not only the most correlated ones. The number and diversity of attractors
it visits then increases with ρ, and we observed that the time spent in the
attractor also varies with ρ. The system in this way may perform family
discrimination and classification by tuning ρ. We finally remark that our
model allows for describing a coupling of ρ to the activity, which may be
quite a realistic setting in some cases. No doubt it would be interesting to
study other related model situations.

We thank I. Erchova, P.L. Garrido and H.J. Kappen for very useful com-
ments, and financial support from FEDER–MEC project FIS2005-00791, JA
project P06–FQM–01505, and EPSRC–COLAMN project EP/CO 10841/1.
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Figure Captions

Figure 1: The Lyapunov exponent (solid curve), showing transitions from
regular (λ < 0) to chaotic (λ > 0) as the synchronization parameter ρ =
n/N is varied, as obtained analytically from the saddle–point solution for
Φ = 0.005, M = 1 patterns, and β = 50. The chaotic windows here were
precisely confirmed using related Monte Carlo simulations with N = 3600
neurons. The minimum fraction of active neurons needed to start the period-
doubling route to chaotic behavior, ρc, is shown. This picture is strongly
dependent on Φ; there is a rather broad range of Φ values, including negative
ones, for which the behavior is qualitatively similar. The dashed curve is the
Hopfield–Hebb case Φ = 1. The inset details the interesting region showing
chaotic behavior.
Figure 2: The overlap as a function of time (in units of n Monte Carlo
trials) after t = 1920, for N = 1600, β = 20, Φ = −0.4, M = 3 uncorrelated
patterns and, from bottom to top, ρ = 0.08, 0.50, 0.65, 0.92 and 1.00,
respectively. In this case, ρc = 0.085.
Figure 3: Time variation of the mean firing rate m ≡ (1+π)/2 in an attrac-
tor neural network which stores a single pattern with depressing synapses,
as modeled in (Tsodyks et al., 1998; Pantic et al., 2002), under partial up-
dating in the oscillatory regime. Panels show, from top to bottom, the
cases ρ = 1, 0.7, 0.3, 0.1. This (which corresponds to certain model param-
eters) reveals that, except for scaling of the typical temporal scale for the
oscillations, partial updating does not introduce new phenomenology in this
model, contrary to the case presented in this paper.
Figure 4: This compares the gain function in the model in this paper,
for ρ = 1 and varying Φ (left panel) and the gain function in the model in
(Torres et al., 2002) for varying γ (right panel). In both cases β was set to 3.
Different curves in the left case are for Φ = 1 (non-depressed case), 0.6, 0.2
and 0 (hight depression); the curves in the right case occur when the corre-
sponding parameter γ = 0 (non-depressed case), 0.5, 3, 10 (high depression case)
This shows how the gain function can be non-monotonic for some values of
the depression parameter Φ in the model in this paper. This allows for non-
zero fixed point solutions, namely, the points that intersect the diagonal,
with negative slopes (whose absolute value is larger than one) which leads
to a period-doubling route to chaos.
Figure 5: Itinerancy induced by external stimuli. Mean firing rates as a
function of time (bottom) and phase–space trajectories (top) trying to recre-
ate an experimental observation concerning odor responses (Mazor and Laurent, 2005).
The graphs show two Monte Carlo simulations of our system with N = 1600,

13



β = 4, Φ = −0.45, ρ = 3/64 < ρc, and six stored patterns, for different stim-
uli, corresponding to green and red colors, respectively. The top graph in-
volves a standard false–neighbor method (Eckmann and Ruelle, 1985) with
embedding dimension de = 5, and the time delay is τ = 20.
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Figure 3: Torres et al.
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