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Abstract
Neural spike trains present analytical challenges due to their noisy, spiking nature. Many studies of
neuroscientific and neural prosthetic importance rely on a smoothed, denoised estimate of a spike
train's underlying firing rate. Numerous methods for estimating neural firing rates have been
developed in recent years, but to date no systematic comparison has been made between them. In
this study, we review both classic and current firing rate estimation techniques. We compare the
advantages and drawbacks of these methods. Then, in an effort to understand their relevance to the
field of neural prostheses, we also apply these estimators to experimentally-gathered neural data from
a prosthetic arm-reaching paradigm. Using these estimates of firing rate, we apply standard prosthetic
decoding algorithms to compare the performance of the different firing rate estimators, and, perhaps
surprisingly, we find minimal differences. This study serves as a review of available spike train
smoothers and a first quantitative comparison of their performance for brain-machine interfaces.
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Introduction
Neuronal activity is highly variable. Even when experimental conditions are repeated closely,
the same neuron may produce quite different spike trains from trial to trial. This variability
may be due to both randomness in the spiking process and to differences in cognitive processing
on different experimental trials. One common view is that a spike train is generated from a
smooth underlying function of time (the firing rate) and that this function carries a significant
portion of the neural information (vs. the precise timing of individual spikes). If this is the case,
questions of neuroscientific and neural prosthetic importance may require an accurate estimate
of the firing rate. Unfortunately, these estimates are complicated by the fact that spike data
gives only a sparse observation of its underlying rate. Typically, researchers average across
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many trials to find a smooth estimate (averaging out spiking noise). However, averaging across
many roughly similar trials can obscure important temporal features (Nawrot et al., 1999; Yu
et al., 2005, 2009). Trial averaging can be especially problematic in a brain-machine interface
(BMI) setting, where physical behavior is not under strict experimental control, and so motor
movements and their associated neural activity can vary considerably across trials. Thus,
estimating the underlying rate from only one spike train is an important but challenging
problem.

To address this problem, researchers have developed a number of methods for estimating
continous, time-varying firing rates from neural spike trains. The goal of any firing rate
estimator then is two-fold: first, the method seeks to return a smooth, continuous-time firing
rate that is more amenable to analytical efforts than the spiking neural signal. Second, as is the
goal of any statistical signal processing algorithm, the firing rate estimator seeks to denoise
the signal (separate the meaningful fluctuations in underlying firing rate from the noise
introduced by the spiking process). This firing rate estimation step is shown in Fig. 1. Panel
(a) shows a single spike train (one experimental trial) for each of N neural units. The spike
train is shown as a train of black rasters, where each raster (vertical tick) represents the
occurence of a spike at that time in the trial. The firing rate estimator seeks to process each of
these noisy spike trains into smooth, continuous-time firing rates that are denoised and simpler
to analyze, as shown in panel (b). Finally, in a BMI setting (our case of interest here), these
firing rates may then be used by a prosthetic decoding algorithm to estimate a motor movement,
as shown in Fig. 1, panel (c).

In this study, we review the methods that have been developed both classically and more
recently, from the fields of statistics, machine learning, and computational neuroscience (see
“Firing Rate Methods” below). We point to the relevant publications and give high level
overviews of each method, noting a few potential strengths and weaknesses with respect to the
problem of estimating firing rates from single spike trains.

Having reviewed several estimation methods, we then turn to the question of performance. To
date, no comparison between these methods exists; such comparisons may assist researchers
in determining what firing rate estimator is appropriate for what application. In this study, we
choose the BMI application of neural prosthetic decode in an arm-reaching setting. We train
a monkey to make point-to-point reaches in a 2-D workspace. Using a multi-electrode array
implanted in pre-motor/motor cortex, we record spike trains from ten to fifteen neural units
(we consider only high quality single units) during this reaching task. There are many prosthetic
decoding algorithms that can decode the arm movement from the recorded neural activity
(some papers include: Georgopoulos et al. (1986); Brown et al. (1998); Serruya et al. (2002);
Taylor et al. (2002); Carmena et al. (2003); Kemere et al. (2004); Wu et al. (2004); Brockwell
et al. (2004); Carmena et al. (2005); Wu et al. (2006); Hochberg et al. (2006); Yu et al.
(2007); Srinivasan et al. (2007); Chestek et al. (2007); Velliste et al. (2008)). Some of these
algorithms use smooth estimates of firing rates as input. Here we investigate how the
performance of these decoders changes, depending on what firing rate estimation method is
used. In particular, we choose the widespread linear decoder (as recently used in Carmena et
al. (2005); Chestek et al. (2007)) and the Kalman filter (as recently used in Wu et al. (2002,
2004, 2006)). We individually smooth thousands of spike trains (from many trials and many
neural units) with each firing rate estimation method, and we decode arm trajectories from
these firing rate estimates with the same decoding algorithms.

The purpose of this paper then is both to review available firing rate estimators and to get some
understanding of their relevance to BMI applications. This study does not attempt to address
the many other important avenues for investigation in BMI or spike train signal processing.
For BMI performance, these avenues include at least: prosthetic decode algorithms
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(Georgopoulos et al., 1986; Brown et al., 1998; Wu et al., 2004; Brockwell et al., 2004; Wu et
al., 2006; Srinivasan et al., 2007; Yu et al., 2007), recording technology (Wise et al., 2004),
the design of prosthetic end effectors and interfaces, be that a robotic arm or computer screen
(Schwartz, 2004; Velliste et al., 2008; Cunningham et al., 2008b), and multiple signal
modalities (e.g., EEG, ECoG, LFP, and spiking activity) (Mehring et al., 2003). Two reviews
in particular give a thorough overview of these and other important areas of BMI investigation
(Lebedev and Nicolelis, 2006; Schwartz, 2004). For spike train signal processing, there are
also many avenues of research not addressed in this study, including at least: spike-sorting
(Lewicki, 1998), information-theoretic studies (Borst and Theunissen, 1999; Nirenberg et al.,
2001), neural correlations (Shlens et al., 2006; Pillow et al., 2008), methods for multiple
simultaneously recorded neurons (Chapin, 2004; Churchland et al., 2007; Yu et al., 2008), and
more accurate spiking models (Johnson, 1996; Barbieri et al., 2001; Ventura et al., 2002; Kass
and Ventura, 2003; Truccolo et al., 2004; Koyama and Kass, 2008). Two reviews in particular
discuss these and other issues in spike train processing (Brown et al., 2004; Kass et al.,
2005).

Linking methodological developments to observable physical behavior (such as neural
prosthetic decode performance) is critical for increasing the adoption and usefulness of these
methods. This study takes an important first step in that direction for the problem of firing rate
estimation.

Firing Rate Methods
This section reviews several popular and current firing rate estimation methods. We introduce
each method at a high level, point to relevant publications, and suggest potential advantages
and disadvantages of each. We then summarize the reviewed methods and discuss related
methods and other possibilities that are not yet included in literature.

Kernel Smoothing (KS)
The most common historical approach to the problem of estimating firing rates has been to
collect spikes from multiple trials in a time-binned histogram known as a peri-stimulus-time
histogram (PSTH), which produces a piecewise constant estimate. To achieve a smooth,
continuous firing rate estimate, as is often of interest in single trial settings (such as neural
prostheses), researchers instead typically use kernel smoothing (KS); that is, they convolve the
spike train with a kernel of a particular shape (e.g., Nawrot et al. (1999)). This convolution
produces an estimate where the firing rate at any time is a weighted average of the nearby
spikes (the weights being determined by the kernel). A Gaussian shaped kernel is most often
used (see, e.g., Kass et al. (2005)), and this kernel serves to smooth the spike data to a firing
rate that is higher in regions of spikes, lower otherwise. However, The kernel shape and time
scale (e.g., the standard deviation of the Gaussian) are frequently chosen in an ad hoc way,
which largely alters the frequency content of the resulting estimate (in other words, how quickly
firing rate can change, and how susceptible the estimate is to noise).

The most obvious advantage of kernel smoothing is its simplicity. KS methods are extremely
fast and simple to implement, which has led to wide adoption. In this study, we implement
three Gaussian kernel smoothers of various bandwidths (which determine smoothness): 50ms
standard deviation (KS50), 100ms (KS100), and 150ms (KS150). These are common choices
for single trial studies, and they produce significantly different estimates of firing rate. This
ad hoc choice of smoothness is typically considered a major disadvantage of KS methods.
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Adaptive Kernel Smoothing (KSA)
In Richmond et al. (1990), the authors address two concerns with standard KS: first, the ad
hoc smoothness choice as noted above, and second, the fact that the kernel width can not adapt
at different regions of smoothness in the firing rate. We call this fixed frequency behavior
stationarity. KSA incorporates a nonstationary kernel to allow the spike train to determine the
extent of firing rate smoothness at various points throughout the trial. It does so by forming
first a stationary firing rate estimate (called a pilot estimate), and from that pilot, it forms a set
of local kernel widths at the spike events. These local kernels are then used to produce a
smoothed firing rate that changes more rapidly in regions of high firing, and less in regions of
less firing. This trend is sensible, as regions of little spiking give fewer observations into the
firing rate process underlying the data.

KSA benefits from the simplicity of KS methods, and the added complexity of the local kernel
widths increases the computational effort only very slightly. Further, this approach lifts the
strict stationarity requirement of many methods. A possible shortcoming is that, even though
it adapts the kernel width, KSA still requires an ad hoc choice of kernel width for the pilot
estimate.

Kernel Bandwidth Optimization (KBO)
In KS methods, as latter sections in this paper will show, the ad hoc choice of smoothness can
have a significant impact on the firing rate estimate. KBO seeks to remove this shortcoming
of kernel smoothing by establishing a principled approach to choosing the kernel bandwidth.
In Shimazaki and Shinomoto (2007b), a method is developed for automatically choosing the
bin width of a PSTH. By assuming that neural spike trains are generated from an
inhomogeneous Poisson process (i.e., a Poisson process with time-varying firing rate), the
authors show that the mean squared error (MSE) between the PSTH and the true underlying
firing rate can be minimized using only the mean rate (rate averaged across time), without
knowledge of the true underlying firing rate.

In Shimazaki and Shinomoto (2007a), this PSTH method is adapted to similarly optimize the
bandwidth of a smoothing kernel. The authors of that report provide a simple algorithm for the
popular Gaussian kernel, which we implemented for the purposes of this study. Once the
optimal kernel bandwidth is chosen with the algorithm of Shimazaki and Shinomoto
(2007a), we then perform standard kernel smoothing (as defined in KS above) with the
optimized kernel bandwidth. We refer to this method as KBO.

We also note here a method quite similar in spirit to KBO. In Nawrot et al. (1999), a heuristic
method is developed to find the optimal bandwidth of a kernel smoother. We also implemented
this method and found that, with the particular motor cortical data of interest for this BMI
study, the method of Nawrot et al. (1999) produced very often a flat, uninformative firing rate
function (i.e., a very large kernel bandwidth). Accordingly, we chose the newer, principled
method of Shimazaki and Shinomoto (2007a,b) (which produces a range of different kernel
bandwidths, depending on the spike data) to demonstrate the performance of kernel bandwidth
optimization methods.

KBO has the advantage of simple implementation and correspondingly very fast run time (only
slightly longer than a regular kernel smoother, due to the overhead required to calculate the
optimal bandwidth). Shortcomings of this approach may include the Poisson spiking
assumption (required for this method), as much research has shown that neural spiking often
deviates significantly from Poisson spiking statistics (see, e.g., Barbieri et al. (2001); Miura et
al. (2007); Paninski et al. (2004)).
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Gaussian Process Firing Rates (GPFR)
All kernel smoothing methods, including KS, KSA, and KBO as above, act as low pass filters
to produce a smooth, time-varying firing rate. Alternatively, several methods take a
probabilistic approach. If one assumes a prior probability distribution for firing rate functions
(e.g., some class of smooth functions), and a probability model describing how spikes are
generated, given the underlying firing rate (e.g., an inhomogeneous Poisson process (Daley
and Vere-Jones, 2002)), one can then use Bayes rule (Papoulis and Pillai, 2002) to infer the
most likely (or expected) underlying firing rate function, given an observation of one or
multiple spike trains. The following methods - GPFR, BARS, and BB - are variations on this
general approach.

In Cunningham et al. (2008c), firing rates are assumed a priori to be draws from a Gaussian
process. Gaussian processes place a probability distribution on firing rate functions which
allow all functions to be possible, but strongly favor smooth functions (Rasmussen and
Williams, 2006). This study then assumes that, given the firing rate function, spike trains are
generated according to an inhomogeneous Gamma interval process, which is a generalization
of the familiar Poisson process to allow spike history effects such as neuronal refractory
periods. Bayesian model selection and Bayes' rule are then used to infer the most likely
underlying firing rate function, given an observation of one or multiple spike trains. Owing to
this probabilistic model, the computational overhead of such a firing rate estimator can be
significant, so the authors developed numerical methods to alleviate these challenges
(Cunningham et al., 2008a).

GPFR has the advantage of using a probabilistic model, which allows automatic smoothness
detection (in contrast to the ad hoc smoothness choices made in, for example, KS), and which
naturally produces error bars on its predictions (which may be useful for data analysis
purposes). GPFR also has the benefit of being able to readily incorporate different a priori
assumptions about firing rate (such as known, stimulus-driven nonstationarities in the firing
rate, which can be controlled through the Gaussian process prior). Even with the significant
computational improvements developed in Cunningham et al. (2008a), GPFR still requires
seconds of computational resource (for spike trains roughly one second in length), which may
be a disadvantage compared to kernel smoothers (which work in tens to hundreds of
milliseconds).

Bayesian Adaptive Regression Splines (BARS)
Instead of a Gaussian Process prior on smooth firing rate functions, BARS, as introduced and
used in DiMatteo et al. (2001); Kass et al. (2005); Kaufman et al. (2005); Behseta and Kass
(2005), models underlying firing rate with a spline basis. Splines generally are piecewise
polynomial functions that are connected at time points called “knots.” In DiMatteo et al.
(2001), the authors choose a prior distribution on the number of knots, the position of the knots,
and other parameters of the spline function. Conditioned on firing rate, BARS then assumes
that spikes are generated according to a Poisson spiking process.

This model choice allows Bayesian inference to be carried out. Owing to the forms of the
probability distributions chosen, approximate inference methods must be used (an analytical
solution is intractable). BARS uses the well established techniques of reversible-jump Markov
chain Monte Carlo and Bayesian information criteria to estimate the underlying firing rate
(which in this case is the mean of the approximate posterior distribution, given the observed
data). BARS is fully described in DiMatteo et al. (2001), and further applications and
explanations can be found in Olson et al. (2000); Kass et al. (2005); Kaufman et al. (2005);
Behseta and Kass (2005). This study uses the MATLAB implementation of BARS available
at the time of publication at http://lib.stat.cmu.edu/˜kass/bars/bars.html
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One major advantage of BARS is that the spline basis allows different regions of firing rate to
change more or less smoothly, which allows high frequency changes in rate while still removing
high frequency noise (this is not possible in traditional kernel smoothers). Further, like other
probabilistic methods, BARS produces an approximate posterior distribution on firing rates,
so valuable features like error bars are available. BARS, like GPFR, suffers from technical
complexity that translates into meaningful computational effort and run-time, compared to
more basic kernel smoothers.

Bayesian Binning (BB)
Instead of assuming a continuous, time-varying firing rate as in many of the above approaches,
the authors of Endres et al. (2008) assume neural firing rates can be modelled a priori by
piecewise constant regions of varying width (in contrast to a fixed-width binning scheme like
the classic PSTH). This BB approach, like BARS and GPFR, constructs a probabilistic model
for spiking, where both the firing rates in piecewise constant regions and the boundaries
between the regions themselves have associated probability distributions (together, the
boundaries and the firing rates at each interval fully specify a firing rate function). BB then
assumes an inhomogeneous Bernoulli process for spiking (i.e., each time point contains 0 or
1 spikes), given the underlying firing rate.

With these assumptions made, Bayes rule is then used to infer the underlying firing rate from
the above model. Importantly, because the boundaries and height of the firing rate bins are
probabilistic, the result of this firing rate inference is a smooth, time-varying firing rate, and
BB is thus comparable to the other methods highlighted in this study. The BB method is fully
described in Endres et al. (2008), and we implemented the algorithm using the authors' source
code, which is available at the time of this report at http://mloss.org/software/view/67/.

Like GPFR and BARS, BB has the advantage of being a fully probabilistic model, which allows
automatic smoothness detection (in contrast to the ad hoc smoothness choices made in, for
example, KS), and which produces error bars on its predictions. Also, like BARS and KSA
(and unlinke GPFR, KBO, and KS), BB is a nonstationary smoothing model, so it can adapt
its smoothness to regions of faster or slower firing rate changes. However, as BB constructs a
thorough probabilistic model for spiking and solves it exactly, the method requires significant
computational resource (generally an order of magnitude more than BARS and GPFR, the
other computationally expensive methods), which may limit the use of BB in some
applications.

Summary of Reviewed Methods
These methods were chosen in that they all can be used as single trial, single neuron firing rate
estimators (as is relevant for neural prosthetic applications). In Fig. 2, we show four examples
of firing rates inferred by all eight methods reviewed above. Each panel represents a different
spike train, which is denoted above the firing rates as a train of black rasters (as in Fig. 1).
These four panels show a range of spiking patterns, including: (a) high firing, (b) sharply
increasing activity, (c) sharply decreasing activity, and (d) low firing. Though there are infinite
possible firing rate patterns, these four example spike trains illustrate the wide range of firing
rates profiles that can be estimated from the same neural activity, depending on the estimation
method used.

The methods above also demonstrate a range of approaches and features that one might consider
in designing a firing rate estimator. Table 1 compares the above methods in terms of five
important features, where we indicate generally desireable features in green and undesireable
features in red. The first row notes which methods offer principled, automatic determination
of the firing rate smoothness (vs. choosing a kernel bandwidth in an ad hoc way). The second
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row indicates if the method is a proper probalistic model, which carries advantages previously
discussed. The drawback of probabilistic models lies in their computational complexity (and,
as a result, run time); the third row of Table 1 details ballpark run-time requirements for
estimating one firing rate function from one single spike train. The fourth row details which
methods are nonstationary; that is, which methods can adapt the smoothness of the estimate at
different points in the spike train. Finally, we also noted above that spike trains are known to
depart significantly from Poisson statistics (e.g., refractory periods); the fifth row illustrates
which methods are Poisson-based and which are not.

It is important to note that all of these methods can also be used for multiple-trial firing rate
analyses. Some methods, including BARS and BB, were introduced more with a multi-trial
motivation than a single-trial motivation. This study makes no claim on the effectiveness of
any of these methods at larger numbers of trials, as such a circumstance is not germane to BMI
applications. Thus, the forthcoming results should not be viewed as a statement about the
quality of a particular firing rate estimator in general, but rather for the single-trial analyses
that are relevant in BMI studies.

Other Related Methods
Despite the range of methods already discussed, the above list of recent and classical firing
rate estimators is by no means exhaustive. We here discuss a few other possibilities and avenues
of investigation not covered by the above methods.

First, we note that none of the above methods are implemented as cross-validation schemes
(Bishop, 2006). The probabilistic models (GPFR, BARS, BB) all do Bayesian model selection
to adapt their smoothness. KBO uses an MSE criterion and KSA uses a criteria based on the
amount of local spiking to adapt their smoothness, whereas KS uses only a user-defined kernel
width choice. Another possibility is to cross-validate, where other trials of data are used to
inform the parameter (e.g., smoothness) choices when estimating firing rate on a novel spike
train (Bowman (1984) reports on the related topic of probability density estimation). For
example, one might believe that all firing rates in a particular BMI application evolve with
roughly equal smoothness. Even though the firing rates may be quite different trial to trial, one
could cross-validate with some criterion (such as decode performance) to choose the
smoothness for the firing rate estimation on the new spike train in question. This report does
not review that possibility, as we wish to focus on methods that produce firing rates from spike
trains based on only those spike trains (not a validation set). Further, many, if not all, of the
above methods could incorporate a cross-validation scheme: for example, GPFR, BARS, and
BB could choose their parameters via cross-validation instead of Bayesian model selection.
Thus, cross-validation is a feature of model selection more than it is of the firing rate method
used, and we chose to focus on the methods as previously published.

Second, we also note that the methods outlined above are all unsupervised, in that they infer
firing rates without knowledge of an extrinsic covariate such as the path of a rat foraging in a
maze, or the kinematic parameters of a moving arm. Instead, if one has a good idea about how
some measureable behavior translates to firing rate, one might assume a parametric form for
firing rate based on behavior, learn the parameters from the data, and use that model to infer
time-varying firing rate. Some studies using this approach include Brown et al. (1998); Barbieri
et al. (2001); Brown et al. (2002); Ventura et al. (2002); Eden et al. (2004); Truccolo et al.
(2004); Stark et al. (2006); Pillow et al. (2008). These approaches are specific to particular
neural areas, particular experimental setups, and they are susceptible to biases of their own.
Thus, we chose not to review these techniques to again focus on methods that produce firing
rates for a given spike train, using that spike train alone.
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Third, we note that, although the methods described above are quite specific, there are many
areas in which they can be extended or combined with other approaches. Simple first examples
include: KBO and KSA could be combined in a two-stage method, or the method of Miura et
al. (2007) could replace a part of the model selection method in GPFR. As a more interesting
example, one advantage of probabilistic models (including BARS, GPFR, and BB) is that they
can readily be extended to different spiking probability models. One spiking model, the so-
called generalized linear model (GLM), has received much attention of late (Eden et al.,
2004; Barbieri et al., 2001; Truccolo et al., 2004; Srinivasan et al., 2007; Coleman and Sarma,
2007; Czanner et al., 2008; Koyama and Kass, 2008; Pillow et al., 2008) for its ability to model
neural spiking quite well and its flexibility in being extended to many different problem
domains. This GLM spiking model may inform firing rate estimation as well.

Finally, we note that all the methods above are single-neuron firing rate estimators that are
independent of the activity of other neurons. Firing rate estimation methods that consider
multiple units (as is often collected with electrode arrays in BMI experiments) may be able to
leverage the simultaneity of recordings to improve the quality of firing rate estimates. Some
work has begun to investigate this general question, including (Chapin, 2004; Brown et al.,
2004; Churchland et al., 2007; Pillow et al., 2008; Yu et al., 2008, 2009) (and the GLM model
of Czanner et al. (2008) could also be readily extended for this purpose). However, none of
these multi-dimensional approaches specifically address unsupervised firing rate estimation as
do the methods of this report, so we will leave multidimensional extensions to future work.

In summary, the problem of firing rate estimation (and, more generally, inferring meaningful
information from spiking data) is quite broad. The methods reviewed in this report are all
directly comparable, but there are many opportunities for extensions and adaptations of these
models.

Prosthetic Paradigm for Evaluating Firing Rate Methods
Having reviewed several firing rate estimators, we now investigate their relevance for neural
prosthetic applications. We first describe the experimental setting we employed to study this
question (“Reach Task and Neural Recordings” below). We then describe two popular
prosthetic decoding algorithms (“Decoding Algorithms” below) and performance metrics
(“Calculating Decode Performance” below) that we can use to evaluate the quality of our firing
rate estimation.

Reach Task and Neural Recordings
Animal protocols were approved by the Stanford University Institutional Animal Care and Use
Committee. We trained an adult male monkey (Macaca mulatta) to perform point-to-point
reaches on a 5-by-5 grid (25 targets) for juice rewards. Visual targets were back-projected onto
a fronto-parallel screen 30 cm in front of the monkey. The monkey began each trial with his
hand held at a particular target, which must be held for a random time interval. These hold
times were exponentially distributed with a mean of 300 ms (but shifted to be no less than 150
ms). This exponential distribution prevented the monkey from preempting the movement cue.
After the hold time, a pseudo-randomly chosen target was presented at one of the target
locations. The 25 targets were spaced evenly on an 8 cm by 8 cm grid. Concurrent with the
target presentation, the current hold point disappeared, cueing the monkey to reach to the target
(the “go cue”). The monkey was motivated to move quickly by a reaction time constraint
(maximum allowable reaction time of 425 ms, minimum of 150 ms, again to prevent
preemption). The monkey reached to the target and then held the target for 300 ms, after which
the monkey received a liquid reward. The next trial started immediately after the successful
hold period. In total, all trials are 850 to 1500 ms long (these times vary depending on the
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length and speed of the reach and the randomized hold time). Fig. 3 illustrates four sequential
trials of the reaching task.

During experiments, the monkey sat in a custom chair (Crist Instruments, Hagerstown, MD)
with the head braced. The presentation of the visual targets was controlled using the Tempo
software package (Reflective Computing, St. Louis, MO). A custom photo-detector recorded
the timing of the video frames with 5 ms resolution. The position of the hand was measured
in three dimensions using the Polaris optical tracking system (Northern Digital, Waterloo,
Ontario, Canada; 60 Hz, 0.35 mm accuracy), whereby a passive marker taped to the monkey's
fingertip reflected infrared light back to the position sensor. Eye position was tracked using an
overhead infrared camera (Iscan, Burlington, MA; 240 Hz, estimated accuracy of 1°).

A 96-channel silicon electrode array (Cyberkinetics, Foxborough, MA) was implanted
straddling dorsal pre-motor (PMd) and motor (M1) cortex (left hemisphere), as estimated
visually from local landmarks, contralateral to the reaching arm. Surgical procedures have been
described previously (Churchland et al., 2006; Santhanam et al., 2006; Hatsopoulos et al.,
2004). Spike sorting was performed offline using techniques described in detail elsewhere
(Sahani, 1999; Santhanam et al., 2004; Zumsteg et al., 2005). Briefly, neural signals were
monitored on each channel during a two minute period at the start of each recording session
while the monkey performed the behavioral task. Data were high-pass filtered, and a threshold
level of three times the RMS voltage was established for each channel. The portions of the
signals that did not exceed threshold were used to characterize the noise on each channel.
During experiments, snippets of the voltage waveform containing threshold crossings (0.3 ms
pre-crossing to 1.3 ms post-crossing) were saved with 30 kHz sampling. After each experiment,
the snippets were clustered as follows. First, they were noise-whitened using the noise estimate
made at the start of the experiment. Second, the snippets were trough-aligned and projected
into a four-dimensional space using a modified principal components analysis. Next,
unsupervised techniques determined the optimal number and locations of the clusters in the
principal components space. We then visually inspected each cluster, along with the
distribution of waveforms assigned to it, and assigned a score based on how well-separated it
was from the other clusters. This score determined whether a cluster was labeled a single-
neuron unit or a multi-neuron unit. For this report, as many firing rate methods are based on
biophysical properties of single neurons, we use units labelled only as high quality, single-
neuron units.

The monkey (monkey L) was trained over several months, and multiple data sets of the same
behavioral task were collected. We chose two such data sets to evaluate prosthetic decode
( L2006A and L2006B), from which we took 14 and 15 high quality, single-neuron units,
respectively (note that more units would be available were we to consider “possible single
units” or multi-units, as is often done in prosthesis studies). For the purposes of this study, we
selected the first 300 successful trials (about five minutes of neural activity and physical
behavior), which is ample for fitting the decoding models used here. Thus, we use two data
sets, each with 14 or 15 neural units and 300 experimental trials. This produces a total of 8700
spike trains that were all analyzed by each of the 8 firing rate methods (and subsequently by
the two decoding algorithms). Across all these firing rate estimations and their subsequent
prosthetic decodes, this analysis required roughly four weeks of fully dedicated processor time
on five to ten 2006-era workstations (Linux Fedora Core 4 with 64 bit, 2.2-2.4GHz AMD
processors and 2-4GB of RAM) running MATLAB.

Decoding Algorithms
Having detailed the experimental collection of neural spike trains and physical behavior, and
having reviewed methods for processing spike trains into firing rates, we now address how to
decode arm trajectories from neural firing rates. As with the firing rate methods above, we
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discuss the methods at a high level and point to the relevant literature which offers more
methodological description.

Linear Decode—The Linear Decode algorithm, as used for example in Carmena et al.
(2005); Hochberg et al. (2006); Chestek et al. (2007), is a simple first approach to decoding
arm trajectories from neural activity. This algorithm assumes the physical behavior at a
particular time t is a linear combination of all recorded neural activity (across all N recorded
neural units) that preceeds t by some amount of time. We chose to consider the preceeding
300ms of neural activity1. This period of neural activity can be considered a row in a matrix
of firing rates (as many rows as time points in the experimental trials). If each dimension of
the behavior (e.g., horizontal hand position and vertical hand position) is a vector of length
also equal to the number of time points, then simple least squares can solve for the linear weights
that relate neural activity to physical behavior. These weights can then be applied to novel
neural activity to produce a decoded reach trajectory, which hopefully matches the true reach
well. More mathematical details can be found in, e.g., Chestek et al. (2007).

For completeness, we note here a few specifics of our implementation of this algorithm. To
provide the algorithm with a finely time-resolved firing rate, we sampled the firing rate
estimates (from all firing rate methods) every 5ms. We found that increasing this sampling rate
did little more than increase the computational burden of the decode, and reducing this rate
ignored features of the firing rate estimates, which would be detrimental to our comparison of
methods. Further, because of the 300ms integration window and the trial structure of the data
(there is a time break in between each trial), for the decode analysis, we decode only the length
of the trial beginning 300 ms after the beginning of the trial (this prevents the linear decode
filter from going into a region of undefined neural activity). Owing to the random hold time
and the reaction time of the monkey (both enforced to be no less than 150ms, see “Reach Task
and Neural Recordings” above), there was no movement for the first 300ms of the trial, so this
step is reasonable. Furthermore, we found that including this portion of the trials did not change
the result considerably.

Kalman Filter—To employ the popular Kalman Filter (Kalman, 1960), we assume that the
arm state (in this case, horizontal and vertical position and velocity) evolves as a linear
dynamical system: the arm state at discrete time t is a linear transformation of the arm state at
time t – 1, plus Gaussian noise. We also assume a linear relationship between arm state and
neural activity at that time t (again, plus noise). With this done, the Kalman Filter allows the
inference of the hand state from the observation of neural data only. Starting from arm state at
the beginning of the trial, the Kalman filter proceeds iteratively through time, updating its
estimates of arm state and error covariance at every time step t, before and after the inclusion
of neural data at that time step. These steps are entirely based on mathematical properties of
the Gaussian, and the algorithm is fast and stable. Importantly, the Kalman Filter has been
previously and successfully used as a BMI decoding algorithm, and more explanation and
mathematical detail can be found in Wu et al. (2002, 2004, 2006).

As above, we note here a few implementation specifics. To parallel with the Linear Decode,
we also sampled firing rates at 5ms intervals when fitting the Kalman Filter model and when
estimating reach trajectories from it. In the Linear Decode, we chose to remove the first 300ms
of the trial, during which the monkey did not move. In the Kalman Filter decodes, we truncated
300ms from the end of the trials. Choosing this slightly different time interval allows us to look

1We chose 300ms as a number on par with the timescale of arm movements and motor processing. Ideally, one might run this analysis
at a variety of temporal window sizes. However, we note that this choice has no discernable bias in favor of any particular firing rate
estimation method. We also found that using 300ms produced decode results of similar quality to using longer periods. Finally, we note
that the Kalman Filter does not make this assumption, providing yet another cross-check.
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across the Linear Decode and the Kalman Filter and rule out any potential idiosyncracies with
the starting and ending of a trial. We also varied this choice and found that it had no effect on
the relative decode performance of the different firing rate methods. Next, we note that we
included horizontal and vertical position and velocity in our arm state. Acceleration is
sometimes included, but the inclusion of this data in our Kalman Filter had little effect on the
decode quality, so we chose not to consider it further. Finally, we note that we did not impose
a temporal lag (or a group of lags) between neural data and physical behavior. Our testing with
different lags produced minor differences that agreed generally with the results of Wu et al.
(2006). As this aspect did not influence the comparisons between firing rate estimators, we do
not report further on it.

To provide a sample of these decodes, we show in Fig. 4 four decoded trials from L2006A that
use the Kalman Filter. Each panel shows the true reach as a black trace moving from the black
square hold point to the yellow square target. Trajectories decoded with each firing rate method
(but the same neural data) are shown in colors corresponding to those in Fig. 2 (see legend).
Marks are placed on each trajectory at 20ms intervals to give an idea of decoded velocity
profiles. Panels (a) and (b) show reasonably average decodes (in terms of the RMS error, see
the panel captions). Panel (c), a trial which decodes rather well, shows the wide variety of
decoded trajectories that can arise from different firing rate estimations (but the same spike
trains). Finally, Fig. 4, panel (d), shows that indeed the Kalman Filter, like the Linear Decode
(not shown) does sometimes fail entirely to decode the true reach, regardless of the firing rate
method used. In the following sections, we generalize these specific examples, calculating
performance metrics across all trials, decode methods, and data sets.

Calculating Decode Performance
Given any decoded arm trajectory, there are a number of possible metrics to evaluate accuracy.
We use two of the most common metrics: root-mean-square error (RMSE) and correlation
coefficient. For any given firing rate method, RMSE on each trial is the square root of the mean
of the squared errors (across time) between the true arm trajectory and the decoded trajectory.
RMSE is likely the most often-used performance metric; some examples of its use (or MSE,
which is simply RMSE squared) include: Serruya et al. (2002); Brockwell et al. (2004); Kemere
et al. (2004); Wu et al. (2006); Yu et al. (2007); Srinivasan et al. (2007). Correlation coefficient
(ρ or r2) is another commonly used performance metric that reflects how well the decoded
trajectory matches the true arm trajectory. Considering each time step as a draw from a random
variable, this metric correlates the true and decoded trajectories across time to calculate how
well one trajectory predicts the other (ρ = 1 implies perfect linear correlation). Some previous
literature using correlation coefficients to evaluate decode performance includes (Wu et al.,
2002; Carmena et al., 2005; Wu et al., 2006; Chestek et al., 2007).

To calculate these performance metrics, we use leave-one-out cross validation (LOOCV)
(Bishop, 2006). That is, for each data set, we select one experimental trial (one arm trajectory)
to test, and we exclude both that trial's neural activity and physical behavior. We then train a
decoder model based on the other 299 trials collected in that data set ( L2006A or L2006B).
We can then use the decode algorithm (Linear Decode or Kalman Filter) to decode the arm
trajectory on the excluded trial, using only the neural activity from that trial. We repeat this
same procedure 300 times (once per trial), which provides 300 decoded trials. We calculate
the RMSE for each trial, and then we can average these and produce 95% confidence intervals
(Zar, 1999). We also correlate all the decoded arm trajectories with the true trajectories,
producing one overall correlation coefficient ρ and 95% confidence intervals on the estimate
of this metric (see Zar (1999), section 19.3 for details on calculating confidence intervals for
a population correlation coefficient).
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Performance Results
In “Firing Rate Methods” above, we described a host of methods that estimate firing rates from
experimentally gathered spike trains. We then used these firing rates to decode arm trajectories
using two different decoding algorithms (above in “Decoding Algorithms”) and two different
performance measures (above in “Calculating Decode Performance”). We now compare
different firing rate estimation methods in terms of their decode performance.

In Fig. 5 and Fig. 6, we show the RMSE and correlation coefficient results (respectively) from
several different decoding scenarios. Each panel shows the decode performance across all eight
of the reviewed firing rate methods (KS50, KS100, KS150, KSA, KBO, GPFR, BARS, and
BB). Within each panel, red bars represent the decode error using the Linear Decode method,
and green bars represent the decode error using the Kalman Filter method. Panels (a) and (b)
show decoding results from data set L2006A, and panels (c) and (d) show results from data set
L2006B. Also, the left panels (a and c) and the right panels (b and d) show the results from
decoding horizontal and vertical hand position, respectively. Thus, each firing rate estimate
has sixteen performance metrics (two decode methods, two data sets, horizontal and vertical
dimensions, RMSE and correlation coefficient). This variety is important to ensure that any
effects are robust across data sets and decode algorithms and different strengths of neural
tuning.

First, we note several important cross-checks with existing literature. The RMSE and
correlation coefficient numbers match well to the results of, for example, Wu et al. (2002,
2006); Yu et al. (2007); Chestek et al. (2007). The errors are in some cases higher than those
seen in previous literature, which may be due to the complexity of this task (vs. a simpler,
center-out task as in Yu et al. (2007)) or the restrictive choice of using only single neural units
(rather than the many more multi-units which are often informative in a decode setting). Indeed,
when we altered the number of neural units, the absolute decode performance changed as
expected, but the relative differences between the decode results (from the various firing rate
methods) did not. Accordingly, we are satisfied that the selected neural populations are
representative. Specifically to the Linear Decode, our performance may also be different in
that we used only 300 ms of preceeding neural data vs. prior literature which has used, for
example, 1000 ms (Chestek et al., 2007) or 550 ms (Wu et al., 2002). Specifically to the Kalman
Filter, as noted above, our performance may also be different in that we did not impose a
temporal lag between neural data and physical behavior. Again, we tested changing the
temporal lags and found relative performance between firing rate methods insensitive to this
choice, so we are satisfied that this choice is also representative. We also visually compared
trajectories decoded in this study (e.g., Fig. 4) to decoded trajectories from Wu et al. (2002,
2006), and we found thesesimilar, giving confidence that we are successfully reproducing
similar decode quality as existing literature.

The most salient feature in Fig. 5 and Fig. 6 is the similarity in performance across all firing
rate methods. Let us consider, for example, the Kalman Filter results from Fig. 5, panel a.
Looking across these eight green bars, there is no statistically significant difference between
the RMSE results produced by any of the methods. If we consider different decoding algorithms
(Linear Decode - red bars - or Kalman Filter - green bars), different performance metrics
(RMSE - Fig. 5 - or correlation coefficient - Fig. 6), different dimensions of physical activity
(horizontal - left panels - or vertical - right panels), and different data sets ( L2006A - upper
panels - or L2006B - lower panels), the story is unchanged: all seem to produce very similar
performance results no matter what firing rate estimation method is used. In some cases the
Kalman Filter may generally outperform (Fig. 5, panel d) or underperform the Linear Decode
(Fig. 6, panel c), or there may be generally higher error in data set L2006A than L2006B. In
all cases though, there is very little trend that can be seen in the data suggesting that one firing
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rate method consistently outperforms any other. This finding is perhaps surprising, given the
variety of firing rate estimates that are produced from the same spike trains using these different
methods, as seen in Fig. 2.

We further note that, from our testing, this similarity in decode performance remains if different
numbers of neurons are used, or if different lengths of trials are considered, or if different
temporal lags are imposed between neural activity and physical behavior (as is often done in
BMI studies), or if the firing rate data is considered at finer or coarser time intervals. In addition
to these summary performance statistics, we note that, from our visual inspection of many
decoded trials (e.g., Fig. 4), all the firing rate estimators had the same performance in terms of
how many decoded trajectories we described as “better” (cf. Fig. 4, panel c), “reasonable” (Fig.
4, panels a and b), and “failed” (Fig. 4, panel d). Thus, across all quantitative and qualitative
analysis of the data that we have investigated, firing rate estimation offers little difference in
terms of the quality of prosthetic decode. We discuss the implications of this seemingly general
finding below.

Discussion and Conclusions
Optimally inferring neural firing rates from spike trains is an unanswered research question,
and many groups have addressed this interesting problem. In this paper, we reviewed some
recent and some classical firing rate estimators. We discussed the theoretical motivation for
each and discussed some potential advantages and disadvantages of competing methods. Firing
rate estimation is a broad question that is applicable to neuroscientific and BMI applications,
multiple and single trials, multiple and single neurons, and more. Each firing rate method
should be considered specifically for its potential applications.

In this paper, after reviewing these methods, we investigated the relevance of firing rate
estimation methods for an important BMI application: decoding individual arm movements
from simultaneously recorded neural populations. We trained a monkey in a standard reaching
paradigm (as described in “Reach Task and Neural Recordings” and in Fig. 3), and we used
two standard decoding algorithms to estimate arm trajectories from neural activity. These
algorithms - the Linear Decode and the Kalman Filter (as described in “Decoding Algorithms”)
- accept as input neural firing rates over a population of neurons. Using the same neural spike
trains, we inferred neural firing rates using eight different firing rate methods, and then we
decoded arm trajectories using these firing rates.

Though the firing rates found by all eight methods appear quite different (see Fig. 2), the
decoding test indicated that in fact firing rate estimation matters very little for this domain of
prosthetic decode. We showed in Fig. 5 and Fig. 6 that RMSE and correlation coefficients of
the decode are rather insensitive to the firing rate estimation method that is used to process the
neural spike trains. Looking across two dimensions of decode (horizontal and vertical), two
different data sets with different neural populations ( L2006A and L2006B), and two different
decoding algorithms (Linear Decode and Kalman Filter), no discernable trend appears to
indicate that one method (or one class of methods) is unambiguously better than any other.
Thus, we believe the relevance of firing rate estimation, as it pertains to neural prosthetic
decode, is in doubt.

Naturally the question then arises: how do such different firing rates (as in Fig. 2) produce such
similar decode performance (as in Fig. 5 and Fig. 6)? We consider three possible explanations:
(1) the decoding algorithms themselves are insensitive to differences in firing rate estimation;
(2) the firing rate methods all have particular strengths and weaknesses but result in essentially
the same signal-to-noise ratio (SNR); and (3) the ability to decode depends much more on
factors other than firing rate estimation, and thus the firing rate estimator is not meaningful.
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To the first point, if the decoding algorithms themselves smoothed over any differences in the
firing rate estimations, we might expect very similar decoded trajectories. However, the
different firing rate methods do in fact produce quite different decoded trajectories. Fig. 4
demonstrates this variety in four sample cases. Across the Linear Decode and the Kalman
Filter, we find that the RMSE between different decoded trajectories (estimates derived from
different firing rate methods) is typically 30-50% of the error with the true reach, and thus these
estimates are indeed consistently different. Further, if the decoder was insensitive to firing rate
estimates, we should be able to remove the firing rate estimator entirely (simply binning firing
rate counts) without change to the decode quality. We tried a simple binning scheme, using
both 50ms (as used in, e.g., Wu et al. (2002)) and 100ms bins (as used in, e.g. Chestek et al.
(2007)). Interestingly, we find this simplifying step can change error meaningfully, increasing
error considerably in the case of the Linear Decode (but less so with the Kalman Filter; indeed,
sometimes binning reduces error in the Kalman Filter case). Thus, temporal smoothing of firing
rates seems valuable, and the method of smoothing influences the decoded arm trajectory
meaningfully. Based on these findings, we see that the decode algorithms themselves are indeed
sensitive to differences in firing rate estimation.

To the second possibility, each firing rate method does seem to make particular tradeoffs
between signal and noise. In the simplest case, a low bandwidth kernel smoother (such as
KS150) will produce a slowly varying firing rate with a similar time course to the arm activity.
However, it also eliminates steep changes in firing rate, which likely provide a meaningful
signal to the timecourse of arm movement. Fig. 2, panel (b), shows this possibility: while KS50,
GPFR, and others pick up the sharp “ON” transient in the firing rate, they also pick up noise
in the subsequent high firing rate. In contrast, KS150 smooths out both the noise and the step
change in firing rate. Thus, it is likely that these firing rate methods and others each represent
some balance between capturing or removing both signal and noise. Loosely, while each
method may result in very different firing rate estimates, the SNR of each estimate may in fact
be similar.

To the third possibility, it seems quite likely that the biggest effect on decode performance
comes from aspects of the decoding system that are not neural firing rates. For example, the
addition or removal of one or more very informative neurons to the neural population does
often alter these performance numbers considerably (we found this effect in our additional
testing), thus suggesting that recording technology (such as Wise et al. (2004)) may be more
critical. Furthermore, the consideration of neural plan activity (before the movement begins)
has been found to significantly reduce decoding error (Kemere et al., 2004; Yu et al., 2007).
These are two examples of a host of avenues that may be significant determinants of prosthetic
performance. Other avenues, as previously noted, may include prosthetic decode algorithms
in general (Georgopoulos et al., 1986; Brown et al., 1998; Wu et al., 2004; Brockwell et al.,
2004; Wu et al., 2006), the prosthetic interface itself (Schwartz, 2004; Velliste et al., 2008;
Cunningham et al., 2008b), and multiple signal modalities (e.g., EEG, ECoG, LFP, and spiking
activity) (Mehring et al., 2003). Even if these other factors are much larger determinants of
performance than firing rate estimation, one might still hope to see that certain firing rate
estimators performed unambiguously better (albeit only slightly better) than others. Looking
across decoders and data sets and error metrics, such a claim can not be made.

Despite the questionable relevance of firing rate estimation to the problem of neural prosthetic
decode, we want to strongly clarify that we do not call into question the validity of firing rate
estimation in general. Many of the excellent papers in this domain (several of which were
reviewed in this study) may have important applications in neuroscientific studies or some
other domain of neural signal processing. For example, these methods may be especially
important in settings, unlike arm movements, where experimental conditions can be closely
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copied on each trial, producing similar neural responses (e.g., visual stimuli shown to in
vitro retinal neurons (Pillow et al., 2005)).

Neural prostheses and BMI have received much attention in the last decade. As a result, many
researchers from many fields have studied ways to improve our ability to understand and
decode neural signals. Despite this preponderance of methodological development, very few
systematic comparisons have been made in real experimental settings. The gold standard for
such a comparison is perhaps online (closed loop) clinical trials, where the BMI user may
engage learning, neural plasticity, and a host of other feedback mechanisms. Prior to that step,
offline comparisons should be made on a variety of experimentally gathered data, and these
comparisons can be made between all aspects of neural prosthetic systems. It behooves the
field to review and compare available methods at each step in the BMI signal path. In this
paper, we have made a first effort in that direction by reviewing and comparing different firing
rate estimation methods. Prosthetic decoding algorithms may be another attractive target for
such a review and comparison. The field should largely benefit from such studies, both in terms
of benchmarking the past and helping to set research agendas for the future.
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Figure 1.
Context for firing rate estimation and neural prosthetic decode. (a) N single spike trains are
gathered from N neurons on one experimental trial. (b) Those spike trains are denoised and
smoothed using a firing rate estimation method. (c) Those firing rates are used by a decoding
algorithm to estimate, for example, a reaching arm trajectory.
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Figure 2.
Example of various firing rate methods applied to data from different neurons and different
trials. Each method (see legend) produces a smooth estimate of underlying firing rate from
each of the four separate spike trains. The spike trains are represented as a train of black rasters
above each panel. Note that KBO obscurs KS50 in panel (c).

Cunningham et al. Page 20

Neural Netw. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Cartoon of the reaching task as in L2006A and L2006B. Four sample trials are shown (one
each in magenta, cyan, red, and green).

Cunningham et al. Page 21

Neural Netw. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Example of decoded arm trajectories derived from different firing rate estimates of the same
neural data (see legend). All data shown are decoded using a Kalman Filter and the data set
L2006A. In all cases the true reach is shown in black (moving from black square hold point to
the yellow square target). To give an idea of the velocity profile of the true reach and decoded
trajectories, marks are placed on each trajectory at 20ms intervals. (Note that the true reach, in
black, has a cluster of marks at the trial start. These marks, which are obscured by other decodes,
indicate that the arm is stationary for the early part of the trial. All decoders have difficulty
decoding this stationary period). To compare these results to the results across all trials, each
panel quotes the range of RMS errors (across the different decoders) in the horizontal and
vertical dimensions (cf. Fig. 5, panels a and b).
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Figure 5.
The decode performance of spike trains smoothed with different firing rate methods. Error is
root mean squared error (RMSE). In all panels, red bars are decode performance with a Linear
Decode; green bars are performance numbers with a Kalman Filter. Error bars indicate the 95%
confidence interval.
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Figure 6.
The decoder performance of spike trains smoothed with different firing rate methods. Vertical
axis is correlation coefficient with the true reach. In all panels, red bars are decode performance
with a linear filter; green bars are performance numbers with a Kalman Filter. Error bars
(vanishingly small) indicate the 95% confidence interval on the estimate of the correlation
coefficient (see (Zar, 1999)).
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