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Abstract

Fourier-based regularisation is considered for the supator machine classification
problem over absolutely integrable loss functions. By kg the modest assumption
that the decision function belongs to a Paley-Wiener spgaseshown that the classifi-
cation problem can be developed in the context of signalrthegeurthermore, by em-
ploying the Paley-Wiener reproducing kernel, namely the &iinction, it is shown that
a principled and finite kernel hyper-parameter search spaegde discerned priori.
Subsequent simulations performed on a commonly-availaygberspectral image data

set reveal that the approach yields results that surpassdtthe-art benchmarks.

Keywords: hyperspectral imaging, parameter estimation, reg@tois, reproducing
kernel Hilbert spaces, sequency analysis, signal theamg, kernel, support vector

machines
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1 Introduction

An often-cited property of the support vector machine (SVigarning method is the
existence of a unique solution. Another very desirablebaite, namely flexibility, is
readily realised by the introduction of non-linear kernathods. But herein lies a conflict.
Although flexibility admits richness, it also introducesr@aeters, and thereby precludes
uniqueness. Whether the parameter takes the form of a gaadotor, a scaling number, or
the kernel itself, the fact remains that in the context of-finear support vector machines
there are uncountably many solutions. Unfortunately, thiy way to determine the best
solution is to build uncountably many kernels. This is, afis®, intractable.

However, when framed in the context of reproducing kerndbétt spaces, it has been
shown by Girosi (1998) that the choice of kernel and pararsatentrol the nature and
degree of regularisation that is imposed on the solutiorelated issue is that the so-called
curse of dimensionality often turns out not to have the dedrital effect that is predicted.
Some recent machine learning research has focused on ficogemt explanations for this
phenomenon. Belkin and Niyogi (2004) argue that a possddson is that the data lie on
a sub-manifold, embedded in the input space. Indeed, d#tealarge number of variables
may lie entirely in a much smaller-dimensional manifold. dfiledge pertaining to the
structure of the manifold can be used to guide the choice i@rpeters, and thus the nature
and degree of regularisation. Such realisations lead tora cunsidered approach: that is
to ascertaina priori, properties of the space wherein the data lie. Althoughetieay still
exist infinitely many solutions, the range of an empiricalrsté could then at least be focused
upon subsets of parameters rather than all possible choiigegameters.

We propose a principled way of reducing the infinite parameg&arch space to an
exhaustive and finite one. Our approach is motivated by samfheory, where the main

goal is to establish equivalence relations between datzeseg spaces and kernel function
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spaces. To this end, we employ perhaps the most elementartidn space from sampling
theory, namely the simply connected and zero-centred Réleper reproducing kernel
Hilbert space, more commonly referred to by engineers aslaenl-limited signals. For
a given class of data, we show how to estimateyiori, a suitable kernel and parameter
subspace. Smale and Zhou (2004) have also studied the apptiof sampling theory and
reproducing kernel Hilbert spaces to learning theory. Ttmysider the least squares loss
regression problem and construct probability estimategshie sampling error. The work
reported here adds to the rather small amount of literatat@is under-explored topic.

The remainder of this paper is structured as follows. In iSecR, the data class
under consideration and its corresponding reproducingekeétilbert space are constructed.
Accordingly, some necessary signal theory concepts amdated and discussed in
Section 3, and exploited in Section 4. Finally, in Sectiow® report the best results to date

on a popular hyperspectral image data set, confirming thepand utility of the approach.

2 Model Construction

Letx,e X C ]Rd,yn € {£1}, ne N, and consider the usual SVM classification problem

N
1 )

min= ||l f||©+C 1—yuf , 1
min I HIP+C3_ 11 —nf Gl (1)

wheref, the decision function to be determined in some Hilbert spa¢X), is regularised
by the operatof : # — # that maps the input space to the desired feature space. The
resulting learned decision function, implied by the reprasr theorem (Kimeldorf and

Wahba, 1970), is the solution

N
f= ZYnGnk(Xn,')a (2)
n=1
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wherek is a Mercer kernel (Mercer, 1909). Herewith, the classiatefined by sgh. Our

main contention is that before any effort is made to desigrctassifier, it is good practice,
in a qualitative sense, to attempt to discern the propesfittee underlying decision function.
A natural preface, proposed here, is that the labellingtfananapsd-variate data to labels

viay: R4 5 X — {£1}, with

y(X) == sgn($(x) +£(x)), 3)

where the noise is modelled lsyand under the assumption that the information conpent
lies entirely within the space of Paley-Wiener functiongermsome multi-dimensional base-

band regiorQ*, viz.

d d
Q"= @Q? = @ (—wl Tl m).
r=1 r=1
That is
d
¢ € PWo = P {T e La(X) : sup" C O}, ()

r=1
with supp := {x € X : {(x) # 0}, and where” denotes Fourier transformation:

A . 1 —i (WX
() ._W/Rdax)e () gix

The conditionp € PWg- restricts the behaviour of the information content to fiorts of
finite bandwidth around the origin.

Since the time of Hardy (1941), it has been known that theogidhal function for the
band-limited spac®W_gngr), With B> 0, is that function nowadays commonly known as

the sinc kernel, defined by



sings(- —X) := w

Indeed, Higgins (1985) has suggested that the origins sfftthogonal system may well go
as far back as Borel (1897). Although this kernel is famiieesignal theorists and engineers,
it is a seemingly rare tool in machine learning. Kon, Raphaedl Williams (2005) make a
brief mention of it, by way of an example, in their work on apgmation estimates and
statistical learning theory. Sugiyama and Mduller (2002¢ the sinc kernel, among other
choices, to demonstrate that their generalisation bounr@éfpession is stable with respect to
kernel choice. It is perhaps less well known that, by virttithe following three established

results, the sinc kernel also lends itself to the reguldrssgport vector classification setting.

Theorem 2.1 (Self-consistency property, Smola, 8l&opf, and Miller, 1998.) Let the
Mercer kernel defined by:kKX x X — R, and the regularisation operatdr: # — 7, be

such thatkx,&) = ((T'k)(x), (Fk)(E)}ar . Then the SVM classification problem can be written

N
1 5

min= || f||“+C 1—ynf(x ,
min I +C 11—yt ol

as earlier (Equation 1).

Theorem 2.2 (Translation invariant kernels, Smola, Sdkopf, and Miller, 1998.) Con-
sider a kernel, endowed with translation invariance, namiél,&) = k(x—¢§), with the

regularisation operatof : # — ¥, defined by

1 /fA(w)gA(w)
(2m¥/2 Jra  KNw)

Then Kx,§) = <(I‘k)(x),(Fk)(E)>?, and the self-consistency property of Theorem 2.1

dw.

<rf7rg>,¢ =

is satisfied.



Corollary 2.3 1t follows from Theorem 2.2 and the work of Aronszajn (1950 tensor

products of reproducing kernels that the regularisatiomtdrom the SVM problem is

d 2
1 [ ()]
aEE= I do
H ”T (2_’_[>d/2£ :f kf/\<(x)r) )
with w:= («")%_,, and that

-1

d
1 _ %\ [
regularises the decision function f by acting as a filterhia signal analysis sense, ph“|2.

The unique kernel associated with the reproducing kerndbelrti spacePWg- is the

sinc kernel

d d
k(&) := [ [ ket ¢ &) := [ [ sinc (X — €). 5)
Given the model (3), where rthle informationr ci)ntent is embedoh the Paley-Wiener
space (4), it is only sensible to constrain the decisiontiondo the same Paley-Wiener
space. From Corollary 2.3, it follows that in the Fourier domthe multiplicative filter that

acts uporjf"[% is

1 1 1
K@)~ Xa (@) Exm(wr) ’

with thed-dimensional hypercuboid

1 fweQ
Xa(w) = : (6)
0 otherwise

In this case, sinck” > 0 holds oveiRY, Bochner’s theorem (Bochner, 1959) ensures that

the sinc kernel is a Mercer kernel. The multiplicative filtegularises the decision function
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by penalising the frequency content bion R\Q*. The sinc kernel also keeps the content
overQ* unaltered. These penalisation and preservation propentes by definition, unique
to the sinc kernel. Since Paley-Wiener spaces are closeer wdtlition, the representer

result (2) ensures that the decision function is restritbdeiNg - .

Remark 2.4 We now see that, in the context of our work, the non-reguddridigher-
dimensional input space discussed by Belkin and Niyogi4p® PW,q4, and the sub-
manifold is PW- C PW,q. That s, in the frequency domain, the sub-manifold invdiyeaur
work can be described as a hypercuboid centred on the orgid the regularising operator

is precisely the mapping: PWgd — PWg-.

We are now left with the problem of finding an optimal hypergraeter sefw. }, in the
sense of the SVM problem. Before this is attempted, we pm@pasovel approach to elicit
spectral properties of the labelling function that emplegsne recently-constructed tools

from signal theory.

3 From Signal Theory to SVM Classification

Intuitively, the labelling functiory of equation 3 can be understood as a piecewise-constant
function that mapgl-many real variables to positive or negative unity. It cdreréfore,

be treated as a square-wave function odesariate space. To this end, we propose the
use of sequency analysis as a means to elicit some propeftieand, consequently, the
information contenth. Such properties will suggest how the decision functionushde
regularised. Before the analysis, it is instructive toodtrice a family of functions that has

the labelling function as a member.

Definition 3.1 Let thecal andsalfunctions be defined by



caly(t) := sgncosut,

saly(t) = sgnsimnt.

Now, define the complex square-wave family as

Tt

Wy = 30

(cak,+isaly) .

This definition is consistent with the construction givenHliiot and Rao (1982), Hughes
and Heron (1989), and Nelson (2002). However, this basi tla@refore the definition of
sequency, differs from the more common Walsh-Hadamardysisatlescribed elsewhere,
such as Beer (1981). In particular, the Walsh-Hadamaresysdefined over a dyadic grid,
constitutes an orthogonal basis. On the other hand, therayamployed here is defined over
a denser, uniform grid and, as will be shown below, it formgatbogonal basis. As such, it
can be used to analyse the spectral properties of functimrsaanore opaque domain. Now,

consider the Mobius arithmetic functipn N — {0, +1}, given by

;

1, fn=1

H(n) == { (=1)™, if nis the product of distinct primes

0, otherwise
which is employed here due to the utility afforded by the deling result, taken from

number theory:

Lemma 3.2 (Mobius.) Let pu denote thedius function. Then, for ra N,

Z “(n> = 6m,17

njm

10



whered. . denotes the Kronecker delta. The next result, outlined dgdwe(2001), enables

us to express the labelling function in terms of the comptpiase-wave family.

Proposition 3.3 (Biorthogonal complex square-wave system, Nelson 200k pibrthogo-

nal dual of{Wn} is

1 .
Wht) :=—== > m tu(m|)em/m,
\/E[me4Z+l
Proof We require{Wn, H )L,(R) = On j. Since the complex square wayg is periodic, it can

be expanded as the Fourier series

wn(t)—\/—— Z Lgm,

meazi1
Hence

(Wn, Ui L,m = /UJn P () ot
1 l

_ = = (mn— /Z

- o u(lé)) / dl(mn- |

mE€4Z+l

The integral oveR can be written as

T | ) 1
Iim/ g(mn=j/Ox gy — 2nlim0 [;sinq_l(mn—j/ﬁ)}
T—

—0 T/t

= 2m(mn—j/¢),

where thed(-) denotes the Dirac delta generalised function, the non-zalees of which

can be found by takingin= j/¢. For then

(Wn WLy = 6<0>?Z S u(je)).

m £]j/n
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Lemma 3.2 implies

1

Suen=4 "

tlj/n 0, otherwise

forj=n

and, hence, the non-zero values exist whem. Sincej = nimplies thatm=1//, it follows

that the sum ovem collapses to the sole term= 1, and we have

<l.IJn, LI'J§>L2(R) = 6”,]6(0> :

|
The discrepancy(0) occurs because, as Higgins (1996, p. 29), explains, .. pdi@ eval-
uation functional is not properly defined &n spaces”. Now that the biorthonormal square-

wave system has been established, we introduce the sequansformation™, namely

(@)= [ 1w @
From Proposition 3.3, it follows thagtcan be expanded as a superposition of square waves,

Y=Y (Y W) L() Wn:

nez
Hence, the coefficients that expregsn terms of the square-wave basis are found by

performing the sequency transformyofRecall from (3) thap € PWq+, and, without loss of

generalitye € PWn-+. The linearity property of Paley-Wiener spaces gives ase t

d+€ePWo o+

We define the sequency function sp&eeas
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S = {2 € La(X) s suppl™ € Q).

Now, since$p € PWo+ = sgnp € S+, ande € PWo+ = sgne € S+, we can express the

labelling functiony as a sequency-limited function= sgn¢ +¢€) € Sy« o+, that is,

y= Y™ () Yo ) dod, (8)

Q*uUQt

and whergy™ can be computed via

) = g 3 B [ymeina

me4Z+1

-y EE(R). ©)

medzZ+1

where one (fast) Fourier transform is required to deterryin@’), for eachr = 1,....d.
Since the sampleg, over which the Fourier transforms gf(w') are computed are typically
non-uniformly distributed, the direct application of a Feu transform is inappropriate.
Instead, irregular sampling techniques, such as thosestisd by Grochenig (1993),must
be considered. Since a comprehensive treatment of irnegatapling issues is beyond the
scope of this work, we employ here a simple strategy wherbbydata are mapped to a
uniform grid via nearest neighbour, constant interpofatio

By definition, the information content of$ + €) lies in the frequency baseband
Q* = (—w, T, w, ). Analogously, the informative part of the labelling furmstisgri$ + €)

lies inside some sequency baseb&id= (—w, Tt w,TT).

Example 3.4 Consider y= sgng, whered(t) = cosw,t, and te R. Clearly, it follows that
¢ € PW_g, 0, and
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Y (@) =d(w—0w,) +d(w+ W) =YE S g, m)

In this caseqw, is estimated from’y, andsinqw,-) is chosen as the kernel.

In practice, the approach taken to determfde and hence the value a@b,, is not
straightforward unless we assume titN Q" ={}. However, in this section we have
formulated the SVM classification problem in terms of a slghaory one, namely that
of filter design, and in Section 4 we show how this avoids theessity of unduly repeated

implementation of computationally-expensive parametén&tors such as cross-validation.

4 Parameter Estimation

For each choice of the parameter @gf there is a corresponding reproducing kernel Hilbert
space#,, say. Commonly, the parameter set (or hyper-parametehjasen by estimating
the performance of the SVM for each parameter value. Theevaw, = {«J }¢ that yields

the best performance is then chosen as the optimal parameter

4.1 State-of-the-Art

Chapelleet al. (2002) describe several different ways to measure SVM padace. To
facilitate the empirical comparisons drawn in Section 5, seasider perhaps the most
straightforward measure, namely the validation error.ettire data are splitinto two distinct
sets. One set is used to train and the other to validate the.SVM

There also exist several ways to search for the optimal patemoo,. Often misused,
the phrase ‘exhaustive search’ has been adopted to desumil@proach whereby the
performance measure is computed over a finite number of gdeas In practice, however,

the search can never be truly exhaustive. Either the rangaraimeters is too small, or the
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discretisation too large, or both. Various gradient-dessearch methods have also been
applied to SVM parameter optimisation. Common drawbackgraflient methods include
finding a suitable smoothing strategy for the performancasues, choosing a good first
initial point, and bad convergence.

Unfortunately, the inherent problems of any search-basethoa are exacerbated in
an exponential manner as the number of parameters incriasady, and when using a
one-against-one strategy for example, in a combinatoraimar as the number of classes
increases linearly. Only a few authors have attempted aatiorastimation of the optimal
hyper-parameter set. Lanckriet al. (2004) use semi-definite programming techniques to
compute the kernel matrix. Debnath and Takahashi (200dngit to make a link between
the eigenvalues of the features and the optimal Gaussiameder. However, their work
relies almost entirely on empirical evidence and qualitatemarks. Wangt al. (2003)
argue that the Gaussian parameter should be chosen witkctdspa Fisher-discriminant-
based measure. Gab al. use mutual information theory to guide parameter sele¢tBuo

et al, 2005a) and parameter scaling (Gatal., 2005b).

4.2 Sinc Parameter Estimation

We propose a principled means to estimate a search spaceiwki® optimal parameter
lies. Rather than blindly searching for a set of parametgrisduction alone, we follow an

approach inspired by the engineering discipline of filtesige, catalogued by such works
as Oppenheim and Schafer (1989). Although filter design iisesiones glibly described

as ‘more of an art than a science’, it has a successful thealr@ind practical history that

arguably stretches further back than statistical macleaming. Not only does signal theory
suggest parametesspriori, it can also (via spectral analysis) aid the interpretatbthe

underlying properties of a particular solution.
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Our approach is to compute the sequency transform (7), eaéhnies of fast Fourier
transforms (9), in order to discern the intergai, from Equation (8). For a-variate space
Q= EB‘{' Q,, we required-many sequency transforms. Whei = (—w{ 11, 1) has been
established, we use the estimafeto construct the kernel described by (5) under the earlier-

mentioned assumption th@t* N Q" = {}.

4.2.1 Sinc Parameter Search Space

In practice, since each datum has finite length, the sequeagform (7) is taken over a
finite domainT. From Equations (6) and (9) and the convolution theorers,ighequivalent

to computing

(XTY>N(°°):%.[ > “(m) (sincr+ y") (%)
me4Z+1

wherex denotes the convolution operator. Consequently, like tingefFourier transform,
the finite sequency transform is subject to so-called singimg effects. Notwithstanding
such artifacts, the sequency components can still be @stiim@ihe shifted Dirac generalised
functions found in the idealised and trivial Example 3.4\abare replaced by shifted sinc
functions in the finite case. It follows that only the locat$oof the local maxima ofy™|
should be considered as candidatesdr Sincey is necessarily restricted to a discrete
and finite domain, the sequency spectrum is smooth and ctakeothe same value at every
point. Hence, only finitely many maxima will exist. This site@nd intuitive argument
serves to reduce an exhaustive but theoretically infinsecketo an exhaustive, finite search.
A simple practical example, similar to the analytical Exden®.4, is given in Figure 1.
We can see that both the Fourier and sequency transfornastlygetorrect maxima at 0.4 Hz.
However, in this case the Fourier transform also gives os&rong maxima at the 3rd and

5th harmonics of 0.4 Hz. By expanding the signal as a Foueiees, it is easily seen that, in
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general, there will be harmonicsmat (4Z + 1) times the fundamental frequency of 0.4 Hz.
[Figure 1 about here.]

For a one-dimensional problem, one merely tests the pedocaof the SVM by setting
the parameter value to each local maximum of the sequenatrape To keep track of
values that have or have not been tested and to ensure afya@approach, one could, for
example, conduct the search by first choosing the maximunisthecated closest to the zero
sequency, then work outwards to the second closest, and 3o consider the generalisation

to thed-dimensional case, it is helpful to consider the followimmstruct.

Definition 4.1 The sequenceu)|[,}{,’:1 is defined as the set that contains the locations of the

local maxima ofy™(w)|, ordered such thafwy||, < ||wps1||,, forallp=1,...,P.

Herewith, thed-dimensional search would take place over the ordered ﬁait@)p}gzl.

4.2.2 Family of Search Strategies

Of course, when the number of dimensions or maxima precladehaustive search over
the entire sel{wp}gzl, one may be compelled to compromise accuracy and eitherdooun
the search space, conduct a sparser search, or both. Foplexam-dimensional data set
with mmany maxima in each dimension would have a total numben®fmaxima. For
larged, an exhaustive search over all the maxima would be intréetabith this in mind,

the construct from Definition 4.1 is modified.

Definition 4.2 Define the sequency transform of y over the r-th variafdy y~(w'). The
sequence[oorp}zf:1 is defined as the set that contains the locations of the loGatimma

of |y~ (w')], ordered such thabj, <«

10 forall pr =1,...,P. Furthermore, define the sets
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Wi(k) = {wi}iy,
and W(K) = M/(K)UW_1(k)\M;(Kx),

with Mj(k) = {wf € Wj_1(K): wy —minW,_1(K) < K},
and where the set operatoris defined as I}T/I: Mj = {af } — {of 1]}

Example 4.3 Consider the set W0) := {w}}3_;, with 0l < 0?2 < w} < w}. It then fol-
lows that M(0) = {w}}, M(0) = {wl}, and W(0) = {w}, w2, w3}. Likewise, we have
Ws(0) = {0}, w5, i}, and WH(0) = {3, 5, i}

The set{W;(k)}; is a subset of points that lie in the set of all sequency maximgger
values ofk result in sparser search spaces. Figure 2 depicts a singhheehsional example
for two different values ok. It can be seen that the search space traces a path between the
maximum closest to the origin to the one furthest away. Ibisstructed such that a search
over this subspace is not unduly influenced by the sequerestrsipn of any one particular
dimension relative to the othéd — 1) dimensions. Equivalently, it assumes that the spectral
bandwidth of the noise, or information, does not change tochrfrom one dimension to
another. Herewith lies a useful compromise between acgwad sparsity. The result is a
family of search spaces parameterise&kbwhich should be chosen in accordance with the

computational resources available.
[Figure 2 about here.]

Even when the number of dimensions is greater than one, nes@archers follow the
orthodox strategy of searching for a universal, or scalarameter that is constant with

respect to dimension. In fact, we can use our framework teldevthis search method and
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consider a situation where some subset of the variablesrsarff undue level of noise such
that it is difficult, or impossible, to make reliable estimsDf the individual parameters. In
this case, a somewhat more rudimentary approach is to usé thk variables to bound a

single universal scalar parameter estimate= w,, forallr =1,....d, by

arginfsuply™ ()| < w, < argsupuply™(c)|. (10)
of roo
A grid search can then be employed inside this interval.

If the search strategy of Definition 4.1 is deemed too contprtally costly, then
Definition 4.2 offers a trade-off between SVM optimisatiomés and coarser searches.
Furthermore, if this is also deemed to take an unacceptabtriat of computational time

then Inequality (10) can be used to search for a parametastinaiform over all dimensions.

4.3 Summary of Method

We can now summarise our method. Given the training xiagaX C RY and training labels,

Yn € {£1}, we proceed as follows:

e Use nearest-neighbour constant interpolation to derivegalarly-sampled labelling

functiony(x).

e Use Equation (9) to perform a sequency transform in eachrmion. (The infinite

sum of fast Fourier transforms needs to be truncated at #réswhscretion.)
¢ Find the absolute maxima of the sequency transform in eankrdgion.

e Use search methods from Section 4.2.2 to train and test thé [$fformance for the

hyper-parameter candidates using the sinc kernel.

e Choose the best performing hyper-parameter.
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5 Application to Hyperspectral Imagery

In this section, we illustrate the efficacy of the approaclaarvell-studied problem, namely

classification of regions of vegetation in a remotely-sdrisgerspectral image.

5.1 Data and Approach

The airborne visual and infrared imaging system (AVIRIShotely senses hyperspectral
image data comprising intensity information over 224 aoriaous electromagnetic spectral
bands, ranging from 0.4 to 2Bn. AVIRIS data facilitate myriad applications including
resource management, mineral exploitation, environnhembaitoring (Landgrebe, 2002),
and detection of military targets (Nothaed al., 2003). The large number of variables and
classes make the data set ideal for demonstrating theyuwilibur sinc kernel approach
and search strategy. Furthermore, there exists a free dilgtavailable AVIRIS data set
that has been used by several research groups to benchnmambsvayperspectral image
classification techniques. It can be downloaded ffanp: / / f t p. ecn. pur due. edu/

bi ehl / Mul ti Spec/ (lastaccessed 25 November 2005). The following simulatioake
use of these data.

In the hyperspectral image context, each pixel is desciiyedsingle data poink, € RY.
Each element,, represents the intensity value of pixeln ther-th spectral band. Each pixel
belongs to one of 17 different classes of ground vegetaftsavious work on the data set
has considered 4-, 16-, and 17-class problems. TadjudBBji§ives specific details of the
pixel and spectral band subsets used. Figure 3 shows thersggspectray™| taken from
the 4-class AVIRIS problem. In this case, it can clearly bendey inspection in the top-left
plot that the bands 99-148 and 150-200 have remarkablyesispéctra. It follows that their

maxima, depicted in Figure 4, all fall on very similar pointdoreover, several other such
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congruences are apparent. Consequently, the searclggtcatestructed in Definition 4.2

is appropriate.
[Figure 3 about here.]

[Figure 4 about here.]

5.2 Simulation Results

For a fair comparison to be drawn between our results andxthee follow the same
sampling and validation technique used in previous rekeancthe AVIRIS data. That is,
20% of the original data are randomly chosen as training, @atd the remaining 80% are
held out as the testing data. The sampling of training datrepeated 10 times to allow
an estimate of the sampling error to be made. The resultiindgt®n measure is simply the
percentage of incorrect classifications on the testing data

The sinc-based search strategies implemented are the éxbscdlar search described
by Inequality (10) and the sparse hyper-parameter searabespyV;(0.05) ']5:1 from
Definition 4.2. Figures 5 and 6 show how the validation accynearies with respect to
the universal scalar parametefad,, using the search strategy defined by Inequality (10).
Note that the optimal scalar value lies within the estimatachmeter bounds predicted by
Inequality (10). Although the range of variation of accyrasmall, the reader is reminded
that we are classifying many thousands of pixels, so thattineber of degrees of freedom is
very high. Inthese circumstances, even apparently quigd siffferences can be enormously

significant, as the error bars on the figures confirm.
[Figure 5 about here.]

[Figure 6 about here.]
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Table 1 draws a comparison between the proposed sinc metimotithe best results
found by previous researchers, as well as some comparasiviés of our own using different
kernels. Gualtieri and Cromp (1998) tested several ordgpslgnomial SVM kernels over
5 trials for the 4-class problem (but just 1 trial for the 168ss problem) and found that
the degree-7 kernel performed the best. The entry in the tablthe 4-class problem of
4.1% error is the average over the 5 trials. Du (2004) alsal @sdegree-7 polynomial
kernel and obtained an apparently poorer error rate of 4\&do not know whether this
was for multiple trials or not; if it was, we do not know if thfggure is the average or
best. Our results for the average over 10 trials for the 4scfaoblem using a 7th order
polynomial closely match those of Du (2004), yet fall sontefercentage points short of the
figure reported by Gualtieri and Cromp (1998) for the saménhoektit seems unlikely that a
difference of this magnitude could be due to sampling esorce the standard error of the
mean for our 10 trials was just 0.13 percentage points fo#tbkass problem). Concerning
the SVM approach in general, we can see that this perfornmsfisigntly better than the

Bayesian method used by Tadjudin (1998) and Landgrebe J2002

[Table 1 about here.]

All of the sinc kernel results represent the average, takesr @0 trials. The mean
standard error was below 0.2 percentage points for the s&ctaoblem, and below
0.1 percentage points for the 16- and 17-class problems. sifftemethods appear to be
comparable to the state-of-the-art in the 4-class probfeGualtieri and Cromp (1998) is
taken as the basis of comparison but superior if our rephicaif the degree-7 polynomial
kernel is taken as the reference. For the 16- and 17-clase®jlhe sinc kernel SVM clearly
surpasses all previous results. Generally, the searcl lmasBefinition 4.2 yields slightly

better performance than that based on Inequality (10).
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We conjecture that a more comprehensive filter design, aenestimation, strategy may
enhance the performance of our approach. Since the constargolation technique used
here is somewhat crude, a more rigorous treatment of thguilee sampling problem should
be considered. The penalty telthfrom the SVM problem has been fixed such that no
training errors are allowed. The effect ti@ak « has on the optimal parameter has not been
addressed here. Such examination is beyond the scope e¥dhisand is left for possible

future consideration.

6 Conclusion

We have shown that the SVM classification machine learnirdplpm can be tackled in
the context of signal theory. The interconnection betwealeyPWiener spaces and the
sinc kernel has been exploited to form an explicit relatmmdetween our information
model and the sinc kernel hyper-parameter. By employingesmoent work on sequency
analysis, it has been shown that the nature of the model calisberned. Driven by this
theory, a finite hyper-parameter search space was reaN@@over, by introducing further
assumptions, we have shown that the compromise betweenutatomal effort and search
space sparseness can be managed sensibly. Finally, tremeap@chieves the best results so

far on the much-studied AVIRIS remote-sensing data set.
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Table 1: AVIRIS classification: state-of-the-art resultsnpared to results using the sinc
kernel developed in this paper (shown in bold).

Source Penalty Trials Method Error (%)
4-class problem

Sect. 4.2.2, Definition 4.2 o0 10 Sinc SVM, sparse search 3.9
Sect. 4.2, Inequality (10) 00 10 Sinc SVM, bounded search 4.0
Gualtieri & Cromp (1998) 1000 5  SVM poly. kernel, degree-7 1 4.
Du (2004) 1000 ? SVM poly. kernel, degree-7 4.5
This work 1000 10  SVM poly. kernel, degree-7 4.7
This work 0 10  Gaussian RBF kernel 4.9
Tadjudin (1998); Landgrebe (2002) 1000 10 Bayesian disaimalysis 6.5
Du (2004) 1000 ?  Gaussian RBF kernel 7.9
16-class problem

Sect. 4.2.2, Definition 4.2 00 10 Sinc SVM, sparse search 10.9
Sect. 4.2, Inequality (10) 00 10 Sinc SVM, bounded search 11.2
Gualtieri & Cromp (1998) 1000 1  SVMpoly. kernel, degree-7  .712
17-class problem

Sect. 4.2.2, Definition 4.2 00 10 Sinc SVM, sparse search 11.3
Sect. 4.2, Inequality (10) 00 10 Sinc SVM, bounded search 12.2
This work 1000 10  SVM poly. kernel, degree-7 15.1
Tadjudin (1998); Landgrebe (2002) 1000 10 Bayesian disaimalysis 17.1

36



