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Abstract

Fourier-based regularisation is considered for the support vector machine classification

problem over absolutely integrable loss functions. By invoking the modest assumption

that the decision function belongs to a Paley-Wiener space,it is shown that the classifi-

cation problem can be developed in the context of signal theory. Furthermore, by em-

ploying the Paley-Wiener reproducing kernel, namely the sinc function, it is shown that

a principled and finite kernel hyper-parameter search spacecan be discerned,a priori.

Subsequent simulations performed on a commonly-availablehyperspectral image data

set reveal that the approach yields results that surpass state-of-the-art benchmarks.

Keywords: hyperspectral imaging, parameter estimation, regularisation, reproducing

kernel Hilbert spaces, sequency analysis, signal theory, sinc kernel, support vector

machines
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List of Symbols

R set of real numbers

N set of natural numbers

Z set of integers

X input space

H ,F Hilbert spaces

k reproducing kernel function

Γ regularisation operator

sgn signum functional

ϕ informative part of data

ε non-informative part of data
⊕

direct sum

Ω∗ frequency support ofϕ

PW Paley-Wiener function space

∧ Fourier transform operator

〈·, ·〉 inner product

· complex conjugate

cal sgncos

sal sgnsin

µ Möbius function

n | m ndividesm

δ·,· Kronecker’s delta

δ(·) Dirac’s delta

∼ sequency transform operator

S sequency space

· ∗ · convolution operator

ω∗ (unknown) optimal kernel parameter
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1 Introduction

An often-cited property of the support vector machine (SVM)learning method is the

existence of a unique solution. Another very desirable attribute, namely flexibility, is

readily realised by the introduction of non-linear kernel methods. But herein lies a conflict.

Although flexibility admits richness, it also introduces parameters, and thereby precludes

uniqueness. Whether the parameter takes the form of a scaling vector, a scaling number, or

the kernel itself, the fact remains that in the context of non-linear support vector machines

there are uncountably many solutions. Unfortunately, the only way to determine the best

solution is to build uncountably many kernels. This is, of course, intractable.

However, when framed in the context of reproducing kernel Hilbert spaces, it has been

shown by Girosi (1998) that the choice of kernel and parameters control the nature and

degree of regularisation that is imposed on the solution. A related issue is that the so-called

curse of dimensionality often turns out not to have the detrimental effect that is predicted.

Some recent machine learning research has focused on findingcogent explanations for this

phenomenon. Belkin and Niyogi (2004) argue that a possible reason is that the data lie on

a sub-manifold, embedded in the input space. Indeed, data with a large number of variables

may lie entirely in a much smaller-dimensional manifold. Knowledge pertaining to the

structure of the manifold can be used to guide the choice of parameters, and thus the nature

and degree of regularisation. Such realisations lead to a more considered approach: that is

to ascertain,a priori, properties of the space wherein the data lie. Although there may still

exist infinitely many solutions, the range of an empirical search could then at least be focused

upon subsets of parameters rather than all possible choicesof parameters.

We propose a principled way of reducing the infinite parameter search space to an

exhaustive and finite one. Our approach is motivated by sampling theory, where the main

goal is to establish equivalence relations between data sequence spaces and kernel function
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spaces. To this end, we employ perhaps the most elementary function space from sampling

theory, namely the simply connected and zero-centred Paley-Wiener reproducing kernel

Hilbert space, more commonly referred to by engineers as baseband-limited signals. For

a given class of data, we show how to estimate,a priori, a suitable kernel and parameter

subspace. Smale and Zhou (2004) have also studied the application of sampling theory and

reproducing kernel Hilbert spaces to learning theory. Theyconsider the least squares loss

regression problem and construct probability estimates for the sampling error. The work

reported here adds to the rather small amount of literature on this under-explored topic.

The remainder of this paper is structured as follows. In Section 2, the data class

under consideration and its corresponding reproducing kernel Hilbert space are constructed.

Accordingly, some necessary signal theory concepts are introduced and discussed in

Section 3, and exploited in Section 4. Finally, in Section 5,we report the best results to date

on a popular hyperspectral image data set, confirming the power and utility of the approach.

2 Model Construction

Let xn ∈ X ⊆ R
d,yn ∈ {±1}, n∈ N, and consider the usual SVM classification problem

min
f∈H

1
2
‖Γ f‖2 +C

N
∑

n=1

|1−yn f (xn)|+ , (1)

where f , the decision function to be determined in some Hilbert spaceH (X), is regularised

by the operatorΓ : H 7→ F that maps the input space to the desired feature space. The

resulting learned decision function, implied by the representer theorem (Kimeldorf and

Wahba, 1970), is the solution

f =

N
∑

n=1

ynαnk(xn, ·) , (2)
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wherek is a Mercer kernel (Mercer, 1909). Herewith, the classifier is defined by sgnf . Our

main contention is that before any effort is made to design the classifier, it is good practice,

in a qualitative sense, to attempt to discern the propertiesof the underlying decision function.

A natural preface, proposed here, is that the labelling function mapsd-variate data to labels

via y: R
d ⊃ X 7→ {±1}, with

y(x) := sgn
(

ϕ(x)+ ε(x)
)

, (3)

where the noise is modelled byε, and under the assumption that the information contentϕ,

lies entirely within the space of Paley-Wiener functions over some multi-dimensional base-

band regionΩ∗, viz.

Ω∗ :=
d
⊕

r=1

Ω∗
r :=

d
⊕

r=1

(−ωr
∗π,ωr

∗π) .

That is

ϕ ∈ PWΩ∗ :=
d
⊕

r=1

{

ζ ∈ L2(X) : suppζ∧ ⊆ Ω∗
r

}

, (4)

with suppζ := {x∈ X : ζ(x) 6= 0}, and where·∧ denotes Fourier transformation:

ζ∧(ω) :=
1

(2π)d/2

∫

Rd
ζ(x)e−i〈ω,x〉dx.

The conditionϕ ∈ PWΩ∗ restricts the behaviour of the information content to functions of

finite bandwidth around the origin.

Since the time of Hardy (1941), it has been known that the orthogonal function for the

band-limited spacePW(−Bπ,Bπ), with B > 0, is that function nowadays commonly known as

the sinc kernel, defined by
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sincB(·−x) :=
sin
(

Bπ(·−x)
)

Bπ(·−x)
.

Indeed, Higgins (1985) has suggested that the origins of this orthogonal system may well go

as far back as Borel (1897). Although this kernel is familiarto signal theorists and engineers,

it is a seemingly rare tool in machine learning. Kon, Raphael, and Williams (2005) make a

brief mention of it, by way of an example, in their work on approximation estimates and

statistical learning theory. Sugiyama and Müller (2002) use the sinc kernel, among other

choices, to demonstrate that their generalisation bound for regression is stable with respect to

kernel choice. It is perhaps less well known that, by virtue of the following three established

results, the sinc kernel also lends itself to the regularised support vector classification setting.

Theorem 2.1 (Self-consistency property, Smola, Schölkopf, and M̈uller, 1998.) Let the

Mercer kernel defined by k: X×X 7→ R, and the regularisation operatorΓ : H 7→ F , be

such that k(x,ξ) ≡
〈

(Γk)(x),(Γk)(ξ)
〉

F
. Then the SVM classification problem can be written

min
f∈H

1
2
‖Γ f‖2+C

N
∑

n=1

|1−yn f (xn)|+ ,

as earlier (Equation 1).

Theorem 2.2 (Translation invariant kernels, Smola, Schölkopf, and M̈uller, 1998.) Con-

sider a kernel, endowed with translation invariance, namely k(x,ξ) = k(x−ξ), with the

regularisation operatorΓ : H 7→ F , defined by

〈Γ f ,Γg〉F =
1

(2π)d/2

∫

Rd

f∧(ω)g∧(ω)

k∧(ω)
dω.

Then k(x,ξ) ≡
〈

(Γk)(x),(Γk)(ξ)
〉

F
, and the self-consistency property of Theorem 2.1

is satisfied.
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Corollary 2.3 It follows from Theorem 2.2 and the work of Aronszajn (1950) on tensor

products of reproducing kernels that the regularisation term from the SVM problem is

‖Γ f‖2
F =

1

(2π)d/2

d
∏

r=1

∫

Ω∗
r

| f∧(ω)|2
k∧r (ωr)

dωr ,

with ω := (ωr)d
r=1, and that

1
k∧(ω)

=

(

d
∏

r=1

k∧r (ωr)

)−1

regularises the decision function f by acting as a filter, in the signal analysis sense, on| f∧|2.

The unique kernel associated with the reproducing kernel Hilbert spacePWΩ∗ is the

sinc kernel

k(x,ξ) :=
d
∏

r=1

kωr∗(x
r ,ξr) :=

d
∏

r=1

sincωr∗(x
r −ξr). (5)

Given the model (3), where the information content is embedded in the Paley-Wiener

space (4), it is only sensible to constrain the decision function to the same Paley-Wiener

space. From Corollary 2.3, it follows that in the Fourier domain the multiplicative filter that

acts upon| f∧|2 is

1
k∧(ω)

=
1

χΩ∗(ω)
=

d
∏

r=1

1
χΩ∗

r
(ωr)

,

with thed-dimensional hypercuboid

χΩ(ω) :=















1 if ω ∈ Ω

0 otherwise

. (6)

In this case, sincek∧ ≥ 0 holds overRd, Bochner’s theorem (Bochner, 1959) ensures that

the sinc kernel is a Mercer kernel. The multiplicative filterregularises the decision function
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by penalising the frequency content off on R\Ω∗. The sinc kernel also keeps the content

overΩ∗ unaltered. These penalisation and preservation properties are, by definition, unique

to the sinc kernel. Since Paley-Wiener spaces are closed under addition, the representer

result (2) ensures that the decision function is restrictedto PWΩ∗ .

Remark 2.4 We now see that, in the context of our work, the non-regularised, higher-

dimensional input space discussed by Belkin and Niyogi (2004) is PW
Rd, and the sub-

manifold is PWΩ∗ ⊆PW
Rd. That is, in the frequency domain, the sub-manifold invokedby our

work can be described as a hypercuboid centred on the origin,and the regularising operator

is precisely the mappingΓ : PW
Rd 7→ PWΩ∗.

We are now left with the problem of finding an optimal hyper-parameter set{ωr
∗}, in the

sense of the SVM problem. Before this is attempted, we propose a novel approach to elicit

spectral properties of the labelling function that employssome recently-constructed tools

from signal theory.

3 From Signal Theory to SVM Classification

Intuitively, the labelling functiony of equation 3 can be understood as a piecewise-constant

function that mapsd-many real variables to positive or negative unity. It can, therefore,

be treated as a square-wave function overd-variate space. To this end, we propose the

use of sequency analysis as a means to elicit some propertiesof y and, consequently, the

information contentϕ. Such properties will suggest how the decision function should be

regularised. Before the analysis, it is instructive to introduce a family of functions that has

the labelling function as a member.

Definition 3.1 Let thecal andsal functions be defined by
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calω(t) := sgncosωt ,

salω(t) := sgnsinωt .

Now, define the complex square-wave family as

ψω :=

√

π
32

(calω +i salω) .

This definition is consistent with the construction given byElliot and Rao (1982), Hughes

and Heron (1989), and Nelson (2002). However, this basis, and therefore the definition of

sequency, differs from the more common Walsh-Hadamard analysis described elsewhere,

such as Beer (1981). In particular, the Walsh-Hadamard system, defined over a dyadic grid,

constitutes an orthogonal basis. On the other hand, the system employed here is defined over

a denser, uniform grid and, as will be shown below, it forms a biorthogonal basis. As such, it

can be used to analyse the spectral properties of functions over a more opaque domain. Now,

consider the Möbius arithmetic functionµ: N 7→ {0,±1}, given by

µ(n) :=































1, if n = 1

(−1)m, if n is the product ofm distinct primes

0, otherwise

,

which is employed here due to the utility afforded by the following result, taken from

number theory:

Lemma 3.2 (Möbius.) Let µ denote the M̈obius function. Then, for m∈ N,

∑

n|m
µ(n) = δm,1 ,
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whereδ·,· denotes the Kronecker delta. The next result, outlined by Nelson (2001), enables

us to express the labelling function in terms of the complex square-wave family.

Proposition 3.3 (Biorthogonal complex square-wave system, Nelson 2001.) The biorthogo-

nal dual of{ψn} is

ψ∗
n(t) :=

1√
2π

∑

m∈4Z+1

m−1µ(|m|)eint/m.

Proof We require〈ψn,ψ∗
j 〉L2(R) = δn, j . Since the complex square waveψn is periodic, it can

be expanded as the Fourier series

ψn(t) =
1√
2π

∑

m∈4Z+1

1
m

eimnt .

Hence

〈ψn,ψ∗
j 〉L2(R) =

∫

R

ψn(t)ψ∗
j (t)dt

=
1

2π

∑

m,ℓ∈4Z+1

1
mℓ

µ(|ℓ|)
∫

R

ei(mn− j/ℓ)t dt.

The integral overR can be written as

lim
τ→0

∫ π/τ

−π/τ
ei(mn− j/ℓ)x dx = 2π lim

τ→0

[

1
τ

sincτ−1(mn− j/ℓ)

]

= 2πδ(mn− j/ℓ),

where theδ(·) denotes the Dirac delta generalised function, the non-zerovalues of which

can be found by takingmn= j/ℓ. For then

〈ψn,ψ∗
j 〉L2(R) = δ(0)

n
j

∑

m

∑

ℓ| j/n

µ(|ℓ|).

11



Lemma 3.2 implies

∑

ℓ| j/n

µ(|ℓ|) =















1, for j = n

0, otherwise

and, hence, the non-zero values exist whenj = n. Sincej = n implies thatm= 1/ℓ, it follows

that the sum overm collapses to the sole termm= 1, and we have

〈ψn,ψ∗
k〉L2(R) = δn, jδ(0) .

The discrepancyδ(0) occurs because, as Higgins (1996, p. 29), explains, “. . . thepoint eval-

uation functional is not properly defined onL2 spaces”. Now that the biorthonormal square-

wave system has been established, we introduce the sequencytransformation·∼, namely

f∼(ω) =

∫

R

f (t)ψ∗
ω(t)dt. (7)

From Proposition 3.3, it follows thaty can be expanded as a superposition of square waves,

y =
∑

n∈Z

〈y,ψ∗
n〉L2(R) ψn.

Hence, the coefficients that expressy in terms of the square-wave basis are found by

performing the sequency transform ofy. Recall from (3) thatϕ ∈ PWΩ∗ , and, without loss of

generality,ε ∈ PWΩ+ . The linearity property of Paley-Wiener spaces gives rise to

ϕ+ ε ∈ PWΩ∗∪Ω+ .

We define the sequency function spaceSΩ as
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SΩ := {ζ ∈ L2(X) : suppζ∼ ⊆ Ω} ,

Now, sinceϕ ∈ PWΩ∗ ⇒ sgnϕ ∈ SΩ∗ , andε ∈ PWΩ+ ⇒ sgnε ∈ SΩ+ , we can express the

labelling functiony as a sequency-limited function,y = sgn(ϕ+ ε) ∈ SΩ∗∪Ω+ , that is,

y =

∫

Ω∗∪Ω+
y∼(ω)ψω(·)dω, (8)

and wherey∼ can be computed via

y∼(ωr) =
1√
2π

∑

m∈4Z+1

µ(|m|)
m

∫

R

y(t)e−iωxr/mdt

=
∑

m∈4Z+1

µ(|m|)
m

y∧
(

ωr

m

)

, (9)

where one (fast) Fourier transform is required to determiney∧(ωr), for eachr = 1, . . . ,d.

Since the samplesxr
n over which the Fourier transforms ofy∧(ωr) are computed are typically

non-uniformly distributed, the direct application of a Fourier transform is inappropriate.

Instead, irregular sampling techniques, such as those discussed by Gröchenig (1993),must

be considered. Since a comprehensive treatment of irregular sampling issues is beyond the

scope of this work, we employ here a simple strategy whereby the data are mapped to a

uniform grid via nearest neighbour, constant interpolation.

By definition, the information content of(ϕ + ε) lies in the frequency baseband

Ω∗ = (−ω∗π,ω∗π). Analogously, the informative part of the labelling function sgn(ϕ+ ε)

lies inside some sequency basebandΩ∗ = (−ω∗π,ω∗π).

Example 3.4 Consider y= sgnϕ, whereϕ(t) = cosω∗t, and t∈ R. Clearly, it follows that

ϕ ∈ PW(−ω∗,ω∗), and
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y∼(ω) = δ(ω−ω∗)+δ(ω+ω∗) ⇒ y∈ S(−ω∗,ω∗).

In this case,ω∗ is estimated from y∼, andsinc(ω∗·) is chosen as the kernel.

In practice, the approach taken to determineΩ∗, and hence the value ofω∗, is not

straightforward unless we assume thatΩ∗∩Ω+ = {}. However, in this section we have

formulated the SVM classification problem in terms of a signal theory one, namely that

of filter design, and in Section 4 we show how this avoids the necessity of unduly repeated

implementation of computationally-expensive parameter estimators such as cross-validation.

4 Parameter Estimation

For each choice of the parameter setω∗, there is a corresponding reproducing kernel Hilbert

spaceH ∗, say. Commonly, the parameter set (or hyper-parameter) is chosen by estimating

the performance of the SVM for each parameter value. The value ofω∗ = {ωr
∗}d

1 that yields

the best performance is then chosen as the optimal parameter.

4.1 State-of-the-Art

Chapelleet al. (2002) describe several different ways to measure SVM performance. To

facilitate the empirical comparisons drawn in Section 5, weconsider perhaps the most

straightforward measure, namely the validation error. Here, the data are split into two distinct

sets. One set is used to train and the other to validate the SVM.

There also exist several ways to search for the optimal parameter,ω∗. Often misused,

the phrase ‘exhaustive search’ has been adopted to describean approach whereby the

performance measure is computed over a finite number of parameters. In practice, however,

the search can never be truly exhaustive. Either the range ofparameters is too small, or the
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discretisation too large, or both. Various gradient-descent search methods have also been

applied to SVM parameter optimisation. Common drawbacks ofgradient methods include

finding a suitable smoothing strategy for the performance measure, choosing a good first

initial point, and bad convergence.

Unfortunately, the inherent problems of any search-based method are exacerbated in

an exponential manner as the number of parameters increaseslinearly, and when using a

one-against-one strategy for example, in a combinatorial manner as the number of classes

increases linearly. Only a few authors have attempted automatic estimation of the optimal

hyper-parameter set. Lanckrietet al. (2004) use semi-definite programming techniques to

compute the kernel matrix. Debnath and Takahashi (2004) attempt to make a link between

the eigenvalues of the features and the optimal Gaussian parameter. However, their work

relies almost entirely on empirical evidence and qualitative remarks. Wanget al. (2003)

argue that the Gaussian parameter should be chosen with respect to a Fisher-discriminant-

based measure. Guoet al.use mutual information theory to guide parameter selection(Guo

et al., 2005a) and parameter scaling (Guoet al., 2005b).

4.2 Sinc Parameter Estimation

We propose a principled means to estimate a search space wherein the optimal parameter

lies. Rather than blindly searching for a set of parameters by induction alone, we follow an

approach inspired by the engineering discipline of filter design, catalogued by such works

as Oppenheim and Schafer (1989). Although filter design is sometimes glibly described

as ‘more of an art than a science’, it has a successful theoretical and practical history that

arguably stretches further back than statistical machine learning. Not only does signal theory

suggest parametersa priori, it can also (via spectral analysis) aid the interpretationof the

underlying properties of a particular solution.
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Our approach is to compute the sequency transform (7), via the series of fast Fourier

transforms (9), in order to discern the intervalΩ∗, from Equation (8). For ad-variate space

Ω =
⊕d

1 Ωr , we required-many sequency transforms. WhenΩ∗
r = (−ωr

∗π,ωr
∗π) has been

established, we use the estimateωr
∗ to construct the kernel described by (5) under the earlier-

mentioned assumption thatΩ∗∩Ω+ = {}.

4.2.1 Sinc Parameter Search Space

In practice, since each datum has finite length, the sequencytransform (7) is taken over a

finite domainT. From Equations (6) and (9) and the convolution theorem, this is equivalent

to computing

(χTy)∼ (ω) =
T
2π

∑

m∈4Z+1

µ(|m|)
m

(

sincT ∗ y∧
)

(ω
m

)

,

where∗ denotes the convolution operator. Consequently, like the finite Fourier transform,

the finite sequency transform is subject to so-called sinc ringing effects. Notwithstanding

such artifacts, the sequency components can still be estimated. The shifted Dirac generalised

functions found in the idealised and trivial Example 3.4 above are replaced by shifted sinc

functions in the finite case. It follows that only the locations of the local maxima of|y∼|

should be considered as candidates forω∗. Sincey is necessarily restricted to a discrete

and finite domain, the sequency spectrum is smooth and cannottake the same value at every

point. Hence, only finitely many maxima will exist. This simple and intuitive argument

serves to reduce an exhaustive but theoretically infinite search to an exhaustive, finite search.

A simple practical example, similar to the analytical Example 3.4, is given in Figure 1.

We can see that both the Fourier and sequency transforms yield the correct maxima at 0.4 Hz.

However, in this case the Fourier transform also gives rise to strong maxima at the 3rd and

5th harmonics of 0.4 Hz. By expanding the signal as a Fourier series, it is easily seen that, in
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general, there will be harmonics atn∈ (4Z+1) times the fundamental frequency of 0.4 Hz.

[Figure 1 about here.]

For a one-dimensional problem, one merely tests the performance of the SVM by setting

the parameter value to each local maximum of the sequency spectrum. To keep track of

values that have or have not been tested and to ensure an orderly approach, one could, for

example, conduct the search by first choosing the maximum that is located closest to the zero

sequency, then work outwards to the second closest, and so on. To consider the generalisation

to thed-dimensional case, it is helpful to consider the following construct.

Definition 4.1 The sequence{ωp}P
p=1 is defined as the set that contains the locations of the

local maxima of|y∼(ω)|, ordered such that
∥

∥ωp
∥

∥

2 ≤
∥

∥ωp+1
∥

∥

2, for all p = 1, . . . ,P.

Herewith, thed-dimensional search would take place over the ordered finiteset{ωp}P
p=1.

4.2.2 Family of Search Strategies

Of course, when the number of dimensions or maxima preclude an exhaustive search over

the entire set{ωp}P
p=1, one may be compelled to compromise accuracy and either bound

the search space, conduct a sparser search, or both. For example, ad-dimensional data set

with m-many maxima in each dimension would have a total number ofmd maxima. For

larged, an exhaustive search over all the maxima would be intractable. With this in mind,

the construct from Definition 4.1 is modified.

Definition 4.2 Define the sequency transform of y over the r-th variate xr , by y∼(ωr). The

sequence{ωr
p}Pr

p=1 is defined as the set that contains the locations of the local maxima

of |y∼(ωr)|, ordered such thatωr
p ≤ ωr

p+1, for all pr = 1, . . . ,Pr . Furthermore, define the sets
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W1(κ) := {ωr
1}d

r=1,

and Wj(κ) := M↑
j (κ)∪Wj−1(κ)\M j(κ),

with M j(κ) := {ωr
sr
∈Wj−1(κ) : ωr

sr
−minWj−1(κ) < κ},

and where the set operator·↑ is defined as M↑j : M j = {ωr
sr
} 7→ {ωr

sr+1}.

Example 4.3 Consider the set W1(0) := {ωr
1}3

r=1, with ω1
1 < ω2

1 < ω1
2 < ω3

1. It then fol-

lows that M2(0) = {ω1
1}, M↑

2(0) = {ω1
2}, and W2(0) = {ω1

2,ω
2
1,ω

3
1}. Likewise, we have

W3(0) = {ω1
2,ω

2
2,ω

3
1}, and W4(0) = {ω1

3,ω
2
2,ω

3
1}.

The set{Wj(κ)} j is a subset of points that lie in the set of all sequency maxima. Larger

values ofκ result in sparser search spaces. Figure 2 depicts a simple 2-dimensional example

for two different values ofκ. It can be seen that the search space traces a path between the

maximum closest to the origin to the one furthest away. It is constructed such that a search

over this subspace is not unduly influenced by the sequency spectrum of any one particular

dimension relative to the other(d−1) dimensions. Equivalently, it assumes that the spectral

bandwidth of the noise, or information, does not change too much from one dimension to

another. Herewith lies a useful compromise between accuracy and sparsity. The result is a

family of search spaces parameterised byκ, which should be chosen in accordance with the

computational resources available.

[Figure 2 about here.]

Even when the number of dimensions is greater than one, many researchers follow the

orthodox strategy of searching for a universal, or scalar, parameter that is constant with

respect to dimension. In fact, we can use our framework to develop this search method and
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consider a situation where some subset of the variables suffer an undue level of noise such

that it is difficult, or impossible, to make reliable estimates of the individual parameters. In

this case, a somewhat more rudimentary approach is to use allof the variables to bound a

single universal scalar parameter estimateωr
∗ = ω∗, for all r = 1, . . . ,d, by

arg inf
r

sup
ωr

|y∼(ωr)| ≤ ω∗ ≤ argsup
r

sup
ωr

|y∼(ωr)| . (10)

A grid search can then be employed inside this interval.

If the search strategy of Definition 4.1 is deemed too computationally costly, then

Definition 4.2 offers a trade-off between SVM optimisation times and coarser searches.

Furthermore, if this is also deemed to take an unacceptable amount of computational time

then Inequality (10) can be used to search for a parameter that is uniform over all dimensions.

4.3 Summary of Method

We can now summarise our method. Given the training dataxn ∈ X ⊆R
d and training labels,

yn ∈ {±1}, we proceed as follows:

• Use nearest-neighbour constant interpolation to derive a regularly-sampled labelling

functiony(x).

• Use Equation (9) to perform a sequency transform in each dimension. (The infinite

sum of fast Fourier transforms needs to be truncated at the user’s discretion.)

• Find the absolute maxima of the sequency transform in each dimension.

• Use search methods from Section 4.2.2 to train and test the SVM performance for the

hyper-parameter candidates using the sinc kernel.

• Choose the best performing hyper-parameter.
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5 Application to Hyperspectral Imagery

In this section, we illustrate the efficacy of the approach ona well-studied problem, namely

classification of regions of vegetation in a remotely-sensed hyperspectral image.

5.1 Data and Approach

The airborne visual and infrared imaging system (AVIRIS) remotely senses hyperspectral

image data comprising intensity information over 224 co-terminous electromagnetic spectral

bands, ranging from 0.4 to 2.5µm. AVIRIS data facilitate myriad applications including

resource management, mineral exploitation, environmental monitoring (Landgrebe, 2002),

and detection of military targets (Nothardet al., 2003). The large number of variables and

classes make the data set ideal for demonstrating the utility of our sinc kernel approach

and search strategy. Furthermore, there exists a free and publicly-available AVIRIS data set

that has been used by several research groups to benchmark various hyperspectral image

classification techniques. It can be downloaded fromftp://ftp.ecn.purdue.edu/

biehl/MultiSpec/ (last accessed 25 November 2005). The following simulations make

use of these data.

In the hyperspectral image context, each pixel is describedby a single data point,xn∈R
d.

Each elementxr
n, represents the intensity value of pixeln, in ther-th spectral band. Each pixel

belongs to one of 17 different classes of ground vegetation.Previous work on the data set

has considered 4-, 16-, and 17-class problems. Tadjudin (1998) gives specific details of the

pixel and spectral band subsets used. Figure 3 shows the sequency spectra|y∼| taken from

the 4-class AVIRIS problem. In this case, it can clearly be seen by inspection in the top-left

plot that the bands 99–148 and 150–200 have remarkably similar spectra. It follows that their

maxima, depicted in Figure 4, all fall on very similar points. Moreover, several other such
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congruences are apparent. Consequently, the search strategy constructed in Definition 4.2

is appropriate.

[Figure 3 about here.]

[Figure 4 about here.]

5.2 Simulation Results

For a fair comparison to be drawn between our results and others, we follow the same

sampling and validation technique used in previous research on the AVIRIS data. That is,

20% of the original data are randomly chosen as training data, and the remaining 80% are

held out as the testing data. The sampling of training data was repeated 10 times to allow

an estimate of the sampling error to be made. The resulting validation measure is simply the

percentage of incorrect classifications on the testing data.

The sinc-based search strategies implemented are the bounded scalar search described

by Inequality (10) and the sparse hyper-parameter search space {Wj(0.05)}5
j=1 from

Definition 4.2. Figures 5 and 6 show how the validation accuracy varies with respect to

the universal scalar parameter 1/ω∗, using the search strategy defined by Inequality (10).

Note that the optimal scalar value lies within the estimatedparameter bounds predicted by

Inequality (10). Although the range of variation of accuracy is small, the reader is reminded

that we are classifying many thousands of pixels, so that thenumber of degrees of freedom is

very high. In these circumstances, even apparently quite small differences can be enormously

significant, as the error bars on the figures confirm.

[Figure 5 about here.]

[Figure 6 about here.]
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Table 1 draws a comparison between the proposed sinc methodsand the best results

found by previous researchers, as well as some comparative results of our own using different

kernels. Gualtieri and Cromp (1998) tested several orders of polynomial SVM kernels over

5 trials for the 4-class problem (but just 1 trial for the 16-class problem) and found that

the degree-7 kernel performed the best. The entry in the table for the 4-class problem of

4.1% error is the average over the 5 trials. Du (2004) also used a degree-7 polynomial

kernel and obtained an apparently poorer error rate of 4.5%.We do not know whether this

was for multiple trials or not; if it was, we do not know if thisfigure is the average or

best. Our results for the average over 10 trials for the 4-class problem using a 7th order

polynomial closely match those of Du (2004), yet fall some 0.6 percentage points short of the

figure reported by Gualtieri and Cromp (1998) for the same method. It seems unlikely that a

difference of this magnitude could be due to sampling error (since the standard error of the

mean for our 10 trials was just 0.13 percentage points for the4-class problem). Concerning

the SVM approach in general, we can see that this performs significantly better than the

Bayesian method used by Tadjudin (1998) and Landgrebe (2002).

[Table 1 about here.]

All of the sinc kernel results represent the average, taken over 10 trials. The mean

standard error was below 0.2 percentage points for the 4-class problem, and below

0.1 percentage points for the 16- and 17-class problems. Thesinc methods appear to be

comparable to the state-of-the-art in the 4-class problem if Gualtieri and Cromp (1998) is

taken as the basis of comparison but superior if our replication of the degree-7 polynomial

kernel is taken as the reference. For the 16- and 17-class subsets, the sinc kernel SVM clearly

surpasses all previous results. Generally, the search based on Definition 4.2 yields slightly

better performance than that based on Inequality (10).
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We conjecture that a more comprehensive filter design, or noise estimation, strategy may

enhance the performance of our approach. Since the constant-interpolation technique used

here is somewhat crude, a more rigorous treatment of the irregular-sampling problem should

be considered. The penalty termC from the SVM problem has been fixed such that no

training errors are allowed. The effect thatC < ∞ has on the optimal parameter has not been

addressed here. Such examination is beyond the scope of thiswork and is left for possible

future consideration.

6 Conclusion

We have shown that the SVM classification machine learning problem can be tackled in

the context of signal theory. The interconnection between Paley-Wiener spaces and the

sinc kernel has been exploited to form an explicit relationship between our information

model and the sinc kernel hyper-parameter. By employing some recent work on sequency

analysis, it has been shown that the nature of the model can bediscerned. Driven by this

theory, a finite hyper-parameter search space was realised.Moreover, by introducing further

assumptions, we have shown that the compromise between computational effort and search

space sparseness can be managed sensibly. Finally, the approach achieves the best results so

far on the much-studied AVIRIS remote-sensing data set.
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Table 1: AVIRIS classification: state-of-the-art results compared to results using the sinc
kernel developed in this paper (shown in bold).

Source Penalty Trials Method Error (%)
4-class problem
Sect. 4.2.2, Definition 4.2 ∞ 10 Sinc SVM, sparse search 3.9
Sect. 4.2, Inequality (10) ∞ 10 Sinc SVM, bounded search 4.0
Gualtieri & Cromp (1998) 1000 5 SVM poly. kernel, degree-7 4.1
Du (2004) 1000 ? SVM poly. kernel, degree-7 4.5
This work 1000 10 SVM poly. kernel, degree-7 4.7
This work ∞ 10 Gaussian RBF kernel 4.9
Tadjudin (1998); Landgrebe (2002) 1000 10 Bayesian discrim. analysis 6.5
Du (2004) 1000 ? Gaussian RBF kernel 7.9
16-class problem
Sect. 4.2.2, Definition 4.2 ∞ 10 Sinc SVM, sparse search 10.9
Sect. 4.2, Inequality (10) ∞ 10 Sinc SVM, bounded search 11.2
Gualtieri & Cromp (1998) 1000 1 SVM poly. kernel, degree-7 12.7

17-class problem
Sect. 4.2.2, Definition 4.2 ∞ 10 Sinc SVM, sparse search 11.3
Sect. 4.2, Inequality (10) ∞ 10 Sinc SVM, bounded search 12.2
This work 1000 10 SVM poly. kernel, degree-7 15.1
Tadjudin (1998); Landgrebe (2002) 1000 10 Bayesian discrim. analysis 17.1
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